

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Doctoral Dissertation

Various numerical schemes and

analysis for the conservative

Allen–Cahn equation

Soobin Kwak

Department of Mathematics

Graduate School

Korea University

August 2024

Various numerical schemes and

analysis for the conservative

Allen–Cahn equation

by
Soobin Kwak

under the supervision of Professor Junseok Kim

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

Department of Mathematics

Graduate School

Korea University

April 2024

The dissertation of Soobin Kwak has been
approved by the dissertation committee in partial
fulfillment of the requirements for the degree of

Doctor of Philosophy

June 2024

Committee Chair: Junseok Kim

Committee Member: Seunggyu Lee

Committee Member: Hyun Geun Lee

Committee Member: Darae Jeong

Committee Member: Yongho Choi

Various numerical schemes and analysis for the

conservative Allen–Cahn equation

by Soobin Kwak

Department of Mathematics

under the supervision of Professor Junseok Kim

Abstract

In this dissertation, we introduce the Allen–Cahn (AC) equation and examine its vari-

ous properties. We introduce the mass conservative Allen–Cahn (CAC) equation to com-

pensate for the property of the AC equation not conserving mass. We briefly review two

well-known CAC equations and propose a new CAC equation that employs curvature-

dependent Lagrange multipliers. Furthermore, we provide solutions for the three CAC

equations, including the newly proposed CAC equation, using various numerical meth-

ods based on the operator splitting method. The presented novel CAC equation exhibits

an enhanced capability to preserve features. In contrast to traditional CAC equations,

which typically involve motion by mean curvature under area or volume constraints, the

proposed model minimizes the dynamics of such curvature motion and focuses solely

on smoothing the transition layers of interfaces. As a result, it is well-suited as a foun-

dational equation for modeling conservative phase-field scenarios, including two-phase

fluid flows. Various computational tests have validated the superior feature-preservation

characteristics of the proposed CAC equation.

Keywords: Conservative Allen–Cahn equation, Feature preserving property, Spectral

i

method, Alternating direction explicit method, Runge–Kutta method

ii

보존적알렌–칸방정식을위한다양한수치기법및

분석

곽수빈

수학과

지도교수:김준석

국문초록

본 논문에서는 알렌–칸 방정식에 대하여 소개하고 다양한 속성을 살펴봅니다. 질

량을 보존하지 않는 알렌–칸 방정식의 특성을 보완하기 위해 질량 보존적 알렌–칸

방정식을 도입합니다. 우리는 잘 알려진 두 가지 보존적 알렌–칸 방정식을 간략하게

살펴보고곡률종속라그랑주승수를사용하는새로운보존적알렌–칸방정식을제안

합니다.또한,새롭게제안된보존적알렌–칸방정식을포함한세가지보존적알렌–칸

방정식에대해연산자분할방법을기반으로다양한수치방법을사용하여해를제공

합니다. 제안된 보존적 알렌–칸 방정식은 우수한 구조 보존 특성을 가지고 있습니다.

면적이나 부피 제약이 있는 평균 곡률에 의한 운동을 갖는 기존 보존적 알렌–칸 방

정식과 달리 제안 모델은 평균 곡률에 의한 운동의 동역학을 최소화하고 인터페이스

전이층의 평활화 특성만 갖습니다. 따라서 이는 2상 유체 흐름과 같은 보존적인 상태

장응용을모델링하기위한빌딩블록방정식으로활용될수있습니다.구조보존특성

측면에서 제안된 보존적 알렌–칸 방정식의 우수한 성능을 확인하기 위해 여러 수치

계산테스트가수행되었습니다.

중심어:보존적알렌–칸방정식,구조보존속성,스펙트럴방법,교대방향명시적

방법,룽게–쿠타방법

iii

You always said you wanted to see me go to college, but you left us too soon.

I believe you would be the proudest of me in the world.

I dedicate this dissertation to my beloved grandmother.

iv

Preface

This dissertation is based on the work published in Applied Mathematics Letters,

which has played a pivotal role in shaping the scope and direction of this dissertation.

• S. Kwak, J. Yang, and J. Kim, A conservative Allen–Cahn equation with a curvature-

dependent Lagrange multiplier, Applied Mathematics Letters, 126 (2022) 107838.

This dissertation stands as a testament to the combined efforts and unwavering sup-

port of many individuals, to whom I am deeply thankful.

v

Acknowledgment

This dissertation owes its completion to the support and encouragement of numerous

individuals. I would like to take this opportunity to express my deepest gratitude to all

those who have contributed to the completion of this work.

First and foremost, I would like to thank my advisor, Professor Junseok Kim, for their

invaluable guidance, continuous support, and patience throughout my research.

I extend my sincere thanks to my dissertation committee members, Hyun Geun Lee,

Darae Jeong, Yongho Choi, and Seunggyu Lee, for their time, effort, and constructive

feedback. Their expertise and suggestions have greatly improved the quality of my work.

I am also grateful to my colleagues and friends in the CFD Lab at Korea University.

A heartfelt thank you goes to my family for their unwavering love and support. To

my parents, Hyun Sook Cho and Dong Gon Kwak, who have always believed in me

and encouraged me to dream, and to my best friend for their understanding, patience,

and constant encouragement, thank you. Your love and support have been my greatest

strength. I also want to thank my one and only sibling, Soomin Kwak. I will always

strive to be a reliable sister you can depend on.

vi

Lastly, I dedicate this dissertation to my late grandmother, who always wished to see

this day. I believe you would be the proudest of me in the world.

Thank you all for your unwavering support and belief in me.

vii

Table of Contents

Abstract i

국문초록 iii

Preface v

Acknowledgment vi

Table of Contents vii

List of Tables x

List of Figures xiv

Nomenclature xv

1 Introduction 1

2 Conservative Allen–Cahn equation 10

2.1 The time-dependent Lagrange multiplier 10

2.2 The time- and space-dependent Lagrange multiplier 12

2.3 The curvature-dependent Lagrange multiplier 14

viii

3 Numerical solution algorithm 17

3.1 Fourier-spectral method . 19

3.2 Discrete curvature . 23

3.2.1 Anisotropic curvature . 23

3.2.2 Isotropic curvature . 24

3.3 Alternating direction explicit method . 25

3.4 Runge–Kutta–Fehlberg method . 26

3.5 Algorithm Summary . 27

3.6 MATLAB code . 29

4 Numerical experiments 40

4.1 Comparison of numerical schemes . 40

4.2 Feature preserving property . 41

4.3 Deformation of Droplet in swirling flow 54

4.4 Comparison with Cahn–Hilliard equation 55

4.5 Isotropic curvature . 58

4.6 Rotation of a Zalesak’s disk . 60

5 Conclusions 63

Reference 65

ix

List of Tables

4.1 The CPU time(s) for 500 iterations. 41

x

List of Figures

1.1 Schematic illustration of interface thickness. 2

1.2 The logarithmic potential energy function Fl(φ). 3

1.3 Double-well potential energy function F(φ). 3

1.4 Schematic illustration of motion by mean curvature. 7

1.5 Schematic illustration of the non-conservation of mass in the AC equa-

tion. the initial condition is represented by a dotted line. 8

2.1 Schematic illustration of temporal evolution of the time-dependent CAC

equation (2.1). Zero-level contours of (a) the initial condition and (b) the

result of temporal evolution. 12

2.2 Schematic illustration of temporal evolution of the time- and space-dependent

CAC equation (2.2). Zero-level contours of (a) the initial condition and

(b) the result of temporal evolution. 13

2.3 Schematic illustration of temporal evolution of the proposed new CAC

equation (2.3). Zero-level contours of (a) the initial condition and (b) the

result of temporal evolution. 16

3.1 Schematic representation of computational domain Ω. 18

xi

3.2 Schematic diagram of the four loop configurations in two dimensional

space. 26

3.3 A visual representation of conservative algorithms employing the OSM:

(a) Initial condition φ 0; (b) Result after solving the AC equation; (c)

Zero-level contours of (a) and (b); (d)–(f) represent three different La-

grange multiplier as conservative corrections: L (t), L (t)
√

2F(φ), and

L (t)κ(φ)
√

2F(φ), respectively; (g)–(i) show solutions φ 1 of the CAC

equation with L (t), L (t)
√

2F(φ), and L (t)κ(φ)
√

2F(φ), respectively. 28

4.1 The zero-level contour of the initial condition and the solutions after 500

iterations. 42

4.2 Snapshots of evolution of the numerical results with different Lagrange

multipliers: (a) L (t), (b) L (t)
√

2F(φ), and (c) L (t)κ(φ)
√

2F(φ).

From top to bottom, times are at t = 0, 100∆t, and 500∆t. 43

4.3 Snapshots of evolution of the (a) minimum (b) maximum values of the

numerical solutions with three different Lagrange multipliers. 44

4.4 Snapshots of evolution of the numerical results with different Lagrange

multipliers: (a) L (t), (b) L (t)
√

2F(φ), and (c) L (t)κ(φ)
√

2F(φ).

From top to bottom, times are at t = 0, 300∆t, and 500∆t. 45

4.5 Snapshots of evolution of the (a) minimum (b) maximum values of the

numerical solutions with three different Lagrange multipliers. 46

xii

4.6 Temporal evolution of the numerical results with different Lagrange mul-

tipliers: L (t), L (t)
√

2F(φ), and L (t)κ(φ)
√

2F(φ) from left to right

colons, respectively. (a), (b), and (c) are the results at times t = 0, 600∆t,

and 700∆t, respectively. (d) is the temporal evolution of the average con-

centration φave and ∥φ 0 −φ n∥2/∥φ 0∥2. 48

4.7 Snapshots depicting of evolution of the numerical results with three dif-

ferent Lagrange multipliers: (a) L (t), (b) L (t)
√

2F(φ), and (c) L (t)κ(φ)
√

2F(φ).

From top to bottom, the snapshots correspond to times t = 0, 1000∆t, and

1100∆t. 49

4.8 (a) depicts the initial condition. (b), (c), and (d) show snapshots of numer-

ical results at time t = 1000∆t using various Lagrange multipliers: L (t),

L (t)
√

2F(φ), and L (t)κ(φ)
√

2F(φ), respectively. (e) illustrates the

zero-level contours from (b) to (d). (f) displays the zero-level contours of

φ in the equilibrium state. 51

4.9 The time evolution of the maximum norm of each term in the proposed

equation. 52

4.10 Snapshots of evolution of the numerical results using various Lagrange

multipliers: (a) L (t), (b) L (t)
√

2F(φ), and (c) L (t)κ(φ)
√

2F(φ).

From left to right, times are at t = 0, 5000∆t, 5600∆t, and 6200∆t. 53

4.11 (a), (b), and (c) are droplet deformations in a background swirling flow

using L (t), L (t)
√

2F(φ), and L (t)κ(φ)
√

2F(φ) at t = 0.195, respec-

tively. The numerical solutions are shown as black solid lines, while the

exact solutions are indicated by red dotted lines. 56

4.12 Sequential snapshots depicting the numerical results for the CH equation

at times t = 0, 5000∆t, 5600∆t, and 6200∆t, from left to right. 57

xiii

4.13 (a) CH equation. (b) Curvature-dependent CAC equation. The snapshots,

from left to right, correspond to times t = 0, 2000∆t, and 10000∆t. 59

4.14 (a) Initial condition. (b) Using previous curvature. (c) Using isotropic

curvature. 60

4.15 The temporal evolution of ∥φ 0 −φ n∥2/∥φ 0∥2 61

4.16 Rotation of a Zalesak’s disk with L (t), L (t)
√

2F(φ), and L (t)κ(φ)
√

2F(φ).

The corresponding computational times are indicated below each figure. . 62

xiv

Nomenclature

φ phase

t time

M mobility coefficient

F Helmholtz free energy

κ curvature

E Ginzburg–Lindau free energy

Ω domain

∂Ω boundary of Ω

Abbreviation

AC Allen–Cahn

PDE Partial differential equaiton

CAC Conservative Allen–Cahn

xv

CH Cahn–Hilliard

OSM Operator splitting method

ADE Alternating direction explicit

RKF Rung–Kutta–Fehlberg

xvi

Chapter 1. Introduction

The Allen–Cahn (AC) equation [1] is a model used to represent the phase-field. This

partial differential equation (PDE) describes the phase separation phenomenon in a binary

alloy system. It was introduced by S.M. Allen and J.W. Cahn. The AC equation continues

to be actively researched in various fields such as data classification [2, 3, 4, 5], image

segmentation [6, 7, 8, 9], image inpainting [10, 11, 12, 13, 14], shape transformation

[15, 16, 17], crystal growth [18, 19, 20, 21, 22], ice melting [23], etc. [24, 25, 26].

