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In this article, we propose a modified Allen–Cahn (AC) equation with a space-dependent interfacial parameter. 
When numerically solving the AC equation with a constant interfacial parameter over large domains, a substantial 
number of grid points are essential, which leads to significant computational costs. To effectively resolve this 
problem, numerous adaptive mesh techniques have been developed and implemented. These methods use locally 
refined meshes that adaptively track the interfacial positions of the phase field throughout the simulation. 
However, the data structures for adaptive algorithms are generally complex, and the problems to be solved 
may involve challenges at multiple scales. In this article, we present a modified AC equation with a mesh size-
dependent interfacial parameter on a triangular mesh to efficiently solve multi-scale problems. In the proposed 
method, a triangular mesh is used, and the interfacial parameter value at a node point is defined as a function of 
the average length of the edges connected to the node point. The proposed algorithm effectively uses large and 
small values of the interfacial parameter on coarse and fine meshes, respectively. To demonstrate the efficiency 
and superior performance of the proposed method, we conduct several representative numerical experiments. 
The computational results indicate that the proposed interfacial function can adequately evolve the multi-scale 
phase interfaces without excessive relaxation or freezing of the interfaces. Finally, we provide the main source 
code for the methodology, including mesh generation as described in this paper, so that interested readers can 
use it.
1. Introduction

In this article, we present a modified Allen–Cahn (AC) equation with 
a space-dependent interfacial parameter:

𝜕𝜙(𝐱, 𝑡)
𝜕𝑡

= −𝐹 ′(𝜙(𝐱, 𝑡))
𝜖2(𝐱)

+ Δ𝜙(𝐱, 𝑡), 𝐱 ∈Ω, 𝑡 > 0, (1)

where 𝜙(𝐱, 𝑡) is the phase-field function at spatial coordinates 𝐱 = (𝑥, 𝑦)
and time 𝑡, 𝐹 (𝜙(𝐱, 𝑡)) = 0.25(𝜙2(𝐱, 𝑡) −1)2, which is a polynomial approx-
imation of a logarithmic free energy [1], and 𝜖(𝐱) is the space-dependent 
interfacial parameter. We numerically solve Eq. (1) with appropriate 
boundary and initial conditions. We note that if 𝜖(𝐱) = 𝜖0 for a constant 
𝜖0, then Eq. (1) transforms into the standard AC equation [2,3], which 
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was initially proposed as a phenomenological equation for anti-phase 
domain coarsening in binary alloys. Equation (1) can be derived from 
the 𝐿2-gradient flow of the total free energy functional:

(𝜙) = ∫
Ω

[
𝐹 (𝜙(𝐱, 𝑡))
𝜖2(𝐱)

+ 1
2
|∇𝜙(𝐱, 𝑡)|2]𝑑𝐱. (2)

The AC equation is an important mathematical model due to its 
capacity to describe phase transitions and interface dynamics across var-
ious physical systems, including materials science, physics, and biology 
[4]. It plays a crucial role in understanding phenomena such as crystal 
growth, triply periodic structure formation [5], grain boundary motion, 
solidification in metallic alloys [6], tumor growth, microstructure evo-
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Fig. 1. Effect of constant interfacial parameter 𝜖0: (a) a non-uniform triangular mesh, (b) the initial condition. (c)–(f), (g)–(j), and (k)–(n) are the temporal evolutions 
of the phase fields with a large 𝜖 = 0.1, a small 𝜖 = 0.032, and the proposed 𝜖(𝐱), respectively. The times are indicated beneath each figure.
0 0

lution, and pattern formation, making it a building block in modeling 
complex processes and phenomena across diverse scientific disciplines. 
Recently, the AC equation was used as a benchmark problem for ma-
chine learning algorithms [7,8].

When numerically solving the AC equation with a constant interfa-
cial parameter over large domains, a substantial number of grid points 
are essential, which leads to significant computational costs. To re-
solve this problem, various adaptive finite difference methods (FDM) 
[9], finite element methods (FEM) [10–12], and finite volume meth-
ods (FVM) [13] have been developed. These adaptive methods use lo-
cally refined meshes that adaptively track the interfacial positions of 
the phase field. Liu et al. [10] considered the scalar auxiliary variable 
(SAV) weak Galerkin FEM and the time-space adaptive algorithm for 
the AC equation. Chen et al. [11] proposed an adaptive, second-order 
accurate, and unconditionally stable FEM for the AC equation. Joshi 
and Jaiman [12] proposed a stable and robust adaptive variational par-
titioned procedure to numerically solve the Navier–Stokes (NS) and AC 
equations for multi-phase fluid flows. Li et al. [13] presented the dis-
continuous finite volume element method (DFVEM) and the backward 
Euler scheme to solve the AC equation. Poochinapan and Wongsaijai 
[14] developed a fourth-order FDM for solving the AC equation in both 
1D and 2D. Hwang et al. [15] developed a simple and efficient compu-
tational scheme for the AC equation on effective symmetric triangular 
2

meshes. Celiker and Lin [16] presented an efficient triangular finite ele-
ment method (FEM) with exponential mesh refinement to solve the AC 
equation in non-convex polygons, which overcame the effect of strong 
corner singularities. Li et al. [19] presented a polygonal mesh adapta-
tion technique for a fully implicit method using discontinuous Galerkin 
FEMs in space and an Euler scheme to numerically solve the AC equa-
tion.

