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ABSTRACT
In this study, we propose an unconditionally stable temporally second-order accurate scheme for a parabolic sine-Gordon equation. The
proposed scheme is based on an operator splitting method. We solve linear and nonlinear equations using a Fourier spectral method and a
closed-form solution, respectively. The proposed numerical method is temporally second-order accurate and unconditionally stable. To verify
the superior efficiency and accuracy of the proposed scheme, we conduct various numerical tests. Computational tests validate the accuracy,
efficiency, and simplicity of the proposed scheme.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0081229

I. INTRODUCTION
The sine-Gordon (SG) equation is a nonlinear hyperbolic par-

tial differential equation (PDE) that plays an essential role in the
modeling of many interesting problems in physical sciences, includ-
ing plasma physics, solid-state physics, quantum mechanics, and
nonlinear optics,

∂2u(x, t)
∂t2 = κ2Δu(x, t) + sin u(x, t), x ∈ Ω, t > 0. (1)

Here, u(x, t) is an order parameter, Ω ⊂ Rd (d = 1, 2, 3) is a domain,
and κ2 is the diffusion constant.1 The SG equation(1) has been
used in nonlinear optics to describe the propagation of light pulses
in optical fibers, which play the most important role in transmit-
ting signals from communication devices, such as telephones and
the internet between different locations. The SG equation has been
investigated by numerous researchers, including a method for find-
ing a new exact solution to the coupled SG equation using a modified
Kudryashov approach,5 a method for calculating a soliton solu-
tion to a generalized nonlinear Fokas–Lenells equation through an
SG extension,19 and a modified cubic B-spline differential quadra-
ture technique for a numerical simulation of a two-dimensional SG
soliton.21 Other proposed approaches include a numerical method
of a one-dimensional nonlinear SG equation by reducing the prob-
lem to a system of a first-order ordinary differential equation
(ODE),22 a meshless method based on a singular boundary method

for the numerical solutions to a nonlinear SG equation with Neu-
mann boundary conditions,6 and a fourth-order energy-preserving
scheme for the SG equation using the Fourier pseudo-spectral
method.8 Moreover, a modified extended direct algebraic method
that can handle both the SG equation and nonlinear equations in
a direct and concise way,14 a numerical method for a space–time
fractional SG equation,2 and an efficient numerical scheme for solv-
ing the two-dimensional space–time fractional SG equation within
the non-rectangular domain18 have been proposed. Several stud-
ies have also been recently conducted on the second-order accu-
rate methods4,20,23,24 to solve the SG equation. High-order accurate
methods have also been studied.17,26

In this paper, we present an unconditionally stable tempo-
rally second-order accurate operator splitting scheme for a parabolic
sine-Gordon equation (PSG),3

∂u(x, t)
∂t

= κ2Δu(x, t) + sin u(x, t), x ∈ Ω, t > 0. (2)

Equation (2) can be derived from the gradient flow of the following
energy functional:

ℰ (u) = ∫
Ω
(κ2

2
∣∇u∣2 + cos u)dx. (3)

Phase-field modeling has attracted considerable attention in the
study of two-phase systems. Mass conservation of the phase field
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was considered.9 In particular, the PSG equation provides the global
well-posedness and maximum principle of the classical solution.3

This paper is organized as follows: In Sec. II, a numerical solu-
tion algorithm is introduced for an unconditionally stable scheme
using the operator splitting method. In Sec. III, various numerical
experiments are simulated to confirm the accuracy, stability, and
simplicity of the proposed scheme and to show the dynamics of the
PSG equation. Finally, some concluding remarks are presented in
Sec. IV.