The classical AC equation is given by:

∂φ(x, t)
∂ t

= −M
(

F ′(φ(x, t))
ε2 −∆φ(x, t)

)
, x ∈ Ω, t ≥ 0, (1.1)

n ·∇φ(x, t) = 0, x ∈ ∂Ω. (1.2)

Here, Ω ⊂ Rd (d = 1, 2, . . .) is a bounded domain, t is time, M(φ) is the mobility coeffi-

cient [53] (in this dissertation, we take M = 1 for simplicity), n is the unit normal vector

on ∂Ω, and ∆φ = ∇ ·∇φ is the Laplacian of φ .

The order parameter φ(x, t) ∈ [−1,1], represents the concentration of one of the two

components in a binary mixture and is defined as follows:

φ =
m1 −m2

m1 +m2
, (1.3)

1

where m1 and m2 are the masses of the components 1 and 2. In other words, φ = −1

and φ = 1 represent different phases. ε is positive parameter related to interface thick-

ness. Figure 1.1 visually illustrates the interface thickness. For further information on the

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-1

-0.5

0

0.5

1

Figure 1.1: Schematic illustration of interface thickness.

relationship between the value of ε and the width of the transition layer, refer to [27].

The commonly used double well potential energies are logarithmic potential and

polynomial potential. A logarithmic potential Fl can be described as:

Fl(φ) =
θ

2

[
(1+φ) ln

(
1+φ

2

)
+(1−φ) ln

(
1−φ

2

)]
+

θ̃

2
(1−φ

2).

Here, θ refers to the absolute temperature, while θ̃ corresponds to the critical tempera-

ture. However, as shown in Fig. 1.2, using logarithmic potential energy leads to singular-

ities at φ = −1 and φ = 1. To avoid this issue, we use polynomial potential energy. The

Helmholtz free energy, given by F(φ) = 0.25(φ 2−1)2, represents the chemical potential

energy (refer to Fig. 1.3).

The AC equation is derived by the L2-gradient flow of the Ginzburg–Landau free

2

-1 -0.5 0 0.5 1

-0.04

-0.02

0

0.02

Figure 1.2: The logarithmic potential energy function Fl(φ).

-1.5 -1 -0.5 0 0.5 1 1.5

0

0.1

0.2

0.3

0.4

Figure 1.3: Double-well potential energy function F(φ).

energy functional, which is given by:

E (φ) :=
∫

Ω

(
F(φ)

ε2 +
|∇φ |2

2

)
dx. (1.4)

3

To derive the AC equation, we take the variational derivative on E (φ),

δE (φ)

δφ
= lim

ζ→0

E (φ +ζ ψ)−E (φ)

ζ

=
∫

Ω

δE

δφ
ψ dx

=
∫

Ω

(
F ′(φ)

ε2 −∆φ

)
ψ dx.

We can obtain AC equation as following:

φt =−δE

δφ
=−F ′(φ)

ε2 +∆φ .

We briefly examine some of the key properties of the AC equation. First, an inter-

esting physical and mathematical problem is determining the motion of this antiphase

boundary. In [28], it is demonstrated that the interface moves with a normal velocity pro-

portional to its mean curvature, as discussed in [1, 29]. Let r = r(x, y, z, t) represent the

signed distance from φ = 0 for the point (x, y, z). Here, r < 0 when φ(x, y, z, t)> 0 and

4

r > 0 when φ(x, y, z, t)< 0. Now, the term ∆φ can be rewritten in the following:

∆φ = ∇ ·∇φ

= ∇ · (|∇φ |n)

= ∇ · ((∇φ ·n)n)

= ∇ · (−φrn)

= −∇φr ·n−φr∇ ·n

= −(∇φ)r ·n−φr∇ ·n

= (φrn)r ·n−φr∇ ·n

= (φrrn+φrnr) ·n−φr∇ ·n

= φrr +(κ1 +κ2),

where κ1 and κ2 represent the principal curvatures of the surface, and considering that

the divergence of the unit normal vector to a surface equals the negative of the mean

curvature (κ1 +κ2), the previous equality is valid. Consequently, this can be applied to

the kinetic equation:

φt =−F ′(φ)

ε2 +φrr +(κ1 +κ2)φr. (1.5)

For a planar interface at equilibrium, the equation below is applicable:

−F ′(φ)

ε2 +φrr ≈ 0. (1.6)

5

Thus, Eq. (1.5) can be reformulated as:

φt = (κ1 +κ2)φr. (1.7)

At any given time, the zero level-set is represented as Γt = {(x, y, z)|φ(x, y, z, t) = 0}.

The velocity of this zero level-set Γt can then be described as follows:

0 =
dφ(r, t)

dt

∣∣∣∣
Γt

= φrrt +φt

⇒ rt =−φt

φr
=−(κ1 +κ2).

Thus, all interfaces between two phases move at a velocity denoted by V , which is defined

as follows:

V =−(κ1 +κ2) =−
(

1
R1

+
1

R2

)
,

where R1 and R2 represent the principal radii of curvature at a point on the surface.

In Fig. 1.4, the dashed line represents the initial condition, while the solid line shows

the state after time evolution. As shown in Fig. 1.4, under time evolution, the AC equation

causes the interface to move in the direction of the mean curvature flow.

Another notable characteristic of the AC equation is energy dissipation [30]. Differ-

6

Figure 1.4: Schematic illustration of motion by mean curvature.

entiating the total energy E with respect to time t obtains the following result.

d
dt

E (φ) =
∫

Ω

(
∂φ

∂ t
F ′(φ)

ε2 +∇
∂φ

∂ t
·∇φ

)
dx

=
∫

Ω

φt

(
F ′(φ)

ε2 −∆φ

)
dx

= −
∫

Ω

(φt)
2 dx

≤ 0.

Therefore, it is noted that the energy does not increase over time.

Finally, the AC equation does not conserve mass. An intrinsic characteristic of the

AC equation (4.6) is its non-conservation of mass as time evolves, a property that can be

7

verified through analytical examination.

d
dt

∫
Ω

φ(x, t) dx =
∫

Ω

φt dx

=
∫

Ω

(
−F ′(φ(x, t))

ε2 +∆φ(x, t)
)

dx

= −
∫

Ω

F ′(φ(x, t))
ε2 dx+

∫
∂Ω

n ·∇φ(x, t) ds

= −
∫

Ω

F ′(φ(x, t))
ε2 dx

̸= 0.

Therefore, since the derivative of mass with respect to time t is not always zero, mass

is not conserved. Intuitively, as shown in Fig. 1.5, we can observe that the time evolution

of an arbitrary initial condition in the AC equation does not conserve mass.

Figure 1.5: Schematic illustration of the non-conservation of mass in the AC equation.
the initial condition is represented by a dotted line.

Consequently, the study of conservative Allen–Cahn (CAC) equation, which pre-

serves mass, is popular among many researchers. The Cahn–Hilliard (CH) equation,

which is derived from the Ginzburg–Landau free energy functional, also represents phase

8

separation and conserves the total mass. Nevertheless, the increasing adoption of the

CAC equation over the CH equation can be attributed to its simplicity, enhanced com-

putational efficiency, and superior accuracy [31]. A significant difference between these

equations lies in their order: the CAC equation is a second-order PDE, whereas the CH

equation is a more complex fourth-order PDE. This distinction underscores the advan-

tage of solving lower-order PDEs, which generally leads to more efficient computational

implementations and facilitates practical applications across a wide range of scientific

and engineering fields.

This doctoral dissertation presents the concepts and outcomes featured in the follow-

ing publication, reflecting the author’s dedication throughout both the master and doctoral

courses.

• S. Kwak, J. Yang, and J. Kim, A conservative Allen–Cahn equation with a curvature-

dependent Lagrange multiplier, Applied Mathematics Letters, 126 (2022) 107838.

This dissertation is organized as follows. In Chapter 2, we examine two widely

used CAC equations and introduce a novel CAC equation that incorporates a curvature-

dependent Lagrange multiplier. Chapter 3 presents numerical solutions for these three

CAC equations, utilizing various numerical methods and discrete curvature calculation

techniques. Chapter 4 details the numerical results obtained from the three CAC equa-

tions, providing a comparative analysis with each other and with the results from the CH

equation. Finally, Chapter 5 summarizes our conclusions and insights.

9

Chapter 2. Conservative Allen–Cahn equa-

tion

In this chapter, we present the two most well-known CAC equations and propose a

novel CAC equation [32]. Each of these equations is a modification of the AC equation,

enhanced by the addition of distinct Lagrange multipliers.

2.1 The time-dependent Lagrange multiplier

The first of the two widely known CAC equations that were introduced is the AC

equation with a time-dependent Lagrange multiplier. The formulation of the time-dependent

CAC equation is presented as follows [38, 39]:

∂φ(x, t)
∂ t

= −F ′(φ(x, t))
ε2 +∆φ(x, t)+L (t), (2.1)

where L (t) represents the time-dependent Lagrange multiplier defined as

L (t) =

∫
Ω

F ′(φ(x, t)) dx

ε
2
∫

Ω

dx
.

10

Note that if L (t) is not included, then Eq. (2.1) simplifies to the classical AC equation

[1], widely employed for modeling phase transformations in binary mixtures and the

dynamics of antiphase boundaries [40, 41, 42, 43]. We rigorously analyzed and verified

the inherent mass conservation property of Eq. (2.1), ensuring its validity across various

conditions and scenarios.

d
dt

∫
Ω

φ(x, t) dx =
∫

Ω

∂φ

∂ t
dx

=
∫

Ω

(
−F ′(φ(x, t))

ε2 +∆φ(x, t)+L (t)
)

dx

= −
∫

Ω

F ′(φ(x, t))
ε2 dx+

∫
∂Ω

n ·∇φ(x, t) ds+
∫

Ω

L (t) dx

= − 1
ε2

∫
Ω

F ′(φ(x, t)) dx+L (t)
∫

Ω

dx

= 0

Hence, the time-dependent CAC Equation (2.1) ensures mass conservation over time.

To aid in understanding the characteristics of time-dependent CAC Equation, Fig.

2.1 visually illustrates the time evolution results of the time-dependent CAC equation.

Consider the initial condition provided in Fig. 2.1(a). When solving the time-dependent

CAC equation, as shown in Fig. 2.1(b), the mass is conserved. However, due to the time-

dependent Lagrange multiplier L (t) adding a constant value across the entire compu-

tational domain, relatively small features with high curvature in the initial condition are

lost.

11

-1 0 1
-1

0

1

(a)

=⇒

-1 0 1
-1

0

1

(b)

Figure 2.1: Schematic illustration of temporal evolution of the time-dependent CAC
equation (2.1). Zero-level contours of (a) the initial condition and (b) the result of tem-
poral evolution.

2.2 The time- and space-dependent Lagrange multiplier

The second of the two most popular CAC equations introduced incorporates a time-

and space-dependent Lagrange multiplier. This time- and space-dependent CAC equation

is expressed as follows [44, 45, 46, 47, 48]:

∂φ(x, t)
∂ t

= −F ′(φ(x, t))
ε2 +∆φ(x, t)+L (t)

√
2F(φ(x, t)), (2.2)

where L (t)
√

2F(φ(x, t)) serves as the time- and space-dependent Lagrange multiplier,

given by

L (t) =

∫
Ω

F ′(φ(x, t)) dx

ε2
∫

Ω

√
2F(φ(x, t)) dx

.

12

We analytically verified the mass conservation property of Eq. (2.2) as follows.

d
dt

∫
Ω

φ(x, t) dx =
∫

Ω

∂φ

∂ t
dx

=
∫

Ω

(
−F ′(φ(x, t))

ε2 +∆φ(x, t)+L (t)
√

2F(φ(x, t))
)

dx

= −
∫

Ω

F ′(φ(x, t))
ε2 dx+

∫
∂Ω

n ·∇φ(x, t) ds

+
∫

Ω

L (t)
√

2F(φ(x, t)) dx

= − 1
ε2

∫
Ω

F ′(φ(x, t)) dx+L (t)
∫

Ω

√
2F(φ(x, t)) dx

= 0

Therefore, time- and space-dependent CAC Equation (2.2) also conserves mass over

time.

-1 0 1
-1

0

1

(a)

=⇒

-1 0 1
-1

0

1

(b)

Figure 2.2: Schematic illustration of temporal evolution of the time- and space-dependent
CAC equation (2.2). Zero-level contours of (a) the initial condition and (b) the result of
temporal evolution.

Figure 2.2 demonstrates the characteristics of the time- and space-dependent CAC

equation (2.2). Given the initial condition shown in Fig. 2.2(a), the time- and space-

dependent CAC equation has a Lagrange multiplier L (t)
√

2F(φ(x, t)) that is dependent

13

on space. As a result, compared to the outcomes of the time-dependent CAC equation

(2.1), the time- and space-dependent CAC equation (2.2) better preserves small features,

as shown in Fig. 2.2(b). However, as time evolution progresses further, the small features

eventually disappear due to motion by mean curvature.