However, the data structure for the adaptive algorithm is generally 
complex, and the problems to be solved may involve multiple scales. If 
a stationary triangular mesh with significantly varying triangle sizes is 
used, then it can lead to various issues. When a large interfacial param-
eter is used, the interfacial profile becomes overly diffuse on the fine 
mesh. On the contrary, using a small interfacial parameter results in an 
excessively steep interfacial profile on the coarse mesh and causes the 
temporal evolution to become pinned. Fig. 1 illustrates how different 
values of the interfacial parameter affect the evolution dynamics of the 
phase fields in the numerical solutions of the AC equation.

Figs. 1(a) and (b) display a non-uniform triangular domain and an 
initial profile on Ω = (−1, 1) × (−1, 1):

𝜙(𝑥, 𝑦,0) =

{
1, if 𝑥2 + 𝑦2 < 0.6,

−1, otherwise.

Fig. 1(c)–(e), (f)–(h), and (i)–(k) are the temporal evolutions of the 
phase fields with a large 𝜖0 = 0.1, a small 𝜖0 = 0.032, and the proposed 

interfacial parameter 𝜖(𝐱), respectively. A large interfacial parameter, 
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Fig. 2. Schematic illustration of generating the DistMesh. (a) Generated uniform nodes in the domain. (b) Nodes are removed by applying a weight function 𝑤. (c) 
Net force 𝐅 in current triangulation. (d) Arrangement of nodes via Δ𝑡𝐅. (e) Projection of the nodes located outside into the boundary using Eq. (8). (f) Final result 
of unstructured mesh by using the DistMesh algorithm.
𝜖0 = 0.1, is appropriate when the mesh size is large, as shown in Fig. 1(c). 
However, the same 𝜖0 = 0.1 is relatively too large when the mesh size is 
small, as displayed in Fig. 1(e), which leads to the interfacial profile be-
coming overly diffuse on the fine mesh. On the contrary, using a small 
interfacial parameter, 𝜖0 = 0.032, results in an excessively steep inter-
facial profile on the coarse mesh and causes the temporal evolution to 
become pinned as shown in Fig. 1(h).

To resolve these problems, in this article, we present a modified AC 
equation with a mesh size-dependent interfacial parameter on a trian-
gular mesh to efficiently solve multi-scale problems. In the proposed 
method, a triangular mesh is used, and the interfacial parameter value 
at a node point is defined as a function of the average length of the 
edges connected to the node point. The proposed algorithm effectively 
uses large values of the interfacial parameter at coarse meshes and small 
values at fine meshes. To highlight this feature of the proposed method, 
we conduct several computational experiments such as data classifica-
tion and multi-scale simulations.

The structure of this document is outlined as follows. In Section 2, we 
present a computational algorithm for the proposed modified AC equa-
tion with a mesh size-dependent interfacial parameter on a triangular 
mesh. In Section 3, several computational experiments are conducted to 
validate the high performance of the proposed modified AC model.

2. Numerical method

Now, we present a numerical method for the proposed modified AC 
equation with a mesh size-dependent interfacial parameter on a triangu-
lar mesh. We adopt the operator splitting method for the AC equation 
[17], where the authors solved the linear term using an explicit Eu-
ler method and the nonlinear term using a closed-form solution on a 
uniform Cartesian mesh. In this study, we apply the operator splitting 
method on a nonuniform triangular mesh. To apply the operator split-
ting method [18,20–22], we first express the modified AC equation (1)
as follows:

𝜕𝜙(𝐱, 𝑡)
𝜕𝑡

=𝜙(𝐱, 𝑡) +𝜙(𝐱, 𝑡), (3)

where 𝜙(𝐱, 𝑡) = −𝐹 ′(𝜙(𝐱, 𝑡))∕𝜖2(𝐱) and 𝜙(𝐱, 𝑡) = Δ𝜙(𝐱, 𝑡). Then, we 
sequentially solve the following two equations:

𝜕𝑢(𝐱, 𝑡)
3

𝜕𝑡
=𝑢(𝐱, 𝑡), (4)
𝜕𝑣(𝐱, 𝑡)
𝜕𝑡

=𝑣(𝐱, 𝑡). (5)

Given a time step Δ𝑡, let 𝑢(𝐱, 0) = 𝜙(𝐱, 𝑡) and we solve Eq. (4) to get 
the solution 𝑢(𝐱, Δ𝑡). Next, let 𝑣(𝐱, 0) = 𝑢(𝐱, Δ𝑡) and we solve Eq. (5) to 
get the solution 𝑣(𝐱, Δ𝑡), which is 𝜙(𝐱, 𝑡 + Δ𝑡). Throughout this study, 
we use the following conventions for Eqs. (4) and (5) unless there exists 
ambiguity:

𝜕𝜙(𝐱, 𝑡)
𝜕𝑡

=Δ𝜙(𝐱, 𝑡), (6)

𝜕𝜙(𝐱, 𝑡)
𝜕𝑡

= −𝐹 ′(𝜙(𝐱, 𝑡))
𝜖2(𝐱)

. (7)

2.1. DistMesh method for generating a triangular mesh

To generate a triangular mesh, we use the DistMesh algorithm [23], 
which is a computational method for generating unstructured triangular 
and tetrahedral meshes. This method optimally distributes mesh nodes 
based on prescribed quality criteria and it enables efficient numeri-
cal simulations in various engineering and scientific applications. The 
subsequent process describes the complete algorithm of the DistMesh 
for generating an unstructured triangular mesh. A function 𝑤(𝑥, 𝑦) =
1 +

√
𝑥2 + 𝑦2 is adopted as the weight function on domain Ω = (𝐿𝑥, 𝑅𝑥) ×

(𝐿𝑦, 𝑅𝑦). A function 𝑑(𝑥, 𝑦) = − min
{
𝑥−𝐿𝑥,𝑅𝑥 − 𝑥, 𝑦−𝐿𝑦,𝑅𝑦 − 𝑦

}
is 

adopted as the signed distance function. Fig. 2 shows the entire pro-
cedure of the DistMesh method, and the followings are the detailed 
steps.

Step 1. Generate initial nodes 𝐗0 in domain and remove nodes by ap-
plying a weight function 𝑤.
Step 2. Compute the Delaunay triangulation with nodes 𝐗𝑛 and com-
pute the net force 𝐅.
Step 3. Update the current position of nodes 𝐗𝑛 to 𝐗𝑛+1∕2 by adding 
Δ𝑡𝐅 to 𝐗𝑛.
Step 4. Push back the nodes that lie beyond the boundary onto the 
boundary using the following equation.

𝐗𝑛+1
𝑖

=𝐗
𝑛+ 1

2
𝑖

− 𝑑

(
𝐗
𝑛+ 1

2
𝑖

) ∇𝑑
(
𝐗
𝑛+ 1

2
𝑖

)
|| (

𝑛+ 1
2

)||2 . (8)
|||∇𝑑 𝐗
𝑖

|||
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Fig. 3. Schematic illustration of the triangles that are contact with the node 
point 𝐱𝑘 .

Step 5. Iterate Step 2–5 until the level of the total movement of nodes 
decreases below a specified tolerance threshold.

Additional information and comprehensive details regarding the 
mesh generation process can be found in the reference [23].

2.2. Numerical solution algorithm

On the two-dimensional triangular mesh with 𝑁 node points 𝐱𝑘 =
(𝑥𝑘, 𝑦𝑘), for 1 ≤ 𝑘 ≤𝑁 , we first solve Eq. (6):

𝜙∗
𝑘
− 𝜙𝑛

𝑘

Δ𝑡
=Δ𝑑𝜙

𝑛
𝑘
, (9)

where 𝜙𝑛
𝑘
= 𝜙(𝐱𝑘, 𝑛Δ𝑡), Δ𝑡 is a time step, and Δ𝑑𝜙

𝑛
𝑘

is the discrete 
Laplace operator [24], which is defined as follows.

Δ𝑑𝜙𝑘 =
3

𝐴(𝐱𝑘)

𝑁𝑘∑
𝑚=1

cot 𝛼𝑘𝑚 + cot 𝛽𝑘𝑚
2

(𝜙𝑘𝑚
−𝜙𝑘), (10)

where 𝐴(𝐱𝑘) is the sum of areas of triangles that are in contact with 
the node point 𝐱𝑘 and 𝑁𝑘 is the number of node points neighboring 
𝐱𝑘. For example, in Fig. 3, 𝐱𝑘 has {𝐱𝑘1 , 𝐱𝑘2 , 𝐱𝑘3 , 𝐱𝑘4 , 𝐱𝑘5 , 𝐱𝑘6} as one-ring 
neighboring points and 𝛼𝑘𝑚 = ∠𝐱𝑘𝐱𝑘𝑚−1𝐱𝑘𝑚 and 𝛽𝑘𝑚 = ∠𝐱𝑘𝐱𝑘𝑚+1𝐱𝑘𝑚 for 
𝑚 = 1, ⋯ , 𝑁𝑘, where 𝐱𝑘0 = 𝐱𝑘𝑁𝑘

and 𝐱𝑘𝑁𝑘+1
= 𝐱𝑘1 . For example, when 

𝑚 = 1, 𝛼𝑘1 = ∠𝐱𝑘𝐱𝑘0𝐱𝑘1 and 𝛽𝑘1 = ∠𝐱𝑘𝐱𝑘2𝐱𝑘1 , as shown in Fig. 3.
From Eq. (9), we have