II. NUMERICAL SOLUTION ALGORITHM
Now, we present an unconditionally stable temporally second-

order accurate numerical solution algorithm for the PSG equation.
We use the operator splitting method to solve the PSG equation (2).
For simplicity of exposition, we describe the numerical solution
algorithm for the PSG equation in the two-dimensional domain
Ω = (Lx, Rx) × (Ly, Ry). Numerical solution algorithms in one- and
three-dimensional spaces are described analogously. To discretize
Eq. (2), let Ωh = {xi = Lx + (i − 0.5)h, yj = Ly + ( j − 0.5)h)∣1 ≤ i
≤ Nx, 1 ≤ j ≤ Ny} be the discrete computational domain, where
h = (Rx − Lx)/Nx = (Ry − Ly)/Ny is the uniform step size; in addi-
tion, Nx and Ny are the numbers of the grid points in the x- and
y-directions, respectively. Let un

ij be the numerical approximation of
u(xi, yj, nΔt), where Δt is the time step. To obtain a second-order
scheme, we require the following steps:11

u(x, t + Δt) = (𝒩 Δt/2 ○ℒ Δt ○𝒩 Δt/2)u(x, t) + 𝒪 (Δt3), x ∈ Ω, t > 0,
(4)

where 𝒩 Δt and ℒ Δt are the nonlinear and linear solution oper-
ators of the PSG equation, respectively. Moreover, the opera-
tors 𝒩 Δtu(x, t) and ℒ Δtu(x, t) indicate the solutions of ut = sin u
and ut = κ2Δu at t + Δt, respectively. The stability and conver-
gence of the Strang-type splitting method (4) were studied for the
Allen–Cahn,13,16,25 Cahn–Hilliard,15 and Swift–Hohenberg11 equa-
tions. It was theoretically proven that the second-order accuracy
of the splitting method (4) is guaranteed when each operator has
at least a second-order accuracy.7 Because each operator in Eq. (4)
has a temporally exact accuracy, the numerical scheme is temporally
second-order accurate. The splitting method (4) can be written in
three sub-steps using intermediate values as follows:

u∗ = 𝒩 Δt/2un, (5)

u∗∗ =ℒ Δtu∗, (6)

un+1 = 𝒩 Δt/2u∗∗. (7)

Before we solve the nonlinear operator 𝒩 Δt/2, we consider the
following equation:

∂v(x, t)
∂t

= sin(v(x, t)), (8)

which has a closed-form solution. If sin(v(x, t)) = 0, then v(x, t)
= 0. Provided that sin(v(x, t)) ≠ 0, we can write Eq. (8) in the form

∂v
sin v

= ∂t, (9)

where we omitted the argument for simplicity of the notation. By
multiplying both the denominator and the numerator on the left-
hand side of Eq. (9) by sin v, we have

sin v
sin2 v

∂v = ∂t. (10)

By using the Pythagorean trigonometric identity, we obtain

sin v
1 − cos2 v

∂v = ∂t. (11)

Then, by integrating both sides after using a partial fraction
expansion on the left side, we have

∫
1
2
( sin v

1 + cos v
+ sin v

1 − cos v
)∂v = ∫ ∂t, (12)

which results in
1
2

ln
1 − cos v
1 + cos v

= t + C(x), (13)

where C(x) = 0.5[ln(1 − cos v(x, 0)) − ln(1 + cos v(x, 0))]. Because
the cosine function is an even function, we obtain the solution to
Eq. (13) as

v(x, t) = sgn(sin(v(x, 0)))cos−1(1 − e2t+2C(x)

1 + e2t+2C(x) ), (14)

where sgn(ϕ) is the sign function, which is plus one if ϕ is positive,
minus one if it is negative, and zero otherwise. Now, using the ana-
lytic solution form (14), we solve the nonlinear operator 𝒩 Δt/2 (5) as

u∗ij = sgn(sin(un
ij))cos−1(1 − eΔt+2Cn

ij

1 + eΔt+2Cn
ij
), (15)

where Cn
ij = 0.5[ln(1 − cos un

ij) − ln(1 + cos un
ij)].