2.3 The curvature-dependent Lagrange multiplier

In [49], the author proposed two numerical methods designed to conserve mass for

the AC equation. These methods operate within the mass-conserving space and em-

ploy mass-projection techniques alongside energy-dissipation operators. In [50], the au-

thor devised a finite difference method tailored for a conservative CAC equation, en-

suring both stability and preservation of features. In [51], the authors presented a new

CAC equation. They rigorously demonstrated the existence, uniqueness, and bounded-

ness properties of the solution to this equation. The CAC equation with a Lagrange

multiplier that varies with time and space has been effectively employed in the study

[47, 52] of multiphase fluid flows. However, conventional CAC models inherently ex-

hibit motion by mean curvature with constraints. Consequently, in scenarios where two

droplets of distinct sizes are present, the smaller droplet is gradually absorbed by the

larger one and ultimately vanishes. This characteristic significantly limits the applica-

bility of these models to scenarios such as two-phase fluid dynamics involving multiple

components of varying sizes. To address these challenges, we introduce a novel CAC

equation that includes a Lagrange multiplier dependent on curvature, that ensures robust

feature-preserving properties. The proposed model minimizes motion dynamics through

mean curvature while emphasizing interface smoothing properties. Consequently, it can

serve as a foundational equation for modeling conservative phase-field applications, par-

14

ticularly in scenarios like two-phase fluid flows, where maintaining distinct phases of

various sizes is crucial. This advancement enhances the versatility and applicability of

CAC models in practical, complex fluid dynamics scenarios.

∂φ(x, t)
∂ t

= −M
(

F ′(φ(x, t))
ε2 −∆φ(x, t)−L (t)κ(φ(x, t))

√
2F(φ(x, t))

)
,(2.3)

where M denotes the mobility coefficient [53], κ(φ) = ∇ · (∇φ/|∇φ |) represents the in-

terface curvature, and

L (t) =

∫
Ω

F ′(φ(x, t)) dx

ε2
∫

Ω

κ(φ(x, t))
√

2F(φ(x, t)) dx
.

As a result, the solution φ of Eq. (2.3) satisfies the following equation:

d
dt

∫
Ω

φ dx =
∫

Ω

∂φ(x, t)
∂ t

dx

=
∫

Ω

[
−F ′(φ(x, t))

ε2 +∆φ(x, t)+L (t)κ(φ(x, t))
√

2F(φ(x, t))
]

dx

= − 1
ε2

∫
Ω

F ′(φ(x, t)) dx+
∫

∂Ω

n ·∇φ(x, t) ds

+L (t)
∫

Ω

κ(φ(x, t))
√

2F(φ(x, t)) dx

= − 1
ε2

∫
Ω

F ′(φ(x, t)) dx+L (t)
∫

Ω

κ(φ(x, t))
√

2F(φ(x, t)) dx

= 0. (2.4)

We confirmed that the proposed novel CAC equation (2.3) maintains total mass as time

evolution progresses.

Figure illustrates the time evolution results of the newly proposed CAC equation

15

-1 0 1
-1

0

1

(a)

=⇒

-1 0 1
-1

0

1

(b)

Figure 2.3: Schematic illustration of temporal evolution of the proposed new CAC equa-
tion (2.3). Zero-level contours of (a) the initial condition and (b) the result of temporal
evolution.

(2.3). When compared to the results of the time-dependent CAC (2.1) and the time- and

space-dependent CAC (2.2), under the same initial condition, it is evident that the newly

proposed CAC equation (2.3) not only preserves small features effectively but also main-

tains the original interface features without adhering to mean curvature flow.

16

Chapter 3. Numerical solution algorithm

Before proceeding with discretization, we apply the operator splitting method (OSM)

to solve the proposed CAC equation (2.3).

φt(x, t) = ∆φ(x, t), (3.1)

φt(x, t) = −F ′(φ(x, t))
ε2 , (3.2)

φt(x, t) = L (t)κ(φ(x, t))
√

2F(φ(x, t)). (3.3)

The OSM is a computational technique employed to solve differential equations by de-

composing the original equation into separate operators over discrete time step [55]. This

method involves independently solving each component and then integrating the results

to construct the complete solution. A classic instance of this method involves the separa-

tion of terms related to diffusion and advection within a convection-diffusion PDE. This

method is also notably applied to reaction-diffusion PDEs in fields such as chemistry

and biology. The concept of OSM extends naturally to equations that involve more than

two operators. The primary computational benefit of this approach is that solving each

component separately tends to be faster than solving the combined equation directly.

To compare the results of Eq. (2.3) with those of Eqs. (2.1) and (2.2), we use the OSM

to solve Eqs. (2.1) and (2.2). Since the three CAC equations differ only in their Lagrange

17

multiplier terms, these solutions are obtained by substituting L (t)κ(φ(x, t))
√

2F(φ(x, t))

in Eq. (3.3) with L (t) and L (t)
√

2F(φ(x, t)), respectively.

Now, we consider the discretization in a two-dimensional space. We describe a hybrid

numerical method for solving the CAC equation on Ω = (Lx,Rx)× (Ly,Ry). Define xi =

Lx + (i − 0.5)h for i = 1, . . . ,Nx and y j = Ly + (j − 0.5)h for j = 1, . . . ,Ny where Nx

and Ny are positive integers, and h = (Rx −Lx)/Nx = (Ry −Ly)/Ny. Here, φ n
i j represents

numerical approximations of φ(xi,y j,n∆t), with ∆t that denotes the temporal step size.

Figure 3.1 aids in understanding the discretized computational domain Ω. Depending on

the numerical method used, x0, xNx+1, y0, and yNy+1 are employed as ghost points, as

shown in Fig. 3.1.

Figure 3.1: Schematic representation of computational domain Ω.

18

3.1 Fourier-spectral method

To solve Eq. (3.1), we use the Fourier-spectral method [56]: For the given data

{φ n
i j|i = 1, · · · ,Nx and j = 1, · · · ,Ny}, the discrete cosine transform is defined as fol-

lows

φ̂
n
pq = αpβq

Nx

∑
i=1

Ny

∑
j=1

φ
n
i j cos

(2i−1)(p−1)π
2Nx

cos
(2 j−1)(q−1)π

2Ny
, (3.4)

p = 1, · · · ,Nx and q = 1, · · · ,Ny,

where

αp =


√

1
Nx

, p = 1√
2

Nx
, 2 ≤ p ≤ Nx

and βq =



√
1

Ny
, q = 1√

2
Ny

, 2 ≤ q ≤ Ny

.

For simplicity of exposition, we assume Lx = Ly = 0. For the cases of non-zero Lx and Ly,

please refer to [53]. Let xi = (2i−1)Rx/(2Nx), y j = (2 j−1)Ry/(2Ny), ξp = (p−1)/Rx,

and ηq = (q−1)/Ry. Then, we can rewrite Eq. (3.4) as

φ̂
n
pq = αpβq

Nx

∑
i=1

Ny

∑
j=1

φ
n
i j cos(ξpπxi)cos(ηqπy j).

The inverse discrete cosine transform is

φ
n
i j =

Nx

∑
p=1

Ny

∑
q=1

αpβqφ̂
n
pq cos(ξpπxi)cos(ηqπy j). (3.5)

19

Let us assume that

φ(x,y,n∆t) =
Nx

∑
p=1

Ny

∑
q=1

αpβqφ̂
n
pq cos(ξpπx)cos(ηqπy).

Then, we have

∂ 2φ

∂x2 (x,y,n∆t) = −
Nx

∑
p=1

Ny

∑
q=1

(ξpπ)2
αpβqφ̂

n
pq cos(ξpπx)cos(ηqπy),

∂ 2φ

∂y2 (x,y,n∆t) = −
Nx

∑
p=1

Ny

∑
q=1

(ηqπ)2
αpβqφ̂

n
pq cos(ξpπx)cos(ηqπy).

Therefore, the Laplacian operator is defined as

∆φ(x,y,n∆t) =
∂ 2φ

∂x2 (x,y,n∆t)+
∂ 2φ

∂y2 (x,y,n∆t)

= −
Nx

∑
p=1

Ny

∑
q=1

[
(ξpπ)2 +(ηqπ)2

]
αpβqφ̂

n
pq cos(ξpπx)cos(ηqπy).(3.6)

Using Eqs. (3.5) and (3.6), from Eq. (3.1) we have

dφ̂pq

dt
=−

[
(ξpπ)2 +(ηqπ)2

]
φ̂pq.

Then, we have the following solution after time step ∆t with the initial condition φ̂ n
pq:

φ̂
∗
pq = φ̂

n
pqe−∆t[(ξpπ)2 +(ηqπ)2]. (3.7)

Then, the numerical solution φ ∗
i j is obtained using Eqs. (3.5) and (3.7), i.e.,

φ
∗
i j =

Nx

∑
p=1

Ny

∑
q=1

αpβqφ̂
∗
pq cos(ξpπxi)cos(ηqπy j).

20

Second, Eq. (3.2) is solved analytically by the method of separation of variables:

dφ

dt
=−F ′(φ)

ε2

⇒ dφ

−F ′(φ)
=

1
ε2 dt

⇒ 1
φ −φ 3 dφ =

1
ε2 dt

⇒ 1
φ(1−φ)(1+φ)

dφ =
1
ε2 dt

⇒
(

1
φ
+

1
2(1−φ)

− 1
2(1+φ)

)
dφ =

1
ε2 dt

⇒
∫

φ∗∗
i j

φ∗
i j

(
1
φ
+

1
2(1−φ)

− 1
2(1+φ)

)
dφ =

∫ (n+1)∆t

n∆t

1
ε2 dt. (3.8)

The right hand side of Eq. (3.8) is calculated as follows:

∫ (n+1)∆t

n∆t

1
ε2 dt =

1
ε2 ∆t.

And the left hand side of Eq. (3.8) is calculated as follows:

∫
φ∗∗

i j

φ∗
i j

(
1
φ
+

1
2(1−φ)

− 1
2(1+φ)

)
dφ =

[
ln

∣∣∣∣∣ φ√
(1−φ)(1+φ)

∣∣∣∣∣
]φ∗∗

i j

φ∗
i j

= ln

∣∣∣∣∣∣ φ ∗∗
i j√

1− (φ ∗∗
i j)

2

∣∣∣∣∣∣− ln

∣∣∣∣∣∣ φ ∗
i j√

1− (φ ∗
i j)

2

∣∣∣∣∣∣ .
Therefore,

ln

∣∣∣∣∣∣ φ ∗∗
i j√

1− (φ ∗∗
i j)

2

∣∣∣∣∣∣− ln

∣∣∣∣∣∣ φ ∗
i j√

1− (φ ∗
i j)

2

∣∣∣∣∣∣= 1
ε2 ∆t. (3.9)

21

Equation (3.9) is rewritten as follows

∣∣∣∣∣∣ φ ∗∗
i j√

1− (φ ∗∗
i j)

2

∣∣∣∣∣∣=
∣∣∣∣∣∣ φ ∗

i j√
1− (φ ∗

i j)
2

∣∣∣∣∣∣e ∆t
ε2 . (3.10)

Rewriting Eq. (3.10) in term of φ ∗∗
i j gives

φ
∗∗
i j =

φ ∗
i j√(

φ ∗
i j

)2(
1− e−

2∆t
ε2

)
+ e−

2∆t
ε2

. (3.11)

Third, we discretize Eq. (3.3) as

φ
n+1
i j −φ ∗∗

i j

∆t
= L ∗∗

κ(φ ∗∗
i j)
√

2F(φ ∗∗
i j). (3.12)

By Eq. (3.12), we get

φ
n+1
i j = φ

∗∗
i j +∆tL ∗∗

κ
∗∗
i j

√
2F(φ ∗∗

i j), (3.13)

then by the property of Eq. (2.4),

1
∆t

(
Nx

∑
i=1

Ny

∑
j=1

φ
n+1
i j −

Nx

∑
i=1

Ny

∑
j=1

φ
n
i j

)
= 0,

Nx

∑
i=1

Ny

∑
j=1

φ
0
i j =

Nx

∑
i=1

Ny

∑
j=1

φ
n+1
i j =

Nx

∑
i=1

Ny

∑
j=1

(
φ
∗∗
i j +∆tL ∗∗

κ
∗∗
i j

√
2F(φ ∗∗

i j)
)
.

22

Thus,

L ∗∗ =

Nx

∑
i=1

Ny

∑
j=1

(φ 0
i j −φ ∗∗

i j)

∆t
Nx

∑
i=1

Ny

∑
j=1

κ∗∗
i j

√
2F(φ ∗∗

i j)

. (3.14)

Here, κ∗∗
i j represents the discrete curvature.

3.2 Discrete curvature

When calculating the discrete curvature, we take into account both anisotropic and

isotropic curvatures.

