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ABSTRACT

To solve the two-dimensional diffusion equation using the finite difference method, we propose a simple MATLAB implementation of the
multigrid method. The diffusion equation plays a fundamental role in modeling many significant physical phenomena and is ubiquitous in
many governing equations. Some examples include the reaction-diffusion equations, the convection-diffusion equations, and others. These
equations often lack analytical solutions or pose extreme challenges in finding them. Therefore, numerical techniques are indispensable for
obtaining practical and accurate approximations for these equations. The multigrid method is known for its computational efficiency and
effectiveness as an iterative technique for solving the discretized diffusion equation. Due to its popularity, the multigrid method has been
implemented in several programming languages, such as Python, Java, C++, C, Fortran, and others. However, it is not easy for beginners to
understand the implementation of the multigrid method due to its complex data structures and recursive routines. To resolve these difficul-
ties, we develop a straightforward MATLAB implementation of the two-dimensional diffusion equation using a cell structure in MATLAB.
This work provides an accessible and efficient framework for understanding and applying the multigrid method, thereby simplifying its
implementation for researchers and practitioners.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial 4.0
International (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). https://doi.org/10.1063/5.0247042
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. INTRODUCTION

In this study, using MATLAB software,! we present a straight-
forward, intuitive, and easily applicable multigrid algorithm that
replaces the recursive function with a for loop using a cell array
structure. For a specific example of a MATLAB multigrid implemen-
tation, let us consider the two-dimensional (2D) diffusion equation
for (x,y) € Q,t >0,

Ou(x,y,t) _
PR putxy), g

where Q is the given 2D domain, and u(x,y,t) is a substance
concentration at (x,y) and ¢. The following equation is used:

n-Vu(x,y,t)=0, x€dQ, t>0,

where n is normal to Q. The diffusion equation is essential for
modeling processes involving heat transfer, chemical transport, and
biological interactions, as it describes how substances spread over
time. It serves as the foundation of many scientific and engineering
applications, which makes it fundamental in understanding phys-
ical phenomena and predicting system behaviors in diverse fields,
from environmental science to material engineering. Therefore, it is
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essential to use fast and accurate numerical methods to solve the dif-
fusion equation. Among these methods,”” the multigrid method is a
computational solver used to solve various partial differential equa-
tions (PDEs) in the field of computational physics and engineering.
It is an iterative algorithm that efficiently solves the resolution of
different scales of features in the solution. By using a hierarchy of
grids, the multigrid technique can accelerate the convergence of iter-
ative solvers and makes it particularly effective for problems with
smooth and oscillatory components. The recursive function for a
multigrid method is a very efficient routine; however, it can be par-
ticularly challenging for beginners to fully understand. The primary
objective of this paper is to present a straightforward, intuitive, and
easily implementable multigrid algorithm that replaces the recur-
sive function with a for loop while using a cell array structure and
to assist beginners and researchers in developing intuitive and sim-
ple numerical solution programs using the multigrid method under
a unified platform, MATLAB, for program development.

This method is widely applied in various areas, including fluid
dynamics, heat transfer, and structural mechanics, to obtain accurate
and fast solutions to PDEs.” '* Many researchers have implemented
multigrid methods using various computer programming languages
such as Fortran 77,"°7'" C,'° and C++."”'® Under the Dirichlet con-
ditions on a Cartesian mesh with non-regular boundaries, Guillet
and Teyssier'” developed a multigrid solver for solving the Poisson
equation. Gupta and Zhang’’ presented the high accuracy multigrid
algorithm for the 3D convection-diffusion equation. The multigrid
method’! and parallel multigrid method””> have been researched
to solve the inverse problems related to the heat equation. The
multigrid method has been implemented in the past with the MAT-
LAB program.” In Ref. 24, the authors utilized graphics processing
units (GPUs) and MATLAB 2010b. The multigrid codes were opti-
mized using CUDA. In Ref. 25, the authors proposed an efficient
multigrid-based topology optimization approach using MATLAB

J
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and CUDA. MATLAB released a parallel computing toolbox. This
toolbox includes functions that allow for calling parallel thread exe-
cution (PTX) directly, starting from version 2010b or any newer
versions. The handwritten CUDA kernel can be transformed into
PTX code, and this PTX code can also be called a MATLAB function
and perform parallel operations in MATLAB. Therefore, the authors
showed that the computing speed was faster than central processing
unit (CPU) computing by using GPU computing capable of parallel
operation for the multigrid method.