𝜙∗
𝑘
= 𝜙𝑛

𝑘
+Δ𝑡Δ𝑑𝜙

𝑛
𝑘
, 1 ≤ 𝑘 ≤𝑁. (11)

In this paper, we propose a space-dependent interfacial parameter at 
a vertex 𝐱𝑘, which is defined by averaging the lengths of edges that are 
in contact with the vertex as follows:

𝜖(𝐱𝑘) =
𝑠

𝑁𝑘

𝑁𝑘∑
𝑚=1

|||𝐱𝑘 − 𝐱𝑘𝑚
||| , (12)

where 𝑠 is a scaling parameter. Next, we solve the nonlinear Eq. 
(7) analytically with the initial condition 𝜙0

𝑘
= 𝜙∗

𝑘
and temporal step 

Δ𝑡:

𝜙𝑛+1
𝑘

=
𝜙∗
𝑘√

[1 − (𝜙∗
𝑘
)2]𝑒

− 2Δ𝑡
𝜖2(𝐱𝑘) + (𝜙∗

𝑘
)2
. (13)

For the boundary condition, we use the homogeneous Neumann 
boundary condition. Let 𝐱𝑏 be a boundary point and 𝑏 be the one-ring 
neighborhood of 𝐱𝑏 excluding boundary points. For simplicity of expo-
sition, we define the value of 𝜙𝑛

𝑏
on the boundary point as the average 

of the neighboring points which are interior of the domain:

𝜙𝑛 = 1( ) ∑
𝜙𝑛,
4

𝑏 # 𝑏 𝐱𝑘∈𝑏

𝑘
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where #(𝑏) is the number of points in 𝑏. Fig. 4 shows the boundary 
points (⋆) and the interior neighborhood (∙) of boundary points on a 
triangular mesh.

Because the proposed scheme is fully explicit, there is no requirement 
to solve a system of discrete equations implicitly. Therefore, implemen-
tation is straightforward and computational speed is very fast. Now, let 
us consider the maximum principle [25,26] for the proposed explicit nu-
merical method, which implies stability. Let ‖𝜙‖∞ = max

1≤𝑘≤𝑁 |𝜙𝑘| be the 
discrete maximum norm, ‖𝜙𝑛‖∞ ≤ 1, and all triangles be acute. From 
Eq. (9), we obtain

|𝜙∗
𝑘
| = ||||||

(
1 − 3Δ𝑡

𝐴(𝐱𝑘)

𝑁𝑘∑
𝑚=1

cot 𝛼𝑘𝑚 + cot 𝛽𝑘𝑚
2

)
𝜙𝑛
𝑘

+ 3Δ𝑡
𝐴(𝐱𝑘)

𝑁𝑘∑
𝑚=1

cot 𝛼𝑘𝑚 + cot 𝛽𝑘𝑚
2

𝜙𝑛
𝑘𝑚

|||||| (14)

≤
(
1 − 3Δ𝑡

𝐴(𝐱𝑘)

𝑁𝑘∑
𝑚=1

cot 𝛼𝑘𝑚 + cot 𝛽𝑘𝑚
2

)‖𝜙𝑛‖∞
+ 3Δ𝑡
𝐴(𝐱𝑘)

𝑁𝑘∑
𝑚=1

cot 𝛼𝑘𝑚 + cot 𝛽𝑘𝑚
2

‖𝜙𝑛‖∞ (15)

≤ 1, for 𝑘 = 1,… ,𝑁, (16)

where we have used the condition

1 − 3Δ𝑡
𝐴(𝐱𝑘)

𝑁𝑘∑
𝑚=1

cot 𝛼𝑘𝑚 + cot 𝛽𝑘𝑚
2

≥ 0, 𝑘 = 1,… ,𝑁, (17)

which can be rewritten as

Δ𝑡 ≤ min
1≤𝑘≤𝑁

2𝐴(𝐱𝑘)

3
𝑁𝑘∑
𝑚=1

(cot 𝛼𝑘𝑚 + cot 𝛽𝑘𝑚 )

. (18)

Therefore, ‖𝜙∗‖∞ ≤ 1 holds for Δ𝑡 satisfying Eq. (18). Next, from Eq. 
(13), we obtain

|𝜙𝑛+1
𝑘

| = |𝜙∗
𝑘
|√[

1 −
(
𝜙∗
𝑘

)2]
𝑒
− 2Δ𝑡
𝜖2(𝐱) +

(
𝜙∗
𝑘

)2 ≤ 1, 𝑘 = 1,… ,𝑁, (19)

where we have used the non-negative coefficient condition, 1 −
(
𝜙∗
𝑘

)2 ≥
0 because of ‖𝜙∗‖∞ ≤ 1. Hence, the maximum principle ‖𝜙𝑛+1‖∞ ≤ 1
holds for Δ𝑡 satisfying Eq. (18).

We note that the only restriction on time stepping in the numerical 
solution algorithm arises from the diffusion Eq. (9) because the second 
numerical step Eq. (13) of the operator splitting method is uncondi-
tionally stable. Please refer to [17] for details on an operator splitting 
method for the AC equation on Cartesian grids. Furthermore, this op-
erator splitting scheme has a better stability condition compared to the 
fully explicit time-stepping method like that considered in [27].