3.2.1 Anisotropic curvature

Before the discrete curvature is defined, let us define the gradients at corners of the

cell Ωi j as

∇φi− 1
2 , j−

1
2

= (φx,i− 1
2 , j−

1
2
,φy,i− 1

2 , j−
1
2
)

=

(
φi, j−1 +φi j −φi−1, j−1 −φi−1, j

2h
,
φi−1, j +φi j −φi−1, j−1 −φi, j−1

2h

)
,

∇φi+ 1
2 , j−

1
2

= (φx,i+ 1
2 , j−

1
2
,φy,i+ 1

2 , j−
1
2
)

=

(
φi+1, j−1 +φi+1, j −φi, j−1 −φi j

2h
,
φi j +φi+1, j −φi, j−1 −φi+1, j−1

2h

)
,

∇φi+ 1
2 , j+

1
2

= (φx,i+ 1
2 , j+

1
2
,φy,i+ 1

2 , j+
1
2
)

=

(
φi+1, j +φi+1, j+1 −φi j −φi, j+1

2h
,
φi, j+1 +φi+1, j+1 −φi j −φi+1, j

2h

)
,

∇φi− 1
2 , j+

1
2

= (φx,i− 1
2 , j+

1
2
,φy,i− 1

2 , j+
1
2
)

=

(
φi j +φi, j+1 −φi−1, j −φi−1, j+1

2h
,
φi−1, j+1 +φi, j+1 −φi−1, j −φi j

2h

)
.

23

Then, the curvature at the cell center is

∇ ·
(

∇φ

|∇φ |

)
i j

=
1
2h

(
φx,i+ 1

2 , j+
1
2
+φy,i+ 1

2 , j+
1
2

|∇φ i+ 1
2 , j+

1
2
|

+
φx,i+ 1

2 , j−
1
2
−φy,i+ 1

2 , j−
1
2

|∇φ i+ 1
2 , j−

1
2
|

−
φx,i− 1

2 , j+
1
2
−φy,i− 1

2 , j+
1
2

|∇φ i− 1
2 , j+

1
2
|

−
φx,i− 1

2 , j−
1
2
+φyi− 1

2 , j−
1
2

|∇φ i− 1
2 , j−

1
2
|

)
.

To prevent numerical singularity when |∇φ | approaches zero, we set κi j = 0 for re-

gions where |φi j|> 0.98, effectively outside the interface.

3.2.2 Isotropic curvature

Isotropic calculations are widely used in various fields to eliminate differences in a

specific direction. To ensure the accuracy of curvature calculations, we consider isotropic

discretization.

∇xφi j =
φi+1, j+1 −φi−1, j+1 +4(φi+1, j −φi−1, j)+φi+1, j−1 −φi−1, j−1

12h
,

∇yφi j =
φi+1, j+1 −φi+1, j−1 +4(φi, j+1 −φi, j−1)+φi−1, j+1 −φi−1, j−1

12h
,

mi j =
∇φi j

|∇φi j|

=
∇xφi j +∇yφi j√

(∇xφi j)2 +(∇yφi j)2
.

Therefore, discrete curvature is defined as follows:

∇·

(
∇φ

|∇φ |

)
i j

=
1

12h

[
mn

x,i+1, j+1 −mn
x,i−1, j+1 +4(mn

x,i+1, j −mn
x,i−1, j)

+mx,i+1, j−1 −mx,i−1, j−1 +my,i+1, j+1 −my,i+1, j−1

+4(my,i, j+1 −my,i, j−1)+my,i−1, j+1 −my,i−1, j−1] .

24

3.3 Alternating direction explicit method

We employ various numerical methods in addition to the spectral method to solve Eq.

(3.1). Since we use the OSM, Eqs. (3.2) and (3.3) are solved equivalently as Eqs. (3.11)

and (3.13). In this section, we utilize the alternating direction explicit (ADE) method,

also known as the Saul’yev scheme [57, 58, 59], to solve Eq. (3.1). In two dimensional

domain, there are four types of loops. We discretize Eq. (3.1) for one of four types loop

cases. The fully discrete form of Eq. (3.1) is expressed as follows:

φ ∗
i j −φ n

i j

∆t
=

φ n
i+1, j −φ n

i j

h2 +
φ ∗

i j −φ ∗
i−1, j

h2 +
φ n

i, j+1 −φ n
i j

h2 +
φ ∗

i j −φ ∗
i, j−1

h2

=
φ n

i+1, j +φ ∗
i−1, j −2φ n

i j −2φ ∗
i j +φ n

i, j+1 +φ ∗
i, j−1

h2 ,

for j = 1, 2, . . . , Ny, for i = 1, 2, . . . , Nx. Then we obtain

φ
∗ =

∆t
(

φ n
i+1, j +φ ∗

i−1, j +φ n
i, j+1 +φ ∗

i, j−1

)
+
(
h2 −2∆t

)
φ n

i j

h2 +2∆t
.

Analogous discretizations of Eq. (3.1) can be derived for the remaining three loop con-

figurations. The other three loop cases are as follows:

• For j = 1, 2, . . . , Ny, for i = Nx, Nx −1, . . . , 1.

• For j = Ny, Ny −1, . . . , 1, for i = 1, 2, . . . , Nx.

• For j = Ny, Ny −1, . . . , 1, for i = Nx, Nx −1, . . . , 1.

Figure 3.2 depicts schematics representing the four loop cases. When calculating φ ∗
i j ac-

cording to the loop, the values within the green circles use φ ∗ instead of the n-time values.

25

Figure 3.2: Schematic diagram of the four loop configurations in two dimensional space.

3.4 Runge–Kutta–Fehlberg method

In this section we employ the Runge–Kutta–Fehlberg (RKF) method, which is widely

used as a high-order method, to solve Eq. (3.1). First, we define ∆hφ , the discretization

of ∆φ .

∆hφi j =
φi+1, j +φi−1, j +φi, j+1 +φi, j−1 −4φi j

h2 .

Next, applying the RKF method to Eq. (3.1) yields the following solution.

φ
∗
i j = φ

n
i j +

25
216

k1 +
1408
2565

k3 +
2197
4104

k4 −
1
5

k5,

26

where the coefficients are

k1 = ∆t∆h
(
φ

n
i j
)
,

k2 = ∆t∆h

(
φ

n
i j +

1
4

k1

)
,

k3 = ∆t∆h

(
φ

n
i j +

3
32

k1 +
9

32
k2

)
,

k4 = ∆t∆h

(
φ

n
i j +

1932
2197

k1 −
7200
2197

k2 +
7296
2197

k3

)
,

k5 = ∆t∆h

(
φ

n
i j +

439
216

k1 −8k2 +
3680
513

k3 −
845
4104

k4

)
,

k6 = ∆t∆h

(
φ

n
i j −

8
27

k1 +2k2 −
3544
2565

k3 +
1859
4104

k4 −
11
40

k5

)
.

3.5 Algorithm Summary

Let us consider into the fundamental mechanism underlying the proposed model (2.3)

to understand its core principles and functioning. This examination provide insight into

how the model operates and its potential applications.

Figure 3.3 presents a detailed schematic illustration of the algorithms for three dis-

tinct CAC equations. These equations, specifically (2.1), (2.2), and (2.3), are depicted

step-by-step to provide a comprehensive understanding. Each step in the illustration

highlights the unique computational processes and methodologies employed for solv-

ing these CAC equations, ensuring clarity and precision in the algorithmic represen-

tation. Figure 3.3(a) illustrates the initial condition φ 0 comprising two disks of differ-

ent sizes. Figure 3.3(b) depicts the numerical solution derived from the AC equation,

specifically following steps (3.1) and (3.2). Due to the characteristic of motion driven by

27

(a) (b) -1 0 1
-1

0

1

(c)

(d) (e) (f)

(g) (h) (i)

Figure 3.3: A visual representation of conservative algorithms employing the OSM: (a)
Initial condition φ 0; (b) Result after solving the AC equation; (c) Zero-level contours of
(a) and (b); (d)–(f) represent three different Lagrange multiplier as conservative correc-
tions: L (t), L (t)

√
2F(φ), and L (t)κ(φ)

√
2F(φ), respectively; (g)–(i) show solutions

φ 1 of the CAC equation with L (t), L (t)
√

2F(φ), and L (t)κ(φ)
√

2F(φ), respectively.

28

mean curvature flow, the smaller disk shrinks more significantly compared to the larger

disk. This phenomenon is evident in Fig. 3.3(c), which shows the zero-level contours of

Figs. 3.3(a) and (b). Figures 3.3(d), (e), and (f) depict the conservative corrections L (t),

L (t)
√

2F(φ), and L (t)κ(φ)
√

2F(φ), respectively. Unlike conventional mass correc-

tion methods, which involve shifting a constant or smoothed Dirac delta function-like

profile across the interface transition layer, the proposed mass correction scheme em-

ploys curvature-dependent profiles, as illustrated in Fig. 3.3(f). Figures 3.3(g), 3.3(h),

and 3.3(i) show the solutions φ 1 of the CAC equation using L (t), L (t)
√

2F(φ), and

L (t)κ(φ)
√

2F(φ), respectively. The core mechanism of the proposed model is to cor-

rect mass loss due to motion by mean curvature using a curvature-dependent Lagrange

multiplier.

3.6 MATLAB code

This section provides MATLAB code to solve the curvature-dependent CAC equation

using the proposed numerical method. First, here is MATLAB code implemented with

the spectral method.

Listing 3.1: The main code for solving curvature-dependent CAC equations using the

spectral method.

1 clear;

2 Nx = 128; Ny= Nx;

3 Lx = -2; Rx = 2; Ly = -2; Ry = 2;

4 h = (Rx -Lx)/Nx;

5 x = linspace(Lx +0.5*h,Rx -0.5*h,Nx);

6 y = linspace(Ly +0.5*h,Ry -0.5*h,Ny);

7 [xx ,yy] = ndgrid(x,y);

29

8 ep = 5*h/(2* sqrt (2)*atanh (0.9)); ep2 = ep^2;

9 dt = 0.1*h^2; maxit = 500;

10 v = tanh((1-sqrt(xx.^2+yy.^2))/(sqrt (2)*eps));

11 ss = sum(sum(v));

12 kx = pi*(0:Nx -1)/(Rx-Lx); ky = pi*(0:Ny -1)/(Ry-Ly);

13 kx2 = kx.^2; ky2 = ky.^2;

14 [kkx2 , kky2] = ndgrid(ky2 ,kx2);

15

16 figure (1); clf; hold on; grid on; view (-30,20);

17 mesh(x,y,real(v));

18 colormap turbo; clim([-1 1]); colorbar;

19 axis image;

20

21 figure (2); clf; hold on; box on

22 contour(x,y,real(v) ,[0 0],'k-');

23 axis image;

24

25 for iter =1: maxit

26 v_hat = dct2(v).*exp(-dt*(kkx2+kky2));

27 v = real(idct2(v_hat));

28 v = v./sqrt ((1.0 -v.^2)*exp(-2.0*dt/ep2)+v.^2);

29 w = 0*v;

30 for i = 2:Nx -1

31 for j = 2:Ny -1

32 u = v(i-1:i+1,j-1:j+1);

33 for p = 1:2

34 for q = 1:2

35 tx = (u(p+1,q+1)-u(p,q+1)+u(p+1,q)-u(p,q));

36 ty = (u(p+1,q+1)-u(p+1,q)+u(p,q+1)-u(p,q));

37 nux(p,q) = tx/(sqrt(tx^2+ty^2));

30

38 nuy(p,q) = ty/(sqrt(tx^2+ty^2));

39 end

40 end

41 if abs(v(i,j)) <0.98

42 w(i,j) = ((nux(2,2)-nux(1,2)+nux(2,1)-nux(1,1))/h...

43 +(nuy(2,2)-nuy(2,1)+nuy(1,2)-nuy(1,1))/h)*0.5;

44 end

45 end

46 end

47 nume = sum(sum(v));

48 deno = sum(sum(abs(1-v.^2)./sqrt (2).*w));

49 b = (ss -nume)/deno;

50 v = v+b*abs(1-v.^2)./sqrt (2).*w;

51

52 if mod(iter ,100) == 0

53 figure (1); clf; hold on; grid on; view (-30,20);

54 mesh(x,y,real(v));

55 colormap turbo; clim([-1 1]); colorbar;

56 axis image;

57

58 figure (2);

59 contour(x,y,real(v) ,[0 0],'r-.');

60 axis image;

61 end

62 end

The second code is MATLAB code that applies the ADE method.

Listing 3.2: The main code for solving curvature-dependent CAC equations using the

ADE method.