The structure of this paper can be outlined as follows. Section I1
presents a multigrid algorithm using a cell structure in MATLAB
to find the numerical approximation of the 2D diffusion equation.
Section 11T presents the computational experiments to show the per-
formance of the implemented numerical scheme. The conclusions
drawn from the multigrid algorithm are provided in Sec. IV. In
addition, we have included the MATLAB program for the 2D dif-
fusion equation in the Appendix, which enables interested readers
to customize and apply the multigrid program to suit their specific
needs.

Il. NUMERICAL SOLUTION ALGORITHM

Before explaining the multigrid method using a cell structure,
we would like to explain how to define and use the cell structure in
the MATLAB program. In MATLAB, a cell structure, or cell array, is
a data type that allows you to store arrays of varying sizes and types.
Unlike standard arrays, which require uniform data types and sizes,
cell arrays can contain a mix of numbers, strings, vectors, matrices,
and even other cell arrays, making them highly flexible for handling
heterogeneous data. Each element in a cell array is accessed using
curly braces, {-}, rather than the standard parentheses, (-), used
for regular arrays. Let us consider the following example presented
within a box.

>> C{1}=[1 23 4; 567 8 9 10 11 12; 13
>> C
C = 1x2 cell array

{4x4 double} {2x2 double}
>> C{1}
ans = 2 3 4
6 7 8

10 11 12
14 15 16

14 15 16]; C{2}=[1 2; 3 4];

A cell array is a data structure made up of indexed contain-
ers, known as cells, where each cell can hold data of any type and
size. We define and access the contents of cells by indexing with
curly braces, {}. The order of data is held as an index. In the above-
mentioned example, C{1} contains a 4 x 4 matrix, and C{2} contains

a 2 x 2 matrix. When we want to call the element in the second row
and third column among the included elements in C{1}, then we use
C{1}(2, 3) by enclosing indices in round parentheses, ().

For the 2D domain Q = (a,b) x (¢,d), we define a uniform
cell-centered discrete domain as Qy = {(xi,yj)|xi = a + (i — 0.5h),
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yj=c+(j-05h), i=1,...,Ny, j=1,...,N,}, where h = (b -a)
/Nx=(d-c)/N, is a uniform grid size. We note that N, and
N, must be powers of 2 to use the multigrid method. Let uj =
u(xi, yj, nAt), where At denotes the temporal step size. By using the
fully implicit scheme and the standard discrete Laplace operator in
the 2D space, Eq. (1) can be discretized as follows:

n+l n

Ui — U 1
ij ijo_ n+1 n+1 n+1 n+1 n+1
A ﬁ(u"“’j +uiy— 4wy et u,-,j_l). 2)

In this study, we use Neumann boundary conditions. That is,

n n n n .
Upj = ULj UN+1j = UN,j J=12,---,N),

n n n n .
Uip = Ui, UiN,+1 = UiN, §=1,2,---,Nx.

Now, we explain a single V-cycle. The schematic of the V-cycle is
shown in Fig. 1. For a simple and clear description, we assume that
Ny and N, are both powers of 2, specifically Ny = N, = 2". For k
=1,2,...,N, we define discrete coarser domains as follows:

0 = {(x,»,y,-) xi = (= 0.5)hg,
yi= (j-05)h1 <i,j <2V, and hy = 2"‘1h},

which means that Q) represents a finer grid compared to Q. by a
factor of 2. The numerical solution u(x;, y;, nAt) at time ¢ = nAt on
the discrete domain Q) is denoted as u} ;.

Z and the source term f;j as follows:

We define the operator

n+1
ul' 1
n+1 i, j.k n+l n+1 n+1
Zi(uiiy) = Ar ?(“iﬂ,]‘,k F Ukt Wk

n+1 n+1

Uk~ 4“i,j,k)r (3)
un

ik

fijk = A]t , 4)

A
Y4
\\

Restrict i ‘I‘i’ Interpolate
<l
<[
,~
/
ahn _ 1 oonn 2h.n 2hn 2hn
Uit = Z(“z; 12j-1 F Wainj 1 T Uy o) +u2,.2,)

FIG. 1. Schematic diagram of the V-cycle for the one point on Q.
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on the discrete domain Q. Let
ul ™ = MGeycle(k, up ™™, i fio visv2),

where vi and v, are the total number of pre- and post-smoothing.
The V-cycle is divided into three steps. First step: pre-smoothing,
second step: coarse grid correction, and final step: post-smoothing.

e Step 1. Presmoothing
For k = 1, the presmoothing step can be written as

@ = SMOOTH" (ul*™", %y, fi).