Next, to solve the linear operator ℒ Δt , we consider the
diffusion equation

∂v(x, t)
∂t

= κ2Δv(x, t). (16)

We use the Fourier spectral method in (16). To solve Eq. (16) with
the homogenous Neumann boundary condition, we use the dis-
crete cosine transform. For the given data {vm

ij ∣i = 1, . . . , Nx and j
= 1, . . . , Ny}, the discrete cosine transform is defined as follows:

v̂m
pq = αpβq

Nx

∑
i=1

Ny

∑
j=1

vm
ij cos(ξpπxi) cos(ηqπyj).

The inverse discrete cosine transform is

vm
ij =

Nx

∑
p=1

Ny

∑
q=1

αpβqv̂m
pq cos(ξpπxi) cos(ηqπyj), (17)

where

αp =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

√
1

Nx
(p = 1),

√
2

Nx
(p ≥ 2),

βq =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

√
1

Ny
(q = 1)

√
2

Ny
(q ≥ 2),

(18)
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ξp = (p − 1)/Lx, and ηq = (q − 1)/Ly. Let us assume that

v(x, y, mΔt) =
Nx

∑
p=1

Ny

∑
q=1

αpβqv̂m
pq cos(ξpπx) cos(ηqπy). (19)

Plugging Eq. (19) in Eq. (16) yields

dv̂pq

dt
= −κ2[(ξpπ)2 + (ηqπ)2]v̂pq. (20)

Therefore, we obtain the following solution from Eq. (20):

v̂n+1
pq = v̂n

pqe−Δtκ2
[(ξpπ)2

+(ηqπ)2
]. (21)

We can then solve the linear operator ℒ Δt (6) by obtaining the
numerical solution u∗∗ij using Eqs. (17) and (21), i.e.,

û∗∗pq = û∗pqe−Δtκ2
[(ξpπ)2

+(ηqπ)2
] (22)

and

u∗∗ij =
Nx

∑
p=1

Ny

∑
q=1

αpβqû∗∗pq cos(ξpπxi) cos(ηqπyj). (23)

The final sub-step (7) can also be solved analogously as (15),

un+1
ij = sgn(sin(u∗∗ij ))cos−1⎛

⎝
1 − eΔt+2C∗∗ij

1 + eΔt+2C∗∗ij

⎞
⎠

, (24)

where C∗∗ij = 0.5[ln(1 − cos u∗∗ij ) − ln(1 + cos u∗∗ij )]. More details
regarding the procedure and the definitions of the notions are pro-
vided in Ref. 12. We note that the proposed numerical algorithm
is an unconditionally stable scheme. First, we suppose that the nth
solution satisfies ∣un

ij∣ ≤ π. In the first sub-step (5), the solution u∗ is
bounded by π from Eq. (15) for any time step Δt, i.e.,

∣u∗ij ∣ ≤ π. (25)

The stability condition of a semi-analytical Fourier spectral method
for the Allen–Cahn equation was presented in Ref. 12. In the second
sub-step (6), substituting Eq. (22) in Eq. (23),

u∗∗ij =
Nx

∑
p=1

Ny

∑
q=1

αpβqû∗pqe−Δtκ2
[(ξpπ)2

+(ηqπ)2
]

× cos(ξpπxi) cos(ηqπyj). (26)

The u∗∗ij in Eq. (26) is a solution of the heat equation for an initial
condition u∗ij . Because it is well known that the heat equation with
homogeneous Neumann boundary condition satisfies the maximum
principle, we have

max
ij
∣u∗∗ij ∣ ≤ max

ij
∣u∗ij∣ ≤ π. (27)

Finally, in the last sub-step (7), the following inequality is established
because ∣u∗∗ij ∣ is bounded by π from Eq. (15) for any time step Δt,

∣un+1∣ ≤ π. (28)

Therefore, the proposed method is unconditionally stable regard-
less of the time step Δt and the maximum norm of each solution
is bounded by π, which implies the boundedness of the numerical
solutions.