1 clear;

31

2 Nx = 128; Ny= Nx;

3 Lx = -2; Rx = 2; Ly = -2; Ry = 2;

4 h = (Rx -Lx)/Nx;

5 x = linspace(Lx -0.5*h,Rx +0.5*h,Nx+2);

6 y = linspace(Ly -0.5*h,Ry +0.5*h,Ny+2);

7 [xx ,yy]= ndgrid(x,y);

8 ep=5*h/(2* sqrt (2)*atanh (0.9)); ep2=ep^2;

9 dt = 0.1*h^2; maxit =500;

10 v = tanh((1-sqrt(xx.^2+yy.^2))/(sqrt (2)*eps));

11 ss=sum(sum(v(2:Nx+1,2:Ny+1)));

12

13 figure (1); clf; hold on; grid on; view (-30,20);

14 mesh(x,y,real(v));

15 colormap turbo; clim([-1 1]); colorbar;

16 axis image;

17

18 figure (2); clf; hold on; box on

19 contour(x,y,real(v) ,[0 0],'k-');

20 axis image;

21 %%%% for 4-cases loop %%%%

22 tmp=zeros(Nx+2,Ny+2);

23 tmp (2:Nx+1,2:Ny+1) =1;

24 [lpx ,lpy]=find(tmp ==1);

25 llp=length(lpx);

26 lpx(:,2)=flipud(lpx(:,1));

27 lpy(:,2)=flipud(lpy(:,1));

28 k=0;

29 for j=Ny+1: -1:2

30 for i=2:Nx+1

31 k=k+1;

32

32 lpx(k,3)=i;

33 lpy(k,3)=j;

34 end

35 end

36 lpx(:,4)=flipud(lpx(:,3));

37 lpy(:,4)=flipud(lpy(:,3));

38 %%%%%%%%%%%%%%%%%%%%%%%%%%

39 for iter =1: maxit

40 odr=mod(iter ,4) +1;

41 for k=1:llp

42 i=lpx(k,odr);

43 j=lpy(k,odr);

44 if i==lpx(1,odr)

45 Lapx = (v(i-sign(i -0.5*(Nx+2)),j)-v(i,j))/h^2;

46 r=0;

47 elseif i==lpx(end ,odr)

48 Lapx = v(i-sign(i -0.5*(Nx+2)),j)/h^2;

49 r = 1/h^2;

50 else

51 Lapx = (v(i+1,j)-v(i,j)+v(i-1,j))/h^2;

52 r = 1/h^2;

53 end

54 if j==lpy(1,odr)

55 Lapy=(v(i,j-sign(j -0.5*(Ny+2)))-v(i,j))/h^2;

56 r=r;

57 elseif j==lpy(end ,odr)

58 Lapy = v(i,j-sign(j -0.5*(Ny+2)))/h^2;

59 r = r+1/h^2;

60 else

61 Lapy=(v(i,j+1)-v(i,j)+v(i,j-1))/h^2;

33

62 r = r+1/h^2;

63 end

64 r = r+1/dt;

65 v(i,j)=(v(i,j)/dt+(Lapx+Lapy))/r;

66 end

67 v = v./sqrt ((1.0 -v.^2)*exp(-2.0*dt/ep2)+v.^2);

68

69 w=0*v(2:Nx+1,2:Ny+1);

70 for i=2:Nx+1

71 for j=2:Ny+1

72 u=v(i-1:i+1,j-1:j+1);

73 for p=1:2

74 for q=1:2

75 tx = (u(p+1,q+1)-u(p,q+1)+u(p+1,q)-u(p,q));

76 ty = (u(p+1,q+1)-u(p+1,q)+u(p,q+1)-u(p,q));

77 nux(p,q) = tx/(sqrt(tx^2+ty^2));

78 nuy(p,q) = ty/(sqrt(tx^2+ty^2));

79 end

80 end

81 if abs(v(i,j)) <0.98

82 w(i-1,j-1) = ((nux(2,2)-nux(1,2)+nux(2,1)-nux(1,1))/

h ...

83 +(nuy(2,2)-nuy(2,1)+nuy(1,2)-nuy(1,1))/h)*0.5;

84 end

85 end

86 end

87

88 nume = sum(sum(v(2:Nx+1,2:Ny+1)));

89 deno = sum(sum(abs(1-v(2:Nx+1,2:Ny+1) .^2)./sqrt (2).*w));

90 b = (ss -nume)/deno;

34

91 v(2:Nx+1,2:Ny+1) = v(2:Nx+1,2:Ny+1)+b*abs(1-v(2:Nx+1,2:Ny+1) .^2)

...

92 ./sqrt (2).*w;

93

94 v(1,:)=v(2,:); v(Nx+2,:)=v(Nx+1,:);

95 v(:,1)=v(:,2); v(:,Ny+2)=v(:,Ny+1);

96

97 if mod(iter ,100) == 0

98 figure (1); clf; hold on; grid on; view (-30,20);

99 mesh(x(2:Nx+1),y(2:Ny+1),real(v(2:Nx+1,2:Ny+1)));

100 colormap turbo; clim([-1 1]); colorbar;

101 axis image;

102

103 figure (2);

104 contour(x(2:Nx+1),y(2:Ny+1),real(v(2:Nx+1,2:Ny+1)) ,[0 0],'r

-.')

105 axis image;

106 end

107 end

Lastly, this code is MATLAB code using RKF.

Listing 3.3: The main code for solving curvature-dependent CAC equations using the

RKF method.

1 clear;

2 Nx = 128; Ny= Nx;

3 Lx = -2; Rx = 2; Ly = -2; Ry = 2;

4 h = (Rx -Lx)/Nx;

5 x = linspace(Lx -0.5*h,Rx +0.5*h,Nx+2);

6 y = linspace(Ly -0.5*h,Ry +0.5*h,Ny+2);

7 [xx ,yy]= ndgrid(x,y);

35

8 ep=5*h/(2* sqrt (2)*atanh (0.9)); ep2=ep^2;

9 dt = 0.1*h^2; maxit =500;

10 v = tanh((1-sqrt(xx.^2+yy.^2))/(sqrt (2)*eps));

11

12 ss=sum(sum(v(2:Nx+1,2:Ny+1)));

13 parameter=struct('Nx',Nx ,'Ny',Ny,'h',h,'ep2',ep2 ,'v',v,'dt',dt);

14 coef21 =1.0/4.0;

15 coef31 =3.0/32.0; coef32 =9.0/32.0;

16 coef41 =1932.0/2197.0; coef42 = -7200.0/2197.0; coef43 =7296.0/2197.0;

17 coef51 =439.0/216.0; coef52 =-8.0; coef53 =3680.0/513.0;

18 coef54 = -845.0/4104.0;

19 coef61 = -8.0/27.0; coef62 =2.0; coef63 = -3544.0/2565.0; coef64

=1859.0/4104.0;

20 coef65 = -11.0/40.0;

21 coefRR =[1.0/360.0 ,0.0 , -128.0/4275.0 , -2197.0/75240.0 ,0.02 ,2.0/55.0]/

dt;

22 coefM =[25.0/216.0 ,0 ,1408/2565.0 ,2197.0/4104.0 , -0.2];

23

24 figure (1); clf; hold on; grid on; view (-30,20);

25 mesh(x,y,real(v));

26 colormap turbo; clim([-1 1]); colorbar;

27 axis image;

28

29 figure (2); clf; hold on; box on

30 contour(x,y,real(v) ,[0 0],'k-');

31 axis image;

32

33 for iter =1: maxit

34 K1=dt*AC(v,parameter);

35 K2=dt*AC(v+coef21*K1,parameter);

36

36 K3=dt*AC(v+coef31*K1+coef32*K2,parameter);

37 K4=dt*AC(v+coef41*K1+coef42*K2+coef43*K3,parameter);

38 K5=dt*AC(v+coef51*K1+coef52*K2+coef53*K3+coef54*K4,parameter);

39 K6=dt*AC(v+coef61*K1+coef62*K2+coef63*K3+coef64*K4+coef65*K5,...

40 parameter);

41 v = v+coefM (1)*K1+coefM (3)*K3+coefM (4)*K4+coefM (5)*K5;

42 v = v./sqrt ((1.0 -v.^2)*exp(-2.0*dt/ep2)+v.^2);

43

44 w=0*v(2:Nx+1,2:Ny+1);

45 for i=2:Nx+1

46 for j=2:Ny+1

47 u=v(i-1:i+1,j-1:j+1);

48 for p=1:2

49 for q=1:2

50 tx = (u(p+1,q+1)-u(p,q+1)+u(p+1,q)-u(p,q));

51 ty = (u(p+1,q+1)-u(p+1,q)+u(p,q+1)-u(p,q));

52 nux(p,q) = tx/(sqrt(tx^2+ty^2));

53 nuy(p,q) = ty/(sqrt(tx^2+ty^2));

54 end

55 end

56 if abs(v(i,j)) <0.98

57 w(i-1,j-1) = 0.5*(nux(2,2)-nux(1,2)+nux(2,1)-nux

(1,1))/h ...

58 +0.5*(nuy(2,2)-nuy(2,1)+nuy(1,2)-nuy

(1,1))/h;

59 end

60 end

61 end

62

63 nume = sum(sum(v(2:Nx+1,2:Ny+1)));

37

64 deno = sum(sum(abs(1-v(2:Nx+1,2:Ny+1) .^2)./sqrt (2).*w));

65 b = (ss -nume)/deno;

66 v(2:Nx+1,2:Ny+1) = v(2:Nx+1,2:Ny+1)+b*abs(1-v(2:Nx+1,2:Ny+1) .^2)

...

67 ./sqrt (2).*w;

68

69 v(1,:)=v(2,:); v(Nx+2,:)=v(Nx+1,:);

70 v(:,1)=v(:,2); v(:,Ny+2)=v(:,Ny+1);

71

72 if mod(iter ,100) == 0

73 figure (1); clf; hold on; grid on; view (-30,20);

74 mesh(x,y,real(v));

75 colormap turbo; clim([-1 1]); colorbar;

76 axis image;

77

78 figure (2);

79 contour(x,y,real(v) ,[0 0],'r-.');

80 axis image;

81 end

82 end

83

84 function v=AC(p,param)

85 Nx=param.Nx; Ny=param.Ny; ep2=param.ep2; h=param.h;

86 v=param.v; dt=param.dt;

87 p(1,:)=p(2,:);

88 p(Nx+2,:)=p(Nx+1,:);

89 p(:,1)=p(:,2);

90 p(:,Ny+2)=p(:,Ny+1);

91

92 for i=2:Nx+1

38

93 for j=2:Ny+1

94 v(i,j)= (p(i-1,j)+p(i+1,j) -4.0*p(i,j)+p(i,j-1)+p(i,j+1))/h

^2;

95 end

96 end

97

98 end

All three codes use the same initial condition, and later, various numerical experi-

ments are performed by changing the initial condition, computational domain, and pa-

rameters.

39

Chapter 4. Numerical experiments

We now present several numerical computational experiments to validate the en-

hanced performance of the presented CAC equation with curvature-dependent Lagrange

multiplier. For clarity, we define εm as εm = hm/[2
√

2tanh−1(0.9)], where h denotes the

grid size and m is a positive integer. This ensures that the transition layer across the in-

terface is approximately hm; refer to [60] for a detailed and thorough explanation of εm.

In our simulations, unless otherwise specified, we set ε = ε5. These tests are designed to

highlight the accuracy and robustness of the CAC equation in maintaining the integrity

of the interface during time evolution, as well as its efficiency in computational perfor-

mance. By examining various initial conditions and background fields, we can demon-

strate how well the proposed model adapts to different scenarios and maintains stability.

4.1 Comparison of numerical schemes

Before performing various numerical experiments, we compare the results of dif-

ferent numerical schemes and select one algorithm. In the computational domain Ω =

(−1, 1)× (−1, 1), We compare the CPU time and numerical solution for a following

40

initial condition:

φ(x,y,0) = tanh(
0.5−

√
x.2 + y.2√
2ε

).

The parameters were used as follows: Nx = Ny = 100, h = 0.02, ∆t = 0.1h2. The CPU

time for each scheme was measured over 500 iterations. The CPU times for each scheme

are provided in Table 4.1.

Table 4.1: The CPU time(s) for 500 iterations.
Spectral method ADE RKF

CPU time(s) 2.6011 2.5083 2.6966

The results indicate that the ADE scheme is the fastest, while the RKF method is

the slowest. Despite this, we have chosen to employ the spectral method for upcoming

numerical tests due to its superior ability to preserve the characteristics of the stiff initial

condition, as illustrated in Fig. 4.1. The decision to use the spectral method is driven by

its higher accuracy in maintaining the intricate details of the initial state. This method

ensures that the nuances of the initial condition are accurately captured and retained

throughout the computations, which is crucial for the reliability of our tests. Further-

more, the spectral method’s robustness in handling complex interface dynamics justifies

its selection despite the slower computation speed.

