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We propose an unconditionally stable adaptive finite difference scheme for the Allen–Cahn (AC) equation. The 
AC equation is a reaction-diffusion equation used to model phase separation in multi-component alloy systems. It 
describes the temporal evolution of the order parameter, which denotes different phases, and incorporates both 
diffusion and nonlinear reaction terms to capture the interfacial dynamics between phases. A fundamental aspect 
of the dynamics of the AC equation is motion by mean curvature, which implies that an initial interface shrinks 
as time progresses. Therefore, it is highly efficient to reduce the computational domain as the interface shrinks. 
We use an operator splitting technique with a finite difference method and a closed-form solution. We conduct 
computational tests to validate the effectiveness of the proposed approach. The computational tests demonstrate 
that the proposed algorithm is effective, reliable, and robust across various test cases.

1. Introduction

We propose an unconditionally stable adaptive computational method for the Allen–Cahn (AC) equation [1]:

𝜕𝜙(𝐱, 𝑡)
𝜕𝑡 

= −𝐹
′(𝜙(𝐱, 𝑡))
𝜖2

+ Δ𝜙(𝐱, 𝑡), 𝐱 ∈Ω, 𝑡 > 0, (1)

where 𝜙(𝐱, 𝑡) is the order parameter, 𝜖 is a parameter related to the interfacial thickness, 𝐹 (𝜙) = 0.25(𝜙2 − 1)2 is the Helmholtz free energy density 
function, and Ω ⊂R2 is the two-dimensional (2D) domain. In this study, we use the zero Neumann boundary condition:

𝐧 ⋅∇𝜙(𝐱, 𝑡) = 0, 𝐱 ∈ 𝜕Ω, 𝑡 ≥ 0, (2)

where 𝐧 denotes the normal vector on the boundary 𝜕Ω of the domain Ω.
A primary challenge associated with phasefield models is the necessity to accurately resolve the diffuse interface layer. This difficulty arises 

across various phasefield models, including the AC, Cahn–Hilliard (CH) [2], conservative AC [3], phasefield crystal [4], and diblock copolymer [5] 
equations.

Feng and Wu [6] developed an adaptive finite element method (FEM) to solve the AC equation, with a focus on error estimates. This method 
was validated through several numerical tests and demonstrated its robustness and effectiveness in simulating curvature-driven flows and phase 
transitions. The adaptivity of this method was highlighted as it enabled efficient computation by concentrating resources on critical areas of the 
computational domain. Chen et al. [7] investigated a time–space adaptive FEM for the AC equation. They incorporated a second-order accurate 
unconditionally energy stable method and an SCR-based a posteriori error estimator to guide mesh refinement and coarsening. Numerical results 
demonstrated the reliability and efficiency of the proposed estimator and adaptive algorithm, with further discussion on extending the approach to 
the CH equation. An efficient computational method for solving the AC equation was studied, using a diagonally implicit fractional-step 𝜃-scheme 
and a conforming FEM. The authors explored the effectiveness of adaptive grids compared to uniform grids in handling the steady-state solution 
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of the equation, demonstrating computational efficiency improvements. This study validates the method through numerical examples that confirm 
its robustness and accuracy in solving nonlinear PDEs involving complex interfacial dynamics. Shah et al. [8] introduced an efficient and robust 
algorithm for solving the AC equation, in which they used a diagonally implicit fractional-step scheme for time discretization and a conforming FEM 
for spatial discretization. Through numerical examples, the authors demonstrated the advantages of adaptive grids over uniform grids for steady-state 
problems and compared the proposed scheme with other methods in terms of computational cost and temporal accuracy for unsteady problems. 
Ham et al. [9] introduced a fully explicit, adaptive numerical scheme designed to efficiently simulate a novel phasefield model for crystal growth in 
both 2D and 3D, which incorporates a curvature-eliminating term and a double-grid temperature approach to improve accuracy and computational 
performance.