III. NUMERICAL EXPERIMENTS
We use the second-order operator splitting scheme (6) to solve

the PSG equation. Unless otherwise mentioned, we use numerical
parameters as Nx = 128, Ny = 128, and Nz = 128 for grid points of
the spatial discretization, κ = 0.2 and Ω = (−π, π)d, where d = 1, 2, 3.
Each nonlinear and linear operator is solved using (15) and (23),
respectively.

A. Convergence and stability
We investigate the convergence and stability of the proposed

scheme with respect to the time step. For the test, we take ϕ(x, 0)
= cos(x) as the initial condition. First, we evaluate the errors and
compare with the reference solution and convergence rate. Let
log2(∥e

Nt
Nx
∥/∥e2Nt

Nx
∥) be the temporal convergence rate. Table I lists

the errors with a reference solution and temporal convergence rates
for the proposed method in the one-dimensional space with various
values of Δt and a fixed space step size h = 2π/Nx at t = 1. According
to Table I, we confirm that this scheme guarantees a second-order
convergence with respect to time step. Figure 1 shows the evolution
of the energy functional (3) with reference energy ℰ re f (solid line)
and different time steps Δt = 1 (circle), 2−2 (triangle), and 2−4 (dot).
The energy monotonically decreases with time, and the numerical
energies fit well with the reference energy for all values of Δt. In
Fig. 2, to check the stability condition, we use random perturba-
tions between −0.1 and 0.1 as the initial condition in each case.
Figures 2(a) and 2(b) show the dynamics of the 1D PSG equation
with Δt = 0.1 and Δt = 10, respectively. In Fig. 2(b), the solution
does not blow up and shows similar dynamics as the solution illus-
trated in Fig. 2(a), which uses a relatively small time step compared
to Fig. 2(b). From the stable results using a time step 100 times larger
than 0.1, we can confirm the unconditional stability of the proposed
scheme.

B. Boundedness of the numerical solutions
To ensure that the PSG equation satisfies the boundedness

of the numerical solutions, we consider the random perturbation
between −1 and 1 as an initial condition with Nx = 28 within the 1D

TABLE I. l2-norm errors and convergence rates for the proposed method with fixed h and various Δt. Here, h = 2π/210,
Δt = 2−4, and Δtref = 2−15 are used with t = 1.

Case Δt Rate Δt/2 Rate Δt/4 Rate Δt/8

l2-error 1.036 88 × 10−5 1.9997 2.592 80 × 10−6 1.9999 6.482 35 × 10−7 2.0000 1.620 57 × 10−7
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FIG. 1. Energy evolution with different time steps.

domain Ω ∈ (−π, π). Here, Δt = 0.05 is used. Figure 3(a) shows the
temporal dynamics of the 1D PSG equation with a randomly per-
turbed initial condition. Figure 3(b) shows the maximum and min-
imum values of the solution over time t = 0 to t = 10. In Figs. 3(a)
and 3(b), we can see that the values of the solution are bounded by
π. This shows that the PSG equation satisfies the boundedness of the
numerical solutions.

C. Linear stability analysis
We consider a linear stability analysis of the PSG equation. At

u(x, t) = 0, the nonlinear term sin u(x, t) can be linearized using the
Taylor expansion as sin u(x, t) ≈ u(x, t). Therefore, the linearized
PSG equation is as follows:

∂u(x, t)
∂t

= κ2Δu(x, t) + u(x, t). (29)

FIG. 3. (a) Temporal dynamics of the one-dimensional PSG equation with random
perturbation between −1 and 1 and (b) maximum and minimum values of the
solution with Nx = 28 and Δt = 0.05.