4.2 Feature preserving property

Let us consider the snapshots of evolution of an initially square shape using three

types of the CAC equations. The top row in Fig. 4.2 depicts the initial condition on the

41

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Figure 4.1: The zero-level contour of the initial condition and the solutions after 500
iterations.

computational domain Ω = (−2,2)× (−2,2):

φ(x,y,0) =


1, x,y ∈ (−1,1),

−1, otherwise.

Here, we use h = 0.625 and ∆t = 0.1h2. Figures 4.2(a), (b), and (c) show the snapshots of

the numerical evolution with different Lagrange multipliers: L (t), L (t)
√

2F(φ), and

L (t)κ(φ)
√

2F(φ), respectively. The snapshots are captured at t = 0, 100∆t, and 500∆t

from top to bottom. The fourth row in Fig. 4.2 presents the evolution of the zero-level

contours of the numerical solutions using the three different Lagrange multipliers. Both

conventional CAC equations result in circular shapes due to the motion by mean cur-

vature with a mass constraint. In contrast, the proposed CAC equation successfully pre-

serves the original square shape, maintaining a smoothed interface transition layer. This

demonstrates the proposed method’s effectiveness in retaining the integrity of complex

42

(a) (b) (c)

Figure 4.2: Snapshots of evolution of the numerical results with different Lagrange mul-
tipliers: (a) L (t), (b) L (t)

√
2F(φ), and (c) L (t)κ(φ)

√
2F(φ). From top to bottom,

times are at t = 0, 100∆t, and 500∆t.

43

geometric features over time, highlighting its potential for applications requiring precise

interface preservation. Additionally, the stability and accuracy of the proposed method

make it a robust choice for modeling intricate phase-field dynamics.

0 100 200 300 400 500

-1.03

-1.02

-1.01

-1

-0.99

-0.98

(a)
0 100 200 300 400 500

1

1.02

1.04

(b)

Figure 4.3: Snapshots of evolution of the (a) minimum (b) maximum values of the nu-
merical solutions with three different Lagrange multipliers.

Figure 4.3(a) and (b) display the snapshots of the minimum and maximum values,

respectively, during the evolution of the numerical solutions with three different Lagrange

multipliers. The results indicate that the solution using the Lagrange multiplier L (t)

deviates from the expected double well values of ±1.

Next, let us consider the snapshots of evolution of an initially small square shape

using three types of the CAC equations. The top row in Fig. 4.4 is the initial condition on

Ω = (−2,2)× (−2,2):

φ(x,y,0) =


1, x,y ∈ (−0.2,0.2),

−1, otherwise.

Here, we use h = 0.625 and ∆t = 0.1h2.

44

(a) (b) (c)

Figure 4.4: Snapshots of evolution of the numerical results with different Lagrange mul-
tipliers: (a) L (t), (b) L (t)

√
2F(φ), and (c) L (t)κ(φ)

√
2F(φ). From top to bottom,

times are at t = 0, 300∆t, and 500∆t.

45

Figures 4.4(a), (b), and (c) are the snapshots of evolution of the numerical results

with different Lagrange multipliers: L (t), L (t)
√

2F(φ), and L (t)κ(φ)
√

2F(φ), re-

spectively. From top to bottom, times are at t = 0, 300∆t, and 500∆t. The fourth row

in Fig. 4.4 shows the snapshots of evolution of the zero-level contours of the numeri-

cal solutions using three different Lagrange multipliers. The result from the conventional

CAC equation with the Lagrange multiplier L (t) shows the initially small square shape

eventually disappears and becomes flat profile. However, the results from the other two

Lagrange multipliers have similar results showing circular shapes.

0 100 200 300 400 500

-1.03

-1.02

-1.01

-1

-0.99

-0.98

(a)
0 100 200 300 400 500

-1

-0.5

0

0.5

1

(b)

Figure 4.5: Snapshots of evolution of the (a) minimum (b) maximum values of the nu-
merical solutions with three different Lagrange multipliers.

Figure 4.5(a) and (b) show the snapshots of evolution of the minimum and maximum

values, respectively, of the numerical solutions with three different Lagrange multipliers.

We can observe the result from the Lagrange multiplier L (t) becomes constant and the

propose model has the best result among the others.

We now undertake a numerical test designed to illustrate the unique dynamics of the

proposed CAC equation in contrast to the two conventional CAC equations. To achieve

this, we consider the initial condition defined on the domain Ω = (−2,2)× (−2,2) as

46

follows:

φ(x,y,0) = 1+ tanh

(
0.5−

√
(x+1)2 +(y+1)2

√
2ε

)

+ tanh

(
1−
√

(x−0.5)2 +(y−0.5)2
√

2ε

)
.

The parameters used in the simulation are h = 0.0625 and ∆t = 0.1h2. As shown in Fig.

4.6, and schematically illustrated in Fig. 3.3, the behavior of the disks varies with dif-

ferent Lagrange multipliers. In the cases of L (t) and L (t)
√

2F(φ) (top and middle

rows), the smaller disk gradually shrinks while the larger disk expands, ultimately re-

sulting in a single remaining disk. Conversely, with the proposed Lagrange multiplier

L (t)κ(φ)
√

2F(φ) (bottom row), the initial shapes of the disks are preserved over time.

Furthermore, Fig. 4.6(d) presents the temporal evolution of the average concentration

φave and the relative deviation ∥φ 0 − φ n∥2/∥φ 0∥2, where ∥ · ∥2 denotes the discrete l2-

norm. It is evident that the average concentration remains constant across all three cases.

However, only the proposed method maintains a minimal relative deviation from the

initial profiles, indicated by the very small value of ∥φ 0 −φ n∥2/∥φ 0∥2.

Let us consider two different sized squares on Ω = (−2,2)× (−2,2) as shown in the

first row in Fig. 4.7:

φ(x,y,0) =


1, x,y ∈ (−1.5,−0.5) or x,y ∈ (−0.2,1.3)

−1, otherwise

The simulation uses parameters h= 0.625 and ∆t = 0.1h2. When using the Lagrange mul-

tipliers L (t) and L (t)
√

2F(φ), the smaller square diminishes in size while the larger

47

(a)

(b)

(c)

(d)

0 0.1 0.2

-0.5

0

0.5

0 0.1 0.2

-0.5

0

0.5

0 0.1 0.2

-0.5

0

0.5

Figure 4.6: Temporal evolution of the numerical results with different Lagrange multipli-
ers: L (t), L (t)

√
2F(φ), and L (t)κ(φ)

√
2F(φ) from left to right colons, respectively.

(a), (b), and (c) are the results at times t = 0, 600∆t, and 700∆t, respectively. (d) is the
temporal evolution of the average concentration φave and ∥φ 0 −φ n∥2/∥φ 0∥2.

48

square enlarges, with both gradually becoming circular. Eventually, this process culmi-

nates in a single remaining disk.

Conversely, with the proposed Lagrange multiplier L (t)κ(φ)
√

2F(φ), the initial

sharp transition softens, and the original shapes are preserved throughout the simula-

tion. This demonstrates the proposed method’s effectiveness in maintaining the original

geometries, ensuring that the shapes remain intact as time progresses.

(a) (b) (c)

Figure 4.7: Snapshots depicting of evolution of the numerical results with three different
Lagrange multipliers: (a) L (t), (b) L (t)

√
2F(φ), and (c) L (t)κ(φ)

√
2F(φ). From top

to bottom, the snapshots correspond to times t = 0, 1000∆t, and 1100∆t.

49

To further confirm the performance of the proposed CAC equation, let us consider

more complex shape on Ω = (−2,2)× (−2,2) as shown in Fig. 4.8(a):

φ(x,y,0) = tanh


2
(

x2 − y2

x2 + y2

)3

−1.5
(

x2 − y2

x2 + y2

)
+1.3−

√
x2 + y2

√
2ε

 .

Here, we use h = 1/32 and ∆t = 0.1h2. The computational outcomes at t = 1000∆t for

the three distinct Lagrange multipliers L (t), L (t)
√

2F(φ), and L (t)κ(φ)
√

2F(φ) are

shown in Figs. 4.8(b), (c), and (d), respectively. Figures 4.8(e) and (f) depict the zero-

level contours of φ at t = 1000∆t and at the equilibrium state.

We define the numerical equilibrium state as occurring when ∥φ n+1 −φ n∥2 < 10−5.

Numerical solutions reached equilibrium at n= 3109 for L (t), n= 3128 for L (t)
√

2F(φ),

and n = 4387 L (t)κ(φ)
√

2F(φ). The solutions derived from the conventional CAC

equations transition into circular shapes due to the motion driven by mean curvature

while maintaining mass constraints. In contrast, the proposed CAC equation manages to

preserve the initial complex shapes over time, highlighting its effectiveness in maintain-

ing the original geometry throughout the simulation.

Furthermore, Fig. 4.9 illustrates the temporal evolution of the maximum norm of each

term in the proposed equation. This graph reveals how the terms interact and balance

each other over time. The observed behavior shows that the three terms dynamically

counteract each other, maintaining equilibrium throughout the evolution. This balance is

crucial for the stability and accuracy of the proposed model, underscoring its robustness

in handling complex phase-field dynamics. The data reinforces the effectiveness of the

proposed method in preserving the integrity of the solution by ensuring that no single

term dominates, thus facilitating a well-balanced numerical simulation.

50

(a) (b)

(c) (d)

(e) (f)

Figure 4.8: (a) depicts the initial condition. (b), (c), and (d) show snapshots of numerical
results at time t = 1000∆t using various Lagrange multipliers: L (t), L (t)

√
2F(φ), and

L (t)κ(φ)
√

2F(φ), respectively. (e) illustrates the zero-level contours from (b) to (d). (f)
displays the zero-level contours of φ in the equilibrium state.

51

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0

0.02

0.04

0.06

0.08

0.1

0.12

Figure 4.9: The time evolution of the maximum norm of each term in the proposed equa-
tion.

Let us consider one circular disk and flat interface on Ω = (0,1)× (0,2) as shown in

the first row in Fig. 4.10:

φ(x,y,0) = 1+ tanh

(
0.2−

√
(x−0.5)2 +(y−1.5)2

√
2ε

)
+ tanh

(
0.5− y√

2ε

)
.

Here, we use h = 1/128, ∆t = 0.1h2, and ε = ε8. In both the results from the conventional

CAC equations, the disk shrinks and disappears because of the motion by mean curvature

with mass constraint. The mass spontaneously transfers from the disk to the flat interface.

However, the proposed CAC equation preserves the original disk and flat interface shapes

as time evolves because the flat interface has zero curvature.

52

(a)

(b)

(c)

Figure 4.10: Snapshots of evolution of the numerical results using various Lagrange mul-
tipliers: (a) L (t), (b) L (t)

√
2F(φ), and (c) L (t)κ(φ)

√
2F(φ). From left to right, times

are at t = 0, 5000∆t, 5600∆t, and 6200∆t.

53

4.3 Deformation of Droplet in swirling flow

In this section, we examine the deformation of droplets subjected to a background

swirling flow. Understanding the dynamics of droplet deformation in such a flow is cru-

cial for various applications in fluid mechanics and engineering, including mixing pro-

cesses, chemical reactions, and material sciences. The governing equation is as follows:

∂φ(x, t)
∂ t

+∇ · [φ(x, t)u(x)] = −F ′(φ(x, t))
ε2 +∆φ(x, t)

+L (t)κ(φ(x, t))
√

2F(φ(x, t)). (4.1)

We solve Eq. (4.1) by operator splitting method as follows:

φt = −∇ · [φ(x, t)u(x)], (4.2)

φt = ∆φ(x, t), (4.3)

φt = −F ′(φ(x, t))
ε2 , (4.4)

φt = L (t)κ(φ(x, t))
√

2F(φ(x, t)). (4.5)

Equations (4.3)–(4.5) are solved by the same procedure as described above. The advec-

tion term is solved by the FDM.

φ
n+1
i j −φ n

i j

∆t
= −

(φ n
i+1, j +φ n

i j)ui+ 1
2 , j

− (φ n
i j +φ n

i−1, j)ui− 1
2 , j

2h

+
(φ n

i, j+1 +φ n
i j)vi, j+ 1

2
− (φ n

i j +φ n
i, j−1)vi, j− 1

2

2h
.

54

Here, u(x) = (u(x,y), v(x,y)) is the given velocity field:

u(x,y) = −2.5sin2(πx)sin(2πy),

v(x,y) = 2.5sin2(πy)sin(2πx).

The initial condition is defined on the computational domain Ω = (0,1)× (0,1) as

φ(x,y,0) = tanh

(
0.2−

√
(x−0.5)2 +(y−0.7)2

√
2ε

)
.