A considerable number of studies have investigated the application of adaptive techniques to phasefield methods for the simulation of two-phase 
flows. These methods are designed to improve computational efficiency and accuracy by using dynamic mesh refinement based on interface evolution 
and a posteriori error estimates, which enables accurate resolution of complex interfacial structures while maintaining lower computational cost. 
Joshi and Jaiman [10] proposed an adaptive variational phasefield FEM on unstructured meshes for simulating two-phase flows, which incorporates 
a positivity-preserving conservative AC equation coupled with the incompressible Navier–Stokes equations. By using a residual-based error estimator 
and a coarsening strategy without hierarchical tree storage, the method significantly reduces computational cost and mass loss while maintaining 
accuracy, as demonstrated through benchmark tests including sloshing tank and dam-breaking problems. Khanwale et al. [11] proposed a fully
coupled, implicit-in-time framework for simulating thermodynamically consistent Cahn–Hilliard--Navier--Stokes systems using a Crank–Nicolson 
scheme with pressure stabilization and adaptive octree meshes. The method demonstrated second-order temporal accuracy, improved computational 
efficiency, and robust performance across benchmark problems, validated through comprehensive parallel numerical experiments. Building upon 
this, they later proposed a semi-implicit, projection-based FEM that decouples pressure via a projection step and incorporates a residual-based 
variational multiscale formulation, which enables efficient and scalable simulations with large time steps and accurate resolution of interfacial 
dynamics in two-phase flows [12]. In a related effort focusing on multiphysics coupling, Gao et al. [13] proposed a fully decoupled, linearized, 
and unconditionally energy-stable FEM to solve the Cahn–Hilliard--Navier--Stokes--Darcy system in coupled free fluid and porous media regions. 
They used auxiliary variables and interface treatment to ensure stability and efficiency. Numerical results confirmed the method’s accuracy, stability 
without time step restrictions, and effectiveness in simulating shape relaxation and buoyancy-driven flows with adaptive mesh refinement. To further 
handle implementation within existing multiphysics platforms, Mostafavi et al. [14] recently presented a fully-coupled, fully-implicit-in-time FEM 
based on the MOOSE platform for simulating incompressible laminar two-phase flows governed by the Cahn–Hilliard--Navier--Stokes equations. 
To resolve the lack of mass-conserving interpolation during adaptive mesh refinement, the authors introduced a time-dependent scalar Lagrange 
multiplier. They validated the method through benchmark tests and confirmed its accuracy and applicability to complex multi-dimensional two
phase flow problems. Meanwhile, with a focus on flows through porous boundaries, Luo et al. [15] presented a phasefield model incorporating the 
Cahn–Hilliard and Navier–Stokes equations with a generalized Navier slip and penetration boundary condition to simulate two-phase flows through 
permeable surfaces. The proposed finite element-based numerical algorithm effectively handled complex geometries and adaptive mesh refinement, 
and its accuracy and robustness were validated through numerical experiments involving bubble penetration and displacement in porous structures. 
In the context of modeling more intricate multiphysics phenomena, Chen et al. [16] developed two linear, decoupled, and fully discrete FEMs 
for a complex phasefield model of two-phase ferrofluids, which involves coupled Cahn–Hilliard, Navier–Stokes, magnetization, and magnetostatic 
equations. The proposed methods achieved energy stability, unique solvability, and efficient handling of nonlinear couplings, as confirmed by 
numerical experiments with adaptive mesh refinement.

The primary objective of this study is to develop and present an unconditionally stable, maximum principle preserving adaptive finite difference 
method (FDM) for the numerical solution of the AC equation. The proposed method aims to enhance stability and computational efficiency while 
guaranteeing that the numerical solution respects the maximum principle, and it preserves the physical bounds of the phasefield variable and 
accurately captures the interface dynamics inherent in the AC model.

The outline of this paper is as follows. Section 2 describes the proposed computational method. Section 3 presents the results of numerical 
experiments. We draw conclusions in Section 4.