For the positive integers K i and x ∈ Rd where d = 1, 2, 3 is the space
dimension, we can obtain

u(x, t) = α(t)
d

∏
i=1

cos(Kixi), (30)

where α(t) is the amplitude of u(x, t). If d = 3, then x = (x1, x2, x3).
Substituting u(x, t) in Eq. (30) into Eq. (29), we have

α′(t)
d

∏
i=1

cos(Kixi) = − κ2 α(t)
d

∑
j=1

K2
j

d

∏
i=1

cos(Kixi)

+ α(t)
d

∏
i=1

cos(Kixi). (31)

FIG. 2. Temporal dynamics of the one-dimensional PSG equation with random perturbations between −0.1 and 0.1 for the initial condition, with different time steps (a)
Δt = 0.1 and (b) Δt = 10.
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FIG. 4. Analytical and numerical growth rates of the PSG equation for different
mode numbers K with κ =

√

0.05, α(0) = 0.1, Δt = h2, and T = 500Δt.

By dividing ∏d
i=1 cos(Kixi) on the both sides of Eq. (31), we

obtain

α′(t) =
⎛
⎝

1 − κ2
d

∑
j=1

K2
j
⎞
⎠

α(t). (32)

We can analytically solve the ordinary differential equation (32) and
find the solution as follows: α(t) = α(0)eλt , where λ = 1 − κ2∑d

j=1K2
j

is the analytic growth rate. We then define the numerical growth rate

as

λ̃ = 1
T

log
∥uNt∥∞

α(0) . (33)

In a one-dimensional space Ω = (−π, π), we test the linear sta-
bility experiments with the initial condition u(x, 0) = 0.1 cos(Kx),
where K = 0, 1, . . . , 10. As shown in Fig. 4, numerical growth rates λ̃
approximate well the analytic growth rates λ for each K. As mode K
increases, the growth rate decreases. In particular, the growth rates
have positive values only when K is less than or equal to 4.

In Fig. 5, we simulate the 1D PSG equation to check how the
numerical solutions grow depending on the mode number K. Only
one-period solutions are shown. As it can be seen from the results
in Figs. 4 and 5, the growth rate of the solution decreases as K
increases. In particular, when mode K is greater than 4, the growth
rates become negative, and the solutions are damped.

D. Growth simulation
Let us consider the following initial condition:

u(x, 0) = π
2
(1 + tanh(1 − ∣x∣

0.1
)), x ∈ (−10, 10)d (d = 1, 2, 3), (34)

which implies that the initial values are between 0 and π. In this
simulation, we consider the numerical parameters as Δt = 0.025,
Nx = 128, Ny = 128, and Nz = 128. Figures 6(a)–6(c) show the snap-
shots of the evolution of solutions of the PSG equation with the
initial condition (34) in one-, two-, and three-dimensional spaces,
respectively.

FIG. 5. Snapshots of the evolution of
the solutions for the one-dimensional
PSG equation with the initial condition
u(x, 0) = 0.1 cos(Kx). The values of K
are shown in each figure (a) K = 1, (b)
K = 4, (c) K = 5, and (d) K = 6.
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FIG. 6. (a)–(c) are snapshots of the evolution of the solutions of the PSG equation with the initial condition (34) for 1D, 2D, and 3D spaces, respectively. Here, the isosurface
plots are at a level of u = 0.1.

IV. CONCLUSIONS
Little research has been conducted on the specificity and

dynamics of the parabolic sine-Gordon (PSG) equation. The main
novelty of this study is to develop a fast and accurate numerical
method for the PSG equation. We presented an unconditionally
stable second-order accurate numerical method for the PSG equa-
tion. We solved linear and nonlinear equations using a Fourier
spectral method and a closed-form solution. Because each split
operator has a temporally exact accuracy, it can be extended to a
high-order accurate method. To demonstrate the superior perfor-
mance of the proposed scheme, we performed several computational
experiments. We showed the second-order accuracy and uncon-
ditionally stability of the proposed scheme. The growth rate was
analyzed using linear stability analysis, and it was confirmed that
it was in good agreement with the simulation results. Through
the computational tests, we confirmed the accuracy, efficiency,
and simplicity of the proposed scheme. In future work, the pro-
posed second-order operator splitting scheme will be extended to

numerically solve the spatial fractional-order parabolic-type sine-
Gordon equation.10,27
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