We use the following Gauss-Seidel iteration method for the
presmoothing step:

n+lms+1 _ n+1,m,s+1 n+1,m,s
ijk = fik +uy) ik Uit1,jk
n+1,m,;s+1 n+1,m,s 1 4
Tk tU ik )(E + ﬁ)

where s is the presmoothing iteration step.

e Step 2. Coarse grid correction
In the coarse grid correction step, we calculate the defect and
correct the solution in the fine grid using restricted defects.
The defect is calculated as follows: For k= 1,2,...,N -1,

i = fi— L")

Subsequently, we apply the restriction operator I,’cc+l to
restrict the defect d}' from the k-level to (k+ 1)-level
functions,

A (xi,p5) = I];:+1dk(xi,yj)
= i[dk(xi,%,yj,%) + dk(xi—§>y]'+§)
+dk(x,-+%,yj_%) +dk(xi+%,yj+%)],

An+1,m

Next, an approximate solution ¥,

equation is computed on Oy,

of the coarse grid

Fr1 (”Zﬂm) = alrcn+l'

By employing a relaxation iteration solver, Relax, we utilize
a zero grid function as the initial approximation:

vZﬁm = RelaxV(O,ZkH,[ikmﬂ), fork=1,2,...,N—-1,

where v is the total number of relaxation iterations. We
correct the approximation on () using an interpolated
correctionfork=N-1,N-2,...,1,

miafter CGC _ -n+l,m An+1,m
k B S

where ﬁk(xi,yj) = I]]z+1‘9k+1 (xi,yj) = ﬁk+1(xi+%,yj+% ) for the

i and j odd-numbered integers.
e Step 3. Postsmoothing

L.lz+1,m+1 _ SMOOTHVz(ukm,after CGC’gk’fk),
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where v is the total number of post-smoothing iterations. respectively. First, we consider the fully implicit scheme in Eq. (2).

This completely describes one cycle of the multigrid V-cycle. For the test outlined in Table I, we set the grid size to a fixed
A single multigrid cycle terminates when the resultant error value of h = 1/256, and the calculation is executed until reaching a
[t — 7| falls below a specified tolerance level — time of T = 6.4 x 10™*, In Table I, we can see the numerical errors
denoted as tol. and convergence rate in time. In Table 11, we fix At = 1 x 107" and

calculate up to time T = 1 x 107°. Table 11 lists the errors and conver-
gence rate in space for the implicit scheme. From Tables [ and 11, we
lll. NUMERICAL EXPERIMENTS can confirm that the fully implicit scheme of the multigrid method
A. Convergence experiment has first- and second-order accuracy for time and space, respectively.
Then, we consider the Crank-Nicolson (CN) scheme for the

We confirm the convergence of the multigrid solver with At diffusion equation as follows:

and hon Q = (0,1) x (0,1). The following initial condition and its
analytic solution of the diffusion equation are used,
n+l

0 _ . . uttt — oyt 1 .
u;; = cos (7mx;) cos (1my;), (5) % _ E(Adu?; N Adu?j)) (8)
2
Ueract (%, 3,1) = € 2" cos (7x) cos (7y). (6)
1 fultl — gt gt gl el Lyl el
For some fixed total time T = N;At, we define L,-error with the = 7( it1] —d izLj | Zhitl A . bj-1
discrete l-norm as 2 h h h h
R T T T
R : e e T RO
N,
”e(Nx:Ny)At)HZ = 72 Z (uijl - Uexact(xi,yj,NtAt)) .
NNy i i

(7) To evaluate the temporal convergence of the CN scheme, we
Then, the temporal and spatial convergence rates are defined as maintain a fixed grid size of h = 1/256 and simulate the calcula-
le(Nx, Ny, 28)| tion until a total time of T = 1.28 x 107", Table III lists the errors
R = 10&(#) and convergence rate in time for the CN scheme. In Table IV, we
[e(Nx, Ny, Ar) 2 use the time step as At =1 x 1077 and fix the total time as T = 1

x 107°, Table TV lists the CN scheme’s errors and convergence

rate in space. The outcomes obtained from Tables I1I and IV illus-

R, =1lo gz( le(Nx, Ny, At) |2 ), trate that the Crank-Nicolson (CN) scheme utilized in the multigrid
|e(2Nx, 2Ny, At) |2 method exhibits second-order accuracy in both time and space.

and

TABLE . Errors and rates of the fully implicit scheme for time step At.