2. Numerical method

Now, we describe the computational algorithm to find the numerical solution of the AC equation (1) in the 2D space. We use the operator splitting 
method (OSM) [17,18] to solve the AC equation (1) in the 2D domain Ω= (𝐿𝑥, 𝑅𝑥) × (𝐿𝑦, 𝑅𝑦):

𝜕𝜙(𝐱, 𝑡)
𝜕𝑡 

= −𝐹
′(𝜙(𝐱, 𝑡))
𝜖2

+ 𝜙𝑥𝑥(𝐱, 𝑡) + 𝜙𝑦𝑦(𝐱, 𝑡). (3)

Let Δ𝑡 be the discrete temporal step size. We define the linear operators Δ𝑡
𝑥

and Δ𝑡
𝑦

for 𝑥- and 𝑦-directions, respectively. In addition, we define the 
nonlinear operator Δ𝑡. We update 𝜙(𝐱, 𝑡) in the following order of operator compositions:

𝜙(𝐱, 𝑡+Δ𝑡) = (Δ𝑡
𝑦

◦Δ𝑡
𝑥

◦Δ𝑡)𝜙(𝐱, 𝑡). (4)

It is important to note that using a relatively large size of temporal step affects the interface shape depending on the order of solving terms. Solving the 
diffusion term first followed by the nonlinear term results in a sharper interface. Conversely, solving the nonlinear term first and then the diffusion 
term leads to a more relaxed transition layer of the interface. In this work, we adopt the splitting order as shown in Eq. (4). In the numerical 
experiments section, we demonstrate that the numerical results corresponding to the two different operator orders are nearly identical when small 
time steps are used. Therefore, the numerical solution 𝜙(𝐱, 𝑡+Δ𝑡) can be updated by splitting it into three subproblems and solving them sequentially: 
Firstly, considering the nonlinear operator Δ𝑡, we can obtain a solution Φ1(𝐱) to Eq. (5), expressed as Φ1(𝐱) =Δ𝑡𝜙(𝐱, 𝑡) with the initial condition 
𝜓(𝐱,0) = 𝜙(𝐱, 𝑡):

𝜕𝜓(𝐱, 𝑡)
𝜕𝑡 

= −𝐹
′(𝜓(𝐱, 𝑡))
𝜖2

. (5)

To solve the nonlinear equation (5), we apply the separation of variables [19]. Secondly, considering the 𝑥-direction linear operator Δ𝑡
𝑥

, we can 
obtain a solution Φ2(𝐱) to the linear equation (6), expressed as Φ2(𝐱) =Δ𝑡

𝑥
Φ1(𝐱):
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Fig. 1. Schematic illustration of the adaptive mesh generation algorithm. (a) Adaptive mesh generation process. The gray area indicates the interfacial region where 
−0.98 < 𝜙(𝑥, 𝑦, 𝑡) < 0.98. Blue dots represent interfacial points, and red dots are buffer points. These are projected onto the axes, and the final nonuniform grid is 
formed by combining them with coarser grid points (black circles). (b) Final nonuniform grid constructed for solving the AC equation. The grid points are selectively 
refined near the interfacial region to enhance computational efficiency while preserving accuracy. (For interpretation of the colors in the figure(s), the reader is 
referred to the web version of this article.)

𝜕𝜓(𝐱, 𝑡)
𝜕𝑡 

= 𝜓𝑥𝑥(𝐱, 𝑡), (6)

with 𝜓(𝐱,0) = Φ1(𝐱) Finally, using Δ𝑡
𝑦

, we can obtain a solution 𝜙(𝐱, 𝑡+Δ𝑡) to the linear equation (7), expressed as 𝜙(𝐱, 𝑡+Δ𝑡) =Δ𝑡
𝑦
Φ2(𝐱):

𝜕𝜓(𝐱, 𝑡)
𝜕𝑡 

= 𝜓𝑦𝑦(𝐱, 𝑡), (7)

where the initial condition is considered as 𝜓(𝐱,0) = Φ2(𝐱). Considering the homogeneous Neumann boundary condition, and the implicit Euler 
method on nonuniform mesh, we can solve the linear Eqs. (6) and (7).