In this study, we focused on proposing a novel modified AC equa-
tion with a mesh size-dependent interfacial parameter on a triangular 
mesh. For simplicity of exposition, we solve the linear diffusion equa-
tion by using an explicit method, which has time step restrictions. We 
may use implicit methods [28] to numerically solve the linear diffusion 
equation.

We also note that the AC equation is a gradient flow of the total 
energy functional (2). Numerous numerical methods based on discrete 
energies have energy stability, where discrete energy decreases, which 
implies the stability of the numerical schemes [28]. In this study, we 
use the operator splitting method, where we directly verify stability by 
demonstrating the stabilities of each splitting step. Recently, authors in 

[29] investigated Strang operator splitting methods for AC equations 



Computer Physics Communications 304 (2024) 109301J. Yang, J. Wang, S. Kwak et al.

Fig. 4. Schematic illustration of triangular mesh and boundary points.

Fig. 5. Schematic illustration for the equilibrium solution (a) and the thickness of the transition layer (b).
and proved strict energy dissipation with a judiciously modified en-
ergy. Zhang et al. [30] developed a unified method of a fourth-order 
inequality-preserving scheme satisfying forward Euler conditions by in-
troducing a stabilization parameter dependent on the time-step.

3. Computational experiments

In this section, we present several computational experiments to 
demonstrate the performance of the proposed modified AC equation and 
its numerical solution.

3.1. Relation between the thickness of the transition layer and 𝜖0 value

To investigate the relationship between the thickness of the tran-
sition layer and the 𝜖(𝐱) = 𝜖0 value, we consider the following initial 
condition on the computational domain Ω = (−5, 5) × (2, 2):

𝜙(𝑥, 𝑦,0) =

{
−1, if 𝑥 < 0,
1, otherwise.

Here, we use a constant interfacial parameter 𝜖(𝐱) = 𝜖0 and Δ𝑡 = 0.012
on a nearly uniform triangular mesh consisting of 1214 points. The av-
erage length of edges of all triangles is denoted by ℎave, and its value 
is approximately 0.2019. We define a numerical equilibrium solution as 
𝜙∞ = 𝜙𝑛+1 if ‖𝜙𝑛+1−𝜙𝑛‖∞ < 1𝑒-6 for some 𝑛, see Fig. 5(a). For the equi-
librium solution 𝜙∞, we define the thickness of the transition layer as 
𝐿 = |𝑥2 − 𝑥1|, where 𝜙(𝑥1, 0, (𝑛 + 1)Δ𝑡) = −0.9 and 𝜙(𝑥2, 0, (𝑛 + 1)Δ𝑡) =
0.9 as displayed in Fig. 5(b).

Fig. 6 shows the initial condition; equilibrium solutions with 𝜖0 =
ℎ𝑎𝑣𝑒, 3ℎ𝑎𝑣𝑒, and 5ℎ𝑎𝑣𝑒; and relationship between the thickness of 
the transition layer and the constant interfacial parameter 𝜖0 . From 
Fig. 6(b)–(d), we can observe that the interfacial transition layer widens 
as the value of 𝜖0 increases. Fig. 6(e) shows the relationship between 
5

the thickness of the transition layer and the constant interfacial param-
eter 𝜖0 along with a linear fit to the data. The linear fitting function is 
given as

𝐿(𝜖0) = 4.1498𝜖0 + 0.0879, (20)

where we used the data with 𝜖0 = ℎ𝑎𝑣𝑒, 2ℎ𝑎𝑣𝑒, 3ℎ𝑎𝑣𝑒, 4ℎ𝑎𝑣𝑒, and 5ℎ𝑎𝑣𝑒. 
By inverting Eq. (20), we can derive the following formula for 𝜖0:

𝜖0(𝐿) = (𝐿− 0.0879)∕4.1498, (21)

which can be used when we want to control the thickness of the inter-
facial layer 𝐿.

3.2. Convergence test

In this section, we investigate the convergence of temporal accu-
racy for the proposed scheme. To evaluate the errors and convergence 
rates, we compare the reference and numerical solutions [31]. The ref-

erence solution 𝜙𝑁𝑡

ref is obtained with a sufficiently small reference time 
step Δ𝑡ref = 3.124 × 10−7, where 𝑁𝑡 is the total number of temporal 
iterations and 𝑇 = 𝑁𝑡Δ𝑡 is the final time. In the following conver-
gence test, we set 𝑇 = 0.016 for the reference solution. The discrete 
error at time 𝑇 is defined as 𝐞(𝑇 ) = (𝑒1(𝑇 ), 𝑒2(𝑇 ), … , 𝑒𝑁 (𝑇 )), where 

𝑒𝑘(𝑇 ) = 𝜙

Δ𝑡ref
Δ𝑡 𝑁𝑡

𝑘
− (𝜙ref )

𝑁𝑡

𝑘
for 𝑘 = 1, 2, … , 𝑁 . We define discrete 𝑙2-

error as ‖𝐞𝑁𝑡‖2 = √∑𝑁

𝑘=1(𝑒𝑘(𝑇 ))2𝐴(𝐱𝑘)∕3, where 𝐴(𝐱𝑘) is the sum of 
areas of triangles that contact the node point 𝐱𝑘 . We conduct a con-
vergence test with the following initial condition on the computational 
domain (−1, 1) × (−1, 1):

𝜙(𝑥, 𝑦,0) = tanh
(
0.4 −

√
𝑥2 + 𝑦2

0.015
√
2

)
.