At 1x107° 2x107° 4x107° 8x107° 1.6 x 107*
L-error  6.9377 x 107/ 1.3091 x 107¢ 25393 x 107° 4.9977 x 1075 9.9069 x 107°
Rate 0.916 0.956 0.977 0.987

TABLE Il. Errors and rates of the fully implicit scheme for grid size h.

Ny =N, 256 128 64 32 16
l,-error 1.3360 x 1071° 5.0517 x 1071° 1.9913 x 10~° 7.9342 x 10~° 3.1677 x 1078
Rate 1.919 1.979 1.994 1.997

TABLE III. Errors and rates of the Crank-Nicolson scheme for time step At.

¥€116:€0 G20Z AInF 1

At 4x1073 8 x 1073 1.6 x 1072 32x 1072 6.4x 1072
L-error  5.0699 x 107° 2.0826 x 1074 8.4121 x 1074 3.4166 x 107> 1.4480 x 1072
Rate 2.038 2.014 2.022 2.083
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TABLE IV. Errors and rates of the Crank-Nicolson scheme for grid size h.
Ny =N, 512 256 128 64 32
L-error  3.0960 x 107" 1.2384 x 107° 4.9534 x 107° 1.9812 x 107° 7.9231 x 107
Rate 2.000 2.000 2.000 2.000

Now, we consider the multigrid method’s CPU times for var-
ious grid points. Table V and Fig. 2 list and show, respectively,
the CPU time results. Throughout the test, we maintained a fixed
value of At = 1 x 1077 and executed the program until a total time
of T=1 x 107> with N; = 100. Table V displays the CPU time for
different grid sizes, specifically, Nx x Ny = 16 x 16, 32 x 32, 64 x 64,
128 x 128, and 256 x 256. To calculate the average CPU time, each
test was performed five times. Furthermore, Fig. 2 provides a visual
representation of the results. It clearly indicates that as we increased
the grid size from 16 x 16 to 256 x 256, the CPU times linearly
increased with respect to grid points.

B. Evolutionary behaviors

We perform the computational simulation using the devel-
oped MATLAB implementation of the multigrid method for solving
the 2D diffusion equation. Let us consider the randomly initial
perturbations on Q = (0,1) x (0,1),

u(x,9,0) = 0.5 rand(x, y),

TABLE V. Average CPU time using different grid sizes for the multigrid method.

Ny x N, 16 x16  32x32 64x64 128 x128 256 x 256

CPU time 0.123934 0.359774 1.361847 5.083904 20.077935

20

-
[6)]

CPU time
=

N ‘
16%4°2 1282 N, x N, 2562

FIG. 2. Average CPU time with respect to different grid sizes Ny x Ny = 16 x 16,
32 x 32, 64 x 64, 128 x 128, and 256 x 256 for the multigrid method.

where rand(x,y) has the random value between —1 and 1, see
Fig. 3(a). Here, Ny =N, =128, h=1/128, and At=0.5h% and
the level of relaxation and tolerance are set to relax =2 and
tol = 1.0x 107"