The parameters used are h = 1/128, ∆t = 0.2h2, and ε = ε8. For the given u, v, and

initial position of interface (Xk(0),Yk(0)), k = 1, . . . ,Nk, the exact reference solution of

interfacial position (Xk(t),Yk(t)) can be obtained by solving dX(t)/dt = u(X(t),Y (t))

and dY (t)/dt = v(X(t),Y (t)). Here, we use an improved Euler method with time step

0.2h2. Figure 4.11(a), (b), and (c) are the snapshots of interfacial position using L (t),

L (t)
√

2F(φ), and L (t)κ
√

2F(φ), respectively. It can be observed that the numerical

solution obtained by the proposed model shows good agreement with the exact reference

solution.

4.4 Comparison with Cahn–Hilliard equation

The dynamics of the proposed CAC equation are compared to those of the CH equa-

tion. The CH equation is given by:

∂φ(x, t)
∂ t

= M∆
(
F ′(φ(x, t))− ε

2
∆φ(x, t)

)
, x ∈ Ω, t ≥ 0,

n ·∇φ(x, t) = 0, n ·∇∆φ(x, t) = 0, x ∈ ∂Ω.

55

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(a)

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(b)

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(c)

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(c)

Figure 4.11: (a), (b), and (c) are droplet deformations in a background swirling flow using
L (t), L (t)

√
2F(φ), and L (t)κ(φ)

√
2F(φ) at t = 0.195, respectively. The numerical

solutions are shown as black solid lines, while the exact solutions are indicated by red
dotted lines.

56

Here, Ω ⊂Rd (d = 1, 2, . . .) is a bounded domain, t is time, M is the mobility coefficient

(in this dissertation, we take M = 1 for simplicity), n is the unit normal vector on ∂Ω,

and ∆φ = ∇ ·∇φ is the Laplacian of φ .

For the numerical experiments, the CH equation is solved using the spectral method

as described in [67]. Let us consider one circular disk and flat interface on Ω = (0,1)×

(0,2) as shown in the first row in Fig. 4.10:

φ(x,y,0) = 1+ tanh

(
0.2−

√
(x−0.5)2 +(y−1.5)2

√
2ε

)
+ tanh

(
0.5− y√

2ε

)
.

Here, we use h = 1/128, ∆t = 0.1h2, and ε = ε8.

Figure 4.12: Sequential snapshots depicting the numerical results for the CH equation at
times t = 0, 5000∆t, 5600∆t, and 6200∆t, from left to right.

Figure 4.12 shows the numerical dynamic results of the CH equation for t = 0,

5000∆t, 5600∆t, and 6200∆t. In both the results from the conventional CAC equations,

the disk shrinks and disappears because of the motion by mean curvature with mass con-

straint. The mass spontaneously transfers from the disk to the flat interface. However,

the proposed CAC equation preserves the original disk and flat interface shapes as time

57

evolves because the flat interface has zero curvature. Moreover, it shows results similar

to the CH dynamics.

We also observe the results for droplets near the flat interface. Let us consider one

circular disk and flat interface on Ω = (0,1)× (0,2).

φ(x,y,0) = 1+ tanh

(
0.2−

√
(x−0.5)2 +(y−0.75)2

√
2ε

)
+ tanh

(
0.5− y√

2ε

)
.

Here, we use h = 1/128, ∆t = 0.1h2, and ε = ε8.

Figure 4.13 presents the numerical results for both the CH equation and the novel

curvature-dependent CAC equation. Theoretically, the CH equation is expected to pre-

serve convexity throughout its evolution. However, the numerical results indicate that the

dynamics of the CAC equation closely resemble those predicted by the theoretical CH

equation. This comparison underscores the efficacy of the CAC equation in accurately

capturing the expected behavior, despite the inherent numerical approximations.

4.5 Isotropic curvature

In Fig. 4.13, it was observed that the numerical solution of the curvature-dependent

CAC equation was unstable in the region where the flat interface and the droplet were

close. To increase the accuracy of the solution, we consider isotropic curvature. Observe

the numerical solution for the initial condition shown in Fig. 4.13 using discrete isotropic

curvature. Let us consider one circular disk and flat interface on Ω = (0,1)× (0,2).

φ(x,y,0) = 1+ tanh

(
0.2−

√
(x−0.5)2 +(y−0.75)2

√
2ε

)
+ tanh

(
0.5− y√

2ε

)
.

Here, we use h = 1/258, ∆t = 0.2h2, ε = ε8, and T = 20000∆t.

58

(a)

(b)

Figure 4.13: (a) CH equation. (b) Curvature-dependent CAC equation. The snapshots,
from left to right, correspond to times t = 0, 2000∆t, and 10000∆t.

59

(a) (b) (c)

Figure 4.14: (a) Initial condition. (b) Using previous curvature. (c) Using isotropic cur-
vature.

Figure 4.14 shows the results of the curvature-dependent CAC equation using isotropic

curvature and a mesh that is twice as fine as that used in Fig. 4.13.

To facilitate a more precise comparison between the results presented in Figs. 4.13

and 4.14, we visually depict the relative difference ∥φ 0 −φ n∥2/∥φ 0∥2 in Fig. 4.15. This

visualization allows for a clearer assessment of the deviations and improvements in so-

lution accuracy achieved through the application of isotropic curvature in the numerical

simulations.

4.6 Rotation of a Zalesak’s disk

To conduct a more comprehensive benchmark test, we examine the rotation of Za-

lesak’s disk. This test is a well-established standard in evaluating various interface cap-

turing methods, as demonstrated in studies such as [61, 62]. The initial configuration on

60

0 0.01 0.02 0.03 0.04 0.05 0.06
0

0.005

0.01

0.015
previous curvature

isotropic curvature

Figure 4.15: The temporal evolution of ∥φ 0 −φ n∥2/∥φ 0∥2

the domain Ω = (0,1)× (0,1) is shown in Fig. 4.16(a). The background velocity field

is defined by u(x,y) = 600(y− 0.5), and v(x,y) = −600(x − 0.5), with grid step size

h = 1/256, time step ∆t = 0.01h2, and interface width parameter ε = ε8. The exact solu-

tion, derived from the initial interface position and background velocity field, is computed

using the second-order accurate modified Euler method [63]. In Figs. 4.16(a), (b), and (c),

we present snapshots of the numerical results at times t = 0, 0.0024, and 0.0043 for the

Lagrange multipliers L (t), L (t)
√

2F(φ), and L (t)κ
√

2F(φ), respectively. As evident

from these figures, the proposed model effectively preserves the initial shape throughout

the simulation.

61

(a) t = 0 (b) t = 0.0024 (c) t = 0.0043

Figure 4.16: Rotation of a Zalesak’s disk with L (t), L (t)
√

2F(φ), and
L (t)κ(φ)

√
2F(φ). The corresponding computational times are indicated below each

figure.

62

Chapter 5. Conclusions

In this paper, we noted the non-conserving mass property of the conventional AC

equation through a brief review. To address this issue, we introduced CAC equations.

While the two widely used CAC equations follow motion by mean curvature, the pro-

posed new CAC equation employs curvature-dependent Lagrange multipliers, exhibiting

superior feature-preserving properties. In contrast to traditional CAC equations, which

involve motion by mean curvature with area or volume constraints, the model presented

here introduces a different approach. This new model minimizes the dynamics of mo-

tion by mean curvature. Instead, it emphasizes the smoothing properties of the interface

transition layer. To elaborate, classical CAC equations typically govern the evolution of

interfaces under the influence of mean curvature, while enforcing constraints on the area

or volume of the phases. However, the novel model we propose shifts focus away from

these traditional dynamics. It reduces the role of mean curvature-driven motion, which is

known to cause significant morphological changes over time. Instead, the primary feature

of our model is the enhanced smoothing effect on the interface transition layer. This prop-

erty facilitates a more stable and gradual transition between phases, thereby maintaining

the integrity of the interface structure without the aggressive changes induced by mean

curvature forces. By prioritizing the smoothing characteristic, our model offers a more

controlled and stable interface evolution, which can be advantageous in applications re-

63

quiring precise interface management and reduced topological changes. This approach

allows for a clearer understanding and prediction of the interface behavior over time, of-

fering potential improvements in numerical stability and computational efficiency. Con-

sequently, it can serve as a foundational equation for modeling conservative phase-field

applications, such as two-phase fluid flows. Based on the OSM, we provided a numerical

algorithm. Various numerical methods were applied to solve the diffusion term. Addi-

tionally, we conducted a comparative analysis of the results generated by each numerical

scheme. This comparative study allowed us to assess the relative performance and accu-

racy of the different methods employed. In addition to the methodological comparison,

we executed a series of numerical experiments to rigorously evaluate the performance of

the proposed CAC equation. These experiments were designed to test the algorithm un-

der various conditions and scenarios. The primary focus of our experiments was to verify

the enhanced performance of the CAC equation, with particular attention to its ability to

preserve structural properties. Through these extensive numerical tests, we confirmed

that our proposed CAC equation not only maintains but also enhances the structural

integrity of the interface transition layer. This improvement is crucial for applications

requiring precise control over interface dynamics and feature preservation. By systemati-

cally analyzing the results, we demonstrated the robustness and efficacy of our approach,

highlighting its potential for broader application in computational mathematics and re-

lated fields. The enhanced performance in preserving structural properties underscores

the value of our proposed numerical algorithm and its suitability for complex simula-

tions.

64

Reference

[1] S.M. Allen, and J.W. Cahn, A microscopic theory for antiphase boundary mo-

tion and its application to antiphase domain coarsening, Acta metallurgica, 27(6)

(2022) 1085–1095.

[2] S. Kim and J. Kim, Automatic Binary Data Classification Using a Modified Allen–

Cahn Equation, International Journal of Pattern Recognition and Artificial Intelli-

gence, 35(04), (2021), 2150013.

[3] D. Lee, S. Kim, H.G. Lee, S. Kwak, J. Wang, and J. Kim, Classification of ternary

data using the ternary Allen–Cahn system for small datasets, AIP Advances, 12(6),

(2022).

[4] A.L. Bertozzi and A. Flenner, Diffuse interface models on graphs for classification

of high dimensional data, SIAM Review, 58(2), (2016), 293–328.

[5] J. Budd, Y. van Gennip, and J. Latz, Classification and image processing with

a semi-discrete scheme for fidelity forced Allen–Cahn on graphs, GAMM-

Mitteilungen, 44(1), (2021), e202100004.

[6] M. Beneš, V. Chalupecký, K. Mikula, Geometrical image segmentation by the

Allen–Cahn equation, Applied Numerical Mathematics, 51(2-3), (2004), 187–205.

65

[7] D. Lee and S. Lee, Image segmentation based on modified fractional Allen–Cahn

equation, Mathematical Problems in Engineering, 2019(1), (2019), 3980181.

[8] C. Liu, Z. Qiao, and Q. Zhang, Multi-phase image segmentation by the Allen–

Cahn Chan–Vese model, Computers & Mathematics with Applications, 141,

(2023), 207–220.

[9] Z. Rong, L.L. Wang, and X.C. Tai, Adaptive wavelet collocation methods for im-

age segmentation using TV–Allen–Cahn type models, Advances in Computational

Mathematics, 38(1), (2013), 101–131.

[10] J. Wang, Z. Han, and J. Kim, An efficient and explicit local image inpainting

method using the Allen–Cahn equation, Zeitschrift für angewandte Mathematik

und Physik, 75(2), (2024), 44.

[11] Y. Li, D. Jeong, J.I. Choi, S. Lee, and J. Kim, Fast local image inpainting based on

the Allen–Cahn model, Digital Signal Processing, 37, (2015), 65–74.

[12] Y. Li, S. Lan, X. Liu, B. Lu, and L. Wang, An efficient volume repairing method by

using a modified Allen–Cahn equation, Pattern Recognition, 107, (2020), 107478.

[13] Y. Li, X. Song, S. Kwak, and J. Kim, Weighted 3D volume reconstruction from

series of slice data using a modified Allen–Cahn equation, Pattern Recognition,

132, (2022), 108914.

[14] A.L. Brkić and A. Novak, A nonlocal image inpainting problem using the linear

Allen–Cahn equation, in Advances in Non-Integer Order Calculus and Its Appli-

cations: Proceedings of the 10th International Conference on Non-Integer Order

66

Calculus and Its Applications 10, Springer International Publishing, (2020), 229–

239.

[15] H. Kim, C. Lee, S. Kwak, Y. Hwang, S. Kim, Y. Choi, and J. Kim, Three-

dimensional volume reconstruction from multi-slice data using a shape transfor-

mation, Computers & Mathematics with Applications, 113, (2022), 52–58.

[16] Z. Han, H. Xu, and J. Wang, A simple shape transformation method based on

phase-field model, Computers & Mathematics with Applications, 147, (2023),

121–129.

[17] H. Kim, S. Kang, G. Lee, S. Yoon, and J. Kim, Shape transformation on curved

surfaces using a phase-field model, Communications in Nonlinear Science and

Numerical Simulation, 133, (2024), 107956.