The triangulated computational domain and given initial condition are 

illustrated in Figs. 7(a) and (b), respectively. Here, we use the space-



Computer Physics Communications 304 (2024) 109301J. Yang, J. Wang, S. Kwak et al.

Fig. 6. (a) Initial condition. (b)–(d) Equilibrium solutions with 𝜖0 = ℎ𝑎𝑣𝑒, 3ℎ𝑎𝑣𝑒, and 5ℎ𝑎𝑣𝑒, respectively. (e) Relation between the thickness of the transition layer and 
the constant interfacial parameter 𝜖0 along with a linear fit to the data.

Fig. 7. (a) Triangulated computational domain and (b) initial condition for the convergence test.

Table 1

Temporal errors and convergence rates at 𝑇 = 0.016.

Δ𝑡 8Δ𝑡ref 16Δ𝑡ref 32Δ𝑡ref 64Δ𝑡ref
𝑙2-error 0.0136 0.0293 0.0616 0.1292
rate 1.1105 1.0696 1.0688
dependent interfacial parameter with 𝑠 = 1. Table 1 lists the temporal 
errors and convergence rates between the reference and numerical so-
lutions with time steps of Δ𝑡 = 8Δ𝑡ref , 16Δ𝑡ref , 32Δ𝑡ref , and 64Δ𝑡ref . 
We can verify that the temporal accuracy of the proposed algorithm is 
first-order.

3.3. Separation of domain

Separation of domain is important in classification to make distinct 
categories remain independent. This prevents overlap and ambiguity 
and increases the accuracy and reliability of classification models by 
clearly defining boundaries between different classes or groups of data. 
6

We consider the separation of domain using the proposed modified AC 
equation in two-dimensional space Ω = (−1, 1) × (−1, 1) with a space-
dependent interfacial parameter and non-uniform triangular mesh of 
1786 points. The triangulated computational domain and its interfacial 
parameter 𝜖(𝐱𝑘) are shown in Fig. 8(a). The triangles are smaller at the 
center of the domain and gradually increase in size as they move away 
from the center. As shown in Fig. 8(b), the initial configuration is given 
as

𝜙(𝑥, 𝑦,0) =
⎧⎪⎨⎪

1, if 𝑥2 + 𝑦2 < 0.2 and 𝑦 ≥ 0,

−1, if 𝑥2 + 𝑦2 < 0.2 and 𝑦 < 0, (22)
⎩ 0, otherwise.
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Fig. 8. (a) Triangulated computational domain and its interfacial parameter 𝜖(𝐱). (b)–(d) Temporal evolution of the proposed modified AC equation with the space-
dependent interfacial parameter at 𝑡 = 0, 600Δ𝑡, and 1200Δ𝑡, respectively.
Figs. 8(b)–(d) show the temporal evolution with the given initial condi-
tion (22). Here, we use 𝑠 = 1.5 and a time-step size of Δ𝑡 = 7.8695𝑒-5. As 
is shown in Fig. 8(d), the phases of the numerical solution are well sep-
arated throughout the entire domain. Initially, the non-zero phase-field 
values are defined in the fine mesh at the center of the domain, and 
these non-zero phase-field values propagate through the entire domain 
as time progresses. This approach is highly efficient because it allows 
for a detailed mesh placement initially and a coarser mesh away from 
that region to optimize computational efficiency.

3.4. Multi-scale problem

Multi-scale problems are important because they involve phenomena 
occurring at various scales and provide insights into complex systems 
such as materials, fluids, and biological structures, which enable accu-
rate modeling and understanding of complex behaviors and interactions 
within these systems. Let us consider the following initial condition with 
two disks on a two-dimensional space Ω = (−1, 1) × (−1, 1):

𝜙(𝑥, 𝑦,0) =
⎧⎪⎨⎪⎩

1, if (𝑥− 0.3)2 + (𝑦− 0.3)2 < 0.4 or

(𝑥+ 0.4)2 + (𝑦+ 0.4)2 < 0.1,

−1, otherwise,

(23)

𝜙(𝑥, 𝑦, 𝑡) = −1 for (𝑥, 𝑦) ∈ 𝜕Ω, 𝑡 ≥ 0. (24)

Here, we use Dirichlet boundary conditions. The non-uniform triangu-
lated computational domain becomes coarser as it moves away from the 
center of the small disk. Fig. 9(a) shows the non-uniform triangulated 
domain. The given initial condition with the non-uniform triangulated 
domain is shown in Fig. 9(b). The columns in Figs. 9(c)–(e) show the 
temporal evolutions of the AC equation under various 𝜖 values: large 
constant epsilon 𝜖(𝐱) = 0.08, small constant epsilon 𝜖(𝐱) = 0.01, and the 
mesh size-dependent interfacial parameter with 𝑠 = 1 in Eq. (12). Here, 
the time-step size is taken as Δ𝑡 = 7.6360 × 10−5.