Figure 3 illustrates the temporal evolution of the solution
u(x,y,t) of a diffusion equation solved using a multigrid method.
The four subfigures depict snapshots at different time steps and
show how the initial random perturbations dissipate over time due
to diffusion. Figure 3(a) shows the initial state, where u(x, y,0) dis-
plays random perturbations across the domain (0,1) x (0,1). The
surface appears highly irregular, indicating a high level of spatial
variability. Figure 3(b), at t = 2At, shows that as time progresses,
the perturbations begin to smooth out slightly, though the solu-
tion still exhibits noticeable fluctuations. This suggests the initial
phase of diffusion, where high-frequency components are gradually
dampened. Figure 3(c), at t = 5At, shows that further into the simu-
lation, the surface becomes increasingly smooth as more of the initial
irregularities dissipate. The solution now displays lower amplitude
variations, which illustrates the effectiveness of the diffusion pro-
cess in diminishing the intensity of perturbations. Figure 3(d), at
t = 10At, illustrates that at this later time step, the surface is predom-
inantly smooth, with only minimal fluctuations remaining. The dif-
fusion process has largely homogenized the solution, which suggests
that the system is approaching a steady-state. The sequence demon-
strates the efficacy of the proposed cell structured multigrid method
in capturing the diffusion process, with initial random perturba-
tions gradually diminishing over time. The solution approaches a
smoother state, characteristic of diffusion-driven systems.

Next, we also conduct the numerical simulation using the pro-
posed MATLAB implementation of the multigrid method to solve
the 2D diffusion equation with the sharp initial condition as shown
in Fig. 4(a). As illustrated in Figs. 4(b)-4(d), our proposed method
demonstrates efficient and robust solutions for the 2D diffusion
equation over time, even when dealing with sharp initial conditions
of complex shape. The figure shows the temporal evolution of the
2D diffusion equation and highlights the smoothing effect of the
diffusion equation at various time steps.

Figure 4(a) displays the initial condition, characterized by a
sharp, complex shape resembling a spiral pattern with high peaks
and steep gradients, which indicates a high level of initial pertur-
bation. In Fig. 4(b), the sharp edges of the initial shape begin to
smooth out, as the diffusion process starts to take effect. Although
the peak heights are slightly reduced, prominent features of the orig-
inal shape remain visible. In Fig. 4(c), as time progresses, the solution
continues to smooth, with a notable reduction in the amplitude
of peaks and valleys. The initial perturbation fades further, which
reflects a transition toward a more homogeneous state. In Fig. 4(d),

AIP Advances 15, 015019 (2025); doi: 10.1063/5.0247042
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FIG. 3. Temporal evolution of the diffu-
sion equation with random initial pertur-
bations, computed using the proposed
cell structure MATLAB program for the
multigrid method of the diffusion equa-
tion. (a) Initial state at t = 0, which shows
highly irregular random perturbations. (b)
State at t = 2At, where the perturba-
tions begin to smooth out due to diffusion
effects. (c) State at t = 5At shows fur-
ther smoothing and reduced fluctuations.
(d) State att = 10At demonstrates near-
uniformity as the solution approaches
equilibrium.

FIG. 4. Temporal evolution of the dif-
fusion equation starting from an initial
square spiral shape at t=0. (a) Ini-
tial square spiral shape. (b)-(d) Tem-
poral evolution of the solution com-
puted using the proposed cell structure
multigrid method at t = 10At, t = 70At,
and t = 150At, illustrating the progres-
sive smoothing and dissipation of the
perturbation over time.
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at this later stage, the surface is predominantly smooth with only
minor undulations, which indicates that the diffusion process has
nearly homogenized the solution. This suggests that the system is
approaching a steady-state with minimal residual fluctuations. This

We define

u(x,9,0) =
-1, otherwise,

where a = 0.5 and b = 0.8. The initial condition is illustrated in
Fig. 5(a). The parameters used are Ny = 256 and N, = 256, At = K,
relax = 2, and tol = 1.0 x 107, Figure 5 displays the time progress
of the computational solutions. Over the course of time, the ini-
tially sharp transition undergoes a transformation and evolves into
a more gradual shift, and concentration levels transition into a state
characterized by stable, flatter values.

Figure 5(a) shows the initial condition, where the concentra-
tion u(x,y,0) has a sharply defined boundary separating regions
of u =1 and u = —1. The high-gradient boundary reflects a strong
initial perturbation, setting up a steep transition between the two
regions. In Fig. 5(b), the diffusion process begins to soften the
initial sharp edges. The boundary is less defined, indicating that
the concentration is gradually spreading out. However, the struc-
ture of the initial condition remains visible and shows only minor
smoothing effects at this early stage. In Fig. 5(c), as diffusion pro-
gresses, the transition becomes increasingly gradual, with the peaks

1A
(c) t = 100At

AIP Advances ARTICLE

-1

(b)t = 5A¢

-1
(d) t = 600A¢
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sequence demonstrates the effectiveness of the proposed method in
efficiently damping high-frequency components over time, which
results in a progressively smoother solution that moves toward
equilibrium.