[18] Q. Li, N. Cui, S. Zheng, and L. Mei, A new Allen–Cahn type two-model phase-

field crystal model for fcc ordering and its numerical approximation, Applied

Mathematics Letters, 132, (2022), 108211.

[19] X. Xiao and X. Feng, A second-order maximum bound principle preserving oper-

ator splitting method for the Allen–Cahn equation with applications in multi-phase

systems, Mathematics and Computers in Simulation, 202, (2022), 36–58.

[20] D. Jeong and J. Kim, An explicit hybrid finite difference scheme for the Allen–

Cahn equation, Journal of Computational and Applied Mathematics, 340, (2018),

247–255.

67

[21] X. Jing and Q. Wang, Linear second order energy stable schemes for phase field

crystal growth models with nonlocal constraints, Computers & Mathematics with

Applications, 79(3), (2020), 764–788.

[22] H.G. Lee and J.Y. Lee, A second order operator splitting method for Allen–Cahn

type equations with nonlinear source terms, Physica A: Statistical Mechanics and

its Applications, 432, (2015), 24–34.

[23] J. Wang, C. Lee, H. G. Lee, Q. Zhang, J. Yang, S. Yoon, J. Park, and J. Kim, Phase-

field modeling and numerical simulation for ice melting, Numerical Mathematics:

Theory, Methods and Applications, 14(2), (2021), 540–558.

[24] S. Daubner, P.K. Amos, E. Schoof, J. Santoki, D. Schneider, and B. Nestler,

Multiphase-field modeling of spinodal decomposition during intercalation in an

Allen–Cahn framework, Physical Review Materials, 5(3), (2021), 035406.

[25] J. Feng, Y. Zhou, and T. Hou, A maximum-principle preserving and uncondition-

ally energy-stable linear second-order finite difference scheme for Allen–Cahn

equations, Applied Mathematics Letters, 118, (2021), 107179.

[26] J. Zhao, A revisit of the energy quadratization method with a relaxation technique,

Applied Mathematics Letters, 120, (2021), 107331.

[27] J.W. Choi, H.G. Lee, D. Jeong, and J. Kim, An unconditionally gradient stable nu-

merical method for solving the Allen–Cahn equation, Physica A: Statistical Me-

chanics and its Applications, 388(9), (2009), 1791–1803.

[28] D.S. Lee and J.S. Kim, Mean curvature flow by the Allen–Cahn equation, Euro-

pean Journal of Applied Mathematics, 26(4), (2015), 535–559.

68

[29] L.C. Evans, H.M. Soner, and P.E. Souganidis, Phase transitions and generalized

motion by mean curvature, Communications on Pure and Applied Mathematics,

45(9), (1992), 1097–1123.

[30] C. Lee, H. Kim, S. Yoon, S. Kim, D. Lee, J. Park, S. Kwak, J. Yang, J. Wang,

and J. Kim, An unconditionally stable scheme for the Allen–Cahn equation with

high-order polynomial free energy, Communications in Nonlinear Science and Nu-

merical Simulation, 95, (2021), 105658.

[31] A. Begmohammadi, R. Haghani-Hassan-Abadi, A. Fakhari, and D. Bolster, Study

of phase-field lattice Boltzmann models based on the conservative Allen–Cahn

equation, Physical Review E, 102(2), (2020), 023305.

[32] S. Kwak, J. Yang, and J. Kim, A conservative Allen–Cahn equation with a

curvature-dependent Lagrange multiplier, Applied Mathematics Letters, 126,

(2022), 107838.

[33] J. Li, L. Ju, Y. Cai, and X. Feng, Unconditionally maximum bound principle pre-

serving linear schemes for the conservative Allen–Cahn equation with nonlocal

constraint, Journal of Scientific Computing, 87(3), (2021), 1–32.

[34] M. Sugimoto, Y. Sawada, M. Kaneda, and K. Suga, Consistent evaporation for-

mulation for the phase-field lattice Boltzmann method, Physical Review E 103(5),

(2021), 053307.

[35] L. Chen and J. Zhao, A novel second-order linear scheme for the Cahn–Hilliard–

Navier–Stokes equations, Journal of Computational Physics, 423, (2021), 109782.

69

[36] C. Liu, F. Frank, C. Thiele, F. O. Alpak, S. Berg, W. Chapman, and B. Riviere, An

efficient numerical algorithm for solving viscosity contrast Cahn–Hilliard–Navier–

Stokes system in porous media, Journal of Computational Physics, 400, (2020),

108948.

[37] N. Adam, F. Franke, and S. Aland, A simple parallel solution method for the

Navier–Stokes Cahn–Hilliard equations, Mathematics, 8(8), (2020), 1224.

[38] J. Rubinstein and P. Sternberg, Nonlocal reaction-diffusion equations and nucle-

ation, IMA Journal of Applied Mathematics, 48(3), (1992), 249–264.

[39] B. Xia, Y. Li, and Z. Li, Second-order unconditionally stable direct methods for

Allen–Cahn and conservative Allen–Cahn equations on surfaces, Mathematics,

8(9), (2020), 1486.

[40] A. Shah, M. Sabir, M. Qasim, and P. Bastian, Efficient numerical scheme for solv-

ing the Allen–Cahn equation, Numerical Methods for Partial Differential Equa-

tions, 34(5), (2018), 1820–1833.

[41] H. Li, Z. Song, and F. Zhang, A reduced-order modified finite difference method

preserving unconditional energy-stability for the Allen–Cahn equation, Numerical

Methods for Partial Differential Equations, 37(3), (2021), 1869–1885.

[42] X. Wang, J. Kou, and J. Cai, Stabilized energy factorization approach for Allen–

Cahn equation with logarithmic Flory–Huggins potential, Journal of Scientific

Computing, 82(2), (2020), 25.

70

[43] H. Li, Z. Song, and J. Hu, Numerical analysis of a second-order IPDGFE method

for the Allen–Cahn equation and the curvature-driven geometric flow, Computers

& Mathematics with Applications, 86, (2021), 49–62.

[44] M. Brassel and E. Bretin, A modified phase field approximation for mean curva-

ture flow with conservation of the volume, Mathematical Methods in the Applied

Sciences, 34(10), (2011), 1157–1180.

[45] Z. Weng and Q. Zhuang, Numerical approximation of the conservative Allen–Cahn

equation by operator splitting method, Math. Meth. Appl. Sci., 40(12), (2017),

4462–4480.

[46] Z. Huang, G. Lin, and A.M. Ardekani, Consistent and conservative scheme for

incompressible two-phase flows using the conservative Allen–Cahn model, Journal

of Computational Physics, 420, (2020), 109718.

[47] V. Joshi and R.K. Jaiman, A positivity preserving and conservative variational

scheme for phase-field modeling of two-phase flows, Journal of Computational

Physics, 360, (2018), 137–166.

[48] P.H. Chiu, A coupled phase field framework for solving incompressible two-phase

flows, Journal of Computational Physics, 392, (2019), 115–140.

[49] D. Lee, The numerical solutions for the energy-dissipative and mass-conservative

Allen–Cahn equation, Computers & Mathematics with Applications, 80(1),

(2020), 263–284.

71

[50] M. Okumura, A stable and structure-preserving scheme for a non-local Allen–

Cahn equation, Japan Journal of Industrial and Applied Mathematics, 35(3),

(2018), 1245–1281.

[51] D. Lee and Y. Kim, Novel mass-conserving Allen–Cahn equation for the bounded-

ness of an order parameter, Communications in Nonlinear Science and Numerical

Simulation, 85, (2020), 105224.

[52] X. Mao, V. Joshi, and R. Jaiman, A variational interface-preserving and conserva-

tive phase-field method for the surface tension effect in two-phase flows, Journal

of Computational Physics, 433, (2021), 110166.

[53] Q. Hong, Y. Gong, J. Zhao, and Q. Wang, Arbitrarily high order structure-

preserving algorithms for the Allen–Cahn model with a nonlocal constraint, Ap-

plied Numerical Mathematics, 170, (2021), 321–339.

[54] Z. Weng and L. Tang, Analysis of the operator splitting scheme for the Allen–Cahn

equation, Numerical Heat Transfer, Part B: Fundamentals, 70(5), (2016), 472–483.

[55] S. MacNamara and G. Strang, Operator splitting, in Splitting methods in commu-

nication, imaging, science, and engineering, (2016), 95–114.

[56] H.G. Lee and J.Y. Lee, A semi-analytical Fourier spectral method for the Allen–

Cahn equation, Computers & Mathematics with Applications, 68(3), (2014), 174–

184.

[57] M. Dehghan, The one-dimensional heat equation subject to a boundary integral

specification, Chaos, Solitons & Fractals, 32(2), (2007), 661–675.

72

[58] Y. Jin, S. Kwak, S. Ham, and J. Kim, A fast and efficient numerical algorithm for

image segmentation and denoising, AIMS Mathematics, 9(2), (2024), 5015–5027.

[59] J. Yang, Y. Li, C. Lee, H.G. Lee, S. Kwak, Y. Hwang, X. Xin, and J. Kim, An ex-

plicit conservative Saul’yev scheme for the Cahn–Hilliard equation, International

Journal of Mechanical Sciences, 217, (2022), 106985.

[60] J. Kim, Phase-field models for multi-component fluid flows, Communications in

Computational Physics, 12(3), (2012), 613–661.

[61] D. Kim, C.B. Ivey, F.H. Ham, and L.G. Bravo, An efficient high-resolution

Volume-of-Fluid method with low numerical diffusion on unstructured grids, Jour-

nal of Computational Physics, 446, (2021), 110606.

[62] M. Gutforth, P.T. Barton, and N. Nikiforakis, An efficient moment-of-fluid inter-

face tracking method, Computers & Fluids, 224, (2021), 104964.

[63] J. Yang, Y. Li, C. Lee, and J. Kim, Conservative Allen–Cahn equation with a non-

standard variable mobility, Acta Mechanica, 231, (2020), 561–576.

[64] J. Kim and H.G. Lee, A new conservative vector-valued Allen–Cahn equation and

its fast numerical method, Computer Physics Communications, 221, (2017), 102–

108.

[65] S. Aihara, T. Takaki, and N. Takada, Multi-phase-field modeling using a conserva-

tive Allen–Cahn equation for multiphase flow, Computers & Fluids, 178, (2019),

141–151.

73

[66] L. Zheng, S. Zheng, and Q. Zhai, Multiphase flows of N immiscible incompress-

ible fluids: Conservative Allen–Cahn equation and lattice Boltzmann equation

method, Physical review E, 101(1), (2020), 013305.

[67] D. Lee, J.Y. Huh, D. Jeong, J. Shin, A. Yun, and J. Kim, Physical, mathematical,

and numerical derivations of the Cahn–Hilliard equation, Computational Materials

Science, 81, (2014), 216–225.

[68] S. Hochreiter and J. Schmidhuber, Long short-term memory, Neural computation,

9(8), (1997), 1735–1780.

[69] G.H. Hardy, Course of pure mathematics, Courier Dover Publications, (2018).

74

	1 Introduction
	2 Conservative AllenCahn equation
	2.1 The time-dependent Lagrange multiplier
	2.2 The time- and space-dependent Lagrange multiplier
	2.3 The curvature-dependent Lagrange multiplier

	3 Numerical solution algorithm
	3.1 Fourier spectral method
	3.2 Discrete curvature
	3.2.1 Anisotropic curvature
	3.2.2 Isotropic curvature

	3.3 Alternating direction explicit method
	3.4 RungeKuttaFehlberg method
	3.5 Algorithm Summary
	3.6 MATLAB code

	4 Numerical experiments
	4.1 Comparison of numerical schemes
	4.2 Feature preserving property
	4.3 Droplet deformation in swirling flow
	4.4 Comparison with CahnHilliard equation
	4.5 Isotropic curvature
	4.6 Rotation of a Zalesak's disk

	5 Conclusions
	Reference

<startpage>21
1 Introduction 1
2 Conservative AllenCahn equation 10
 2.1 The time-dependent Lagrange multiplier 10
 2.2 The time- and space-dependent Lagrange multiplier 12
 2.3 The curvature-dependent Lagrange multiplier 14
3 Numerical solution algorithm 17
 3.1 Fourier spectral method 19
 3.2 Discrete curvature 23
 3.2.1 Anisotropic curvature 23
 3.2.2 Isotropic curvature 24
 3.3 Alternating direction explicit method 25
 3.4 RungeKuttaFehlberg method 26
 3.5 Algorithm Summary 27
 3.6 MATLAB code 29
4 Numerical experiments 40
 4.1 Comparison of numerical schemes 40
 4.2 Feature preserving property 41
 4.3 Droplet deformation in swirling flow 53
 4.4 Comparison with CahnHilliard equation 56
 4.5 Isotropic curvature 60
 4.6 Rotation of a Zalesak's disk 61
5 Conclusions 63
Reference 65
</body>