As shown in Fig. 9(c), when a large constant 𝜖(𝐱) = 0.08 is used, 
it is appropriate for the coarse mesh region. However, it is too large 
in the fine mesh region and results in a widened interfacial transition 
layer. Meanwhile, as displayed in Fig. 9(d), when using a small con-
stant 𝜖(𝐱) = 0.01, it is suitable for the fine mesh region. However, it is 
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too small in the coarse mesh region, and results in a steep interfacial 
transition layer and pins the evolution of the phase-field in that region. 
Fig. 9(d) demonstrates the superior performance of the proposed mesh 
size-dependent interfacial parameter with 𝑠 = 1, which adaptively ad-
justs its values based on the mesh sizes. Specifically, 𝜖(𝐱) becomes small 
and large on fine and coarse meshes, respectively.

3.5. Traveling wave solution

We investigate a traveling wave solution to the AC equation [32], 
where the interface of the phases evolves over time. We generate a 
nonuniform triangulated domain that coarsens linearly with respect to 
the 𝑥-direction. On a 2D computational domain Ω = (0, 5) × (0, 1), we 
take the following initial condition for a traveling wave solution to the 
AC equation:

𝜙(𝑥, 𝑦,0) =

{
1, if 𝑥 < 0.2
0, otherwise.

Fig. 10 shows the temporal evolution of the traveling wave solution to 
the AC equation on a nonuniform triangulated mesh. Here, we use a 
time step of Δ𝑡 = 4.5918 × 10−4 and a scaling parameter of 𝑠 = 0.5. In 
the context of the AC equation, the traveling wave solution describes 
the evolution of phase transitions, such as the formation of domain 
boundaries between distinct phases. These solutions illustrate how lo-
cal interactions between neighboring points lead to the propagation of 
these phase transitions over time. These solutions are essential for un-
derstanding phenomena like phase separation and pattern formation in 
diverse fields such as physics, materials science, and biology.

3.6. Data classification

Next, we consider an application of the proposed method: data clas-
sification, where our proposed algorithm demonstrates efficiency and 
superior performance. Data classification is a very important method in 
data analysis and involves the organization of unstructured data into 
consistent structures. Classification involves assigning new data to one 
of the predetermined classes. One of the classification techniques in-
volves generating a decision boundary that separates classes. There are 
various methods for generating decision boundaries in real-world ap-

plications, including: support vector machine [33–35], neural network 
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Fig. 9. (a) Non-uniform triangular mesh. (b) Given initial condition. (c)–(e) Temporal evolutions of the AC equation under different 𝜖(𝐱) values: (c) a large constant 
𝜖(𝐱) = 0.08; (d) a small constant 𝜖(𝐱) = 0.01; and (e) a mesh size-dependent interfacial parameter with 𝑠 = 1. From the second to third row, the time values are 
𝑡 = 150Δ𝑡 and 𝑡 = 250Δ𝑡, respectively.

Fig. 10. Temporal evolution of the traveling wave solution to the AC equation on a nonuniform triangular mesh at (a) 𝑡 = 0, (b) 𝑡 = 30Δ𝑡, (c) 𝑡 = 90Δ𝑡, and (d) 
8

𝑡 = 170Δ𝑡.
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Fig. 11. (a) Given initial data. (b) Fidelity data 𝑓𝑘 are given as one half circle takes plus one (red color), the other half circle takes negative one (blue color), the 
rest of the domain takes zero (green color). (c)–(e) Process of the classification at times 𝑡 = 100Δ𝑡, 1000Δ𝑡, 10000Δ𝑡, respectively. (f) The zero-level filled contour 
of classification result. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
[36–38], clustering [39], random forest [40,41]. Cervantes et al. [33]
described many applications in real-world problems: image classifica-
tion, bioinformatics, and face detection. Behkami et al. [36] proposed 
artificial neural network for classification of cow milk using the spectral 
data. In [39], semi-supervised algorithm based on embedded cluster-
ing method was proposed for image classification and segmentation. Gu 
et al. [41] demonstrated the efficiency of their classification method 
by using real-life data sets from the University of California, Irvine. 
Let us consider the following modified AC equation for data classifi-
cation:

𝜕𝜙(𝐱, 𝑡)
𝜕𝑡

= −𝐹 ′(𝜙(𝐱, 𝑡))
𝜖2(𝐱)