2

a

1, if (x+0.1)° < (1 - )%)b2 and x > 0.2 cos (27my) — 0.2,

lowering and the high-gradient boundary flattening out. This stage
shows a marked reduction in the steepness of the initial transi-
tion, which reflects the ongoing spread of concentration levels. In
Fig. 5(d), the system has evolved toward a steady state, with a smooth
distribution and minimal variation in concentration levels. The pre-
viously sharp transition is now diffused, which results in a smoother
surface. Overall, the series of images in Fig. 5 effectively demon-
strates the diffusion process facilitated by the proposed algorithm,
which efficiently smooths out the initially sharp boundary, leading
to a gradual and stable flattening of concentration levels over time.

IV. CONCLUSION

In this study, we presented a simple cell structure MATLAB
implementation of the multigrid method for solving the 2D
diffusion equation using the finite difference method. The dif-
fusion equation is fundamental for modeling various physical

FIG. 5. Temporal evolution of the dif-
fusion equation solution using the pro-
posed cell structure MATLAB program
for the multigrid method. (a) Sharp
initial profile at t=0. (b) State at
t = 5At, where diffusion begins and
edges become smooth. (c) State at
t = 100At, showing significant spreading
and further smoothing of the profile. (d)
State at t = 600Af, where the solution
approaches a near-uniform state due to
diffusion.

-1

-1
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phenomena, which makes it an essential component in numer-
ous governing equations. These include reaction-diffusion,
convection-diffusion, Navier-Stokes, spatial predator-prey, and
Allen-Cahn equations, and so on. The multigrid method has
emerged as a highly efficient and effective iterative method for
solving the diffusion equation. Although the method has been
implemented in many programming languages, understanding its
implementation can pose challenges, particularly for beginners,
due to complex data structures and recursive routines. To resolve
these difficulties, we have proposed a straightforward MATLAB
implementation of the multigrid method, making it accessible and
easily understandable for users at all levels. Using a MATLAB cell
structure, we made the code implementation more intuitive and
manageable. Moreover, our proposed MATLAB implementation of
the multigrid method presented in this paper is concise, consisting
of ~90 lines of code. This MATLAB implementation can provide
a valuable resource for researchers and practitioners applying
the multigrid method to solve the diffusion equation. It offers a
simple yet efficient approach that can be easily understood and
implemented, facilitating further exploration and experimentation
in various scientific and engineering domains. From the numer-
ical tests conducted using the proposed cell structure MATLAB
program for the multigrid method, we observed that it produced
reasonable results comparable to those obtained with the con-
ventional recursive routine in the multigrid method. In fact, the
results should be identical within machine precision because the
core algorithm remains the same. However, we achieved the same
numerical results using a much simpler and more straightforward
cell structure implementation for the multigrid method. The
proposed cell structure implementation of the multigrid method
can be adapted to solve other types of partial differential equations,
such as the Allen-Cahn equation, the Cahn-Hilliard equation,z‘"‘27
the nonlocal Cahn-Hilliard equation,”® and the Navier-Stokes
equations, as examples. The Allen-Cahn equation® is defined as

follows:
Bu(x,y,t) u (%, 9, 1) — u(x, y,t)
ot &

which includes the diffusion equation. The Cahn-Hilliard equa-
30 §

+ Au(x, y,t), (10)

tion”" is defined as follows:
au(g,ty,t) = A( (x,y, £) —u(xy.t) - Au(x,y, t)), (11)
&

which includes the biharmonic term, which is a double apPlica—
tion of the Laplacian operator. The Navier-Stokes equations’ " are
defined as follows:

8u(9(;,ty,t) oy, 28D 8u(x, y, D 4 oy ) 241D 8u(x,y, t)
_W + Auxn 1), ((12))

L ¢ a2 5,0 220
_%’yy’” + A0 1), ((13))

8u(g,xy,t) s 8v(9gyy» )y, ((14))
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which is typically solved using a projection method that includes the
Laplacian operator.
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APPENDIX: MATLAB CODE FOR THE MULTIGRID

METHOD APPLIED TO THE 2D DIFFUSION EQUATION

We present a MATLAB implementation of the multigrid
method of the FDM for the 2D diffusion equation.
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clear all; close all; clc;
global NX NY dt H

o3

% Define domain and grid
xleft=0; xright=1; yleft=0; yright=2; Nx=32x2; h=(xright-xleft) /Nx; Ny=64*2;
x=linspace (xleft+h/2,xright-h/2,Nx); y=linspace (yleft+h/2,yright-h/2,Ny);
% Total levels for multigrid
total_levels=min (log2 (Nx), log2 (Ny));
% Construct cell structure
for k=1l:total_levels
Cu{k}=zeros (Nx/2" (k-1),Ny/2”(k=1)); f(k)={zeros (Nx/2" (k-1),Ny/2"(k=1))};
H(k)=2"(k=1) xh; NX(k)=Nx/2"(k-1); NY(k)=Ny/2" (k-1);
end
% Initial condition
for 1 = 1:NX (1)
for j = 1:NY (1)
Cu{l} (i,J) = cos(pixx(1i))+*cos (2+pixy(]));
end
end
$ Multigrid parameters
dt=0.5+H (1) "2; relax=2; tol=1.0e-7; max_it=100;
% Multigrid iteration
for it=l:max_it
f(l)={Cu{l}/dt}; err=2xtol;
% V-cycle
while err>tol
TCu=Cu{l};
% Restriction
for k=l:total_levels-1
if k>1
Cu{k}=zeros (NX (k) ,NY (k)) ;
end
Cu{k}=relax_2D(Cu{k},f{k},relax,k); % Pre-smoothing
d=defect (Cu{k}, f{k},k); % Course grid correction
% Restrict defect
for i=1:NX(k+1)
for j=1:NY (k+1)
f{k+1} (1, 3)=(d(2%1i,2%3)+d(2%1-1,2x3)+d(2%1i,2%J-1)+d(2+x1-1,2%3-1))/4;
end
end
end
k=total_levels; Cu{k}=zeros (NX(k),NY(k));
% Solve on the coarsest grid
Cu{k}=relax_2D(Cu{k}, f{k}, relax, k);
% Interpolation
for k=total_levels-1:-1:1
% Interpolate solution
for i=1:NX (k+1)
for j=1:NY (k+1)

Cufk} (2x1-1:2%1,2%3-1:2%7) = Cu{k} (2x1i-1:2%1,2x3-1:2%7)+Cu{k+1} (i, 73);

end
end
Cu{k}=relax_2D(Cui{k}, f{k},relax,k); % Post-smoothing
end
err=norm(TCu—-Cu{l}) /sqrt (NX (1) *NY (1)) ;
end
end
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% Gauss-Seidel smoothing

global NX NY dt H
for iter=l:relax
for i=1:NX (k)

for j=1:NY (k)

sor=f (i, Jj); coef=1/dt;
if i>1
sor=sor+Cu (i-1, j) /H (k) "2;
end
if i<NX (k)
sor=sor+Cu (i+1, j) /H(k) "2;
end
if §>1
sor=sor+Cu (i, j—1) /H(k) "2;
end
if G<NY (k)
sor=sor+Cu (i, j+1) /H(k) "2;
end
Cu(i,j) = sor/coef;
end
end
end
Cuk=Cu;
end

% Compute defect
function d = defect (Cu, £, k)
global NX NY dt H
for i=1:NX (k)
for j=1:NY (k)
Lap=0;
if i>1

end
if i<NX (k)
Lap=Lap+ (Cu(i+l, j)-Cu (i
end
if >1

end
if J<NY (k)

end
d(i, 3)
end
end
end

function Cuk = relax_2D(Cu, f, relax, k)

Lap=Lap+ (Cu(i-1,3j)-Cu(di, 3)) /H(k) "2;

»3))/H(K)"2;

Lap=Lap+ (Cu (i, j-1)-Cu (i, J)) /H(k

Lap=Lap+ (Cu (i, j+1)-Cu (i, j)) /H(k)"2;

= f(i,j)-Cu(i, j)/dt+Lap;

ARTICLE pubs.aip.org/aip/adv

coef=coef+1/H (k) "2;
coef=coef+1/H (k) "2;

coef=coef+1/H(k)"2;

coef=coef+1/H (k) "2;

)" 2;
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