+ Δ𝜙(𝐱, 𝑡) + 𝜆(𝐱)(𝑓 (𝐱) − 𝜙(𝐱, 𝑡)), 𝐱 ∈Ω, 𝑡 > 0,

(25)

where the fidelity term 𝜆(𝐱)(𝑓 (𝐱) − 𝜙(𝐱, 𝑡)) is added to the proposed 
method for data classification. We note that if 𝜖(𝐱) is constant, then Eq. 
(25) becomes a phase-field model for binary data classification based 
on the AC equation and further details can be found in [42]. To numer-
ically solve Eq. (25) using the operator splitting method, we need one 
more step in addition to Eqs. (6) and (7):

𝜕𝜙(𝐱, 𝑡)
𝜕𝑡

= 𝜆(𝐱)(𝑓 (𝐱) − 𝜙(𝐱, 𝑡)). (26)

After numerically solving Eqs. (6) and (7) using the following proce-
dures,

𝜙∗
𝑘
= 𝜙𝑛

𝑘
+Δ𝑡Δ𝑑𝜙

𝑛
𝑘
, 1 ≤ 𝑘 ≤𝑁. (27)

𝜙∗∗
𝑘

=
𝜙∗
𝑘√

[1 − (𝜙∗
𝑘
)2]𝑒

− 2Δ𝑡
𝜖2(𝐱𝑘) + (𝜙∗

𝑘
)2
. (28)

The fidelity Eq. (26) is solved implicitly as follows:

𝜙𝑛+1 − 𝜙∗∗
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𝑘 𝑘

Δ𝑡
= 𝜆𝑘(𝑓𝑘 − 𝜙𝑛+1

𝑘
), 𝑘 = 1,… ,𝑁, (29)
where 𝜆 is the fidelity coefficient and 𝑓 is the given fidelity data. From 
Eq. (29), we obtain

𝜙𝑛+1
𝑘

=
𝜙∗∗
𝑘

+ 𝜆𝑘Δ𝑡𝑓𝑘
1 + 𝜆𝑘Δ𝑡

, 𝑘 = 1,… ,𝑁.

For efficient computation in data classification, we consider a nonuni-
form triangular mesh on Ω = (−3, 3) ×(−3, 3), where the mesh structure 
is finer near the given data and gradually coarser away from the data. 
The given data is observed in Fig. 11(a). The fidelity data 𝑓𝑘 are de-
fined such that one half-circle takes a value of plus one (red color), the 
other half-circle takes negative one (blue color), and the rest of the do-
main takes zero (green color) as shown in Fig. 11(b). We set the values 
of 𝜆𝑘 as follows: 𝜆𝑘 = 1000 if 𝑓𝑘 ≠ 0; otherwise 𝜆𝑘 = 0. We use scaling 
parameter 𝑠 = 1.5 and time step size Δ𝑡 = 7.5e-5. Figs. 11(c)–(e) dis-
play the temporal evolution of the classification process at times 𝑡 =
100Δ𝑡, 1000Δ𝑡, 10000Δ𝑡, respectively. Fig. 11(f) is the zero-level filled 
contour of the data classification result, as shown in Fig. 11(e). We can 
observe that the classification efficiently processes across the entire do-
main over time. Furthermore, we conducted a numerical comparison ex-
periment with a uniform triangular mesh using the smallest length of the 
nonuniform mesh. Compared to using a fine triangular mesh, the CPU 
time for the proposed method is two orders of magnitude faster, which 
demonstrates its superior performance over conventional algorithms.

4. Conclusions

In this study, we proposed a modified AC equation with a mesh size-
dependent interfacial parameter on a triangular mesh to efficiently solve 
multi-scale problems. In the proposed method, a triangular mesh is used, 
and the interfacial parameter value at a node point is defined as a func-
tion of the average length of the edges connected to the node point. 
The proposed algorithm effectively uses large values of the interfacial 
parameter at coarse meshes and small values at fine meshes. Computa-

tional tests were conducted to validate the efficiency and superior per-
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formance of the proposed algorithm. The computational results confirm 
that our interfacial function adequately evolves multi-scale phase inter-
faces without inducing excessive relaxation or freezing of the interfaces. 
This promising approach not only saves the computational costs asso-
ciated with traditional methods but also provides a robust solution for 
handling multi-scale interfacial dynamics in various applications. As in-
teresting future research directions, efficient adaptive time-step [43,44], 
and adapting high-order numerical schemes such as those presented 
in [45], where up to fourth-order unconditionally structure-preserving 
parametric single-step methods were presented, extending the model to 
three-dimensional space and multi-component systems, adding a local-
nonlocal space-time dependent Lagrange multiplier to the modified AC 
equation to make it conservative [46], studying parabolic sine-Gordon 
equations [47], where multiple states can be modeled, and investigat-
ing novel applications in the field could significantly contribute to ad-
vancing our proposed model. Furthermore, the proposed method can 
be extended to achieve second-order accuracy in time and incorporate 
adaptive time-stepping methods [48].
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Appendix A

In this Appendix, we provide the main source code for the method-
ology so that interested readers can use it. The full codes including 
mesh generation as described in this paper are available at the corre-
sponding author’s repository link: https://mathematicians .korea .ac .kr /
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