We now describe a method for generating an adaptive mesh. The procedure for generating the adaptive mesh is outlined as follows: First, we 
define a reference uniform fine grid with spatial step size ℎ. In Fig. 1(a), intervals of size ℎ are shown along both the 𝑥- and 𝑦-axes, and the possible 
node points are positioned at the centers of these intervals. The gray area indicates the interfacial transition regions where the phase variable satisfies 
−0.98< 𝜙(𝑥, 𝑦, 𝑡) < 0.98, which is the criterion for introducing fine grid points. Computational resources are concentrated in these regions since the 
phasefield remains nearly constant elsewhere. The blue dots represent points located within the gray interfacial region, whereas the red dots indicate 
buffer points. These tagged points are subsequently projected onto the 𝑥- and 𝑦-axes. The final nonuniform grid is constructed by taking the union 
of these projected points and a set of coarser grid points (represented by black circles), which include the minimum and maximum coordinates of 
the reference points. Fig. 1(b) illustrates the final set of grid points used for the computational solution of the AC equation.

Let us consider a given nonuniform grid 𝑥𝑖 for 1 ≤ 𝑖 ≤𝑁𝑥 and 𝑦𝑗 for 1 ≤ 𝑗 ≤𝑁𝑦, where 𝑁𝑥 and 𝑁𝑦 are the total number of grid points along 
the 𝑥 and 𝑦 axes, respectively. This defines a nonuniform discrete computational domain Ωℎ =

{
(𝑥𝑖, 𝑦𝑗 )| 𝑖 = 1,… ,𝑁𝑥, 𝑗 = 1,… ,𝑁𝑦

}
, with the 

layout shown in Fig. 1(b). We define the spatial mesh intervals as 𝑝𝑖 = 𝑥𝑖+1 − 𝑥𝑖 and 𝑞𝑗 = 𝑦𝑗+1 − 𝑦𝑗 , with the boundary mesh intervals given 
by 𝑝0 = 𝑝1, 𝑝𝑁𝑥 = 𝑝𝑁𝑥−1, 𝑞0 = 𝑞1, and 𝑞𝑁𝑦 = 𝑞𝑁𝑦−1. The variable 𝜙(𝑥𝑖, 𝑦𝑗 , 𝑛Δ𝑡) is simply denoted as 𝜙𝑛

𝑖𝑗
. The homogeneous Neumann boundary 

conditions are applied as 𝜙𝑛0𝑗 = 𝜙
𝑛
1𝑗 , 𝜙

𝑛
𝑁𝑥+1 ,𝑗

= 𝜙𝑛
𝑁𝑥𝑗

, 𝜙𝑛
𝑖0 = 𝜙

𝑛
𝑖1, and 𝜙𝑛

𝑖,𝑁𝑦+1
= 𝜙𝑛

𝑖𝑁𝑦
. The simulation runs up to a final time 𝑇 with 𝑁𝑡 time steps, and 

the time step size is Δ𝑡 = 𝑇 ∕𝑁𝑡. For simplicity in notations, we use averaged mesh sizes 𝑝
𝑖+ 1

2
= (𝑝𝑖+1 + 𝑝𝑖)∕2 and 𝑞

𝑗+ 1
2
= (𝑞𝑗+1 + 𝑞𝑗 )∕2. Now, the 

hybrid computational solution algorithm [20] is described for the AC equation (3) in the following three steps. To start, the method of separation of 
variables can be used to derive the analytical solution of the nonlinear equation presented in Eq. (5): For 1≤ 𝑖 ≤𝑁𝑥 and 1 ≤ 𝑗 ≤𝑁𝑦,

Φ1
𝑖𝑗
=

𝜙𝑛
𝑖𝑗√

𝑒
−2Δ𝑡
𝜖2 +

(
𝜙𝑛
𝑖𝑗

)2
(
1 − 𝑒

−2Δ𝑡
𝜖2

) . (8)

Let us define Δ𝑑 on the 2D nonuniform mesh [21,22] to numerically solve Eqs. (6) and (7):

Δ𝑑𝜙𝑖𝑗 = (𝑥
𝑑
+

𝑦

𝑑
)𝜙𝑖𝑗 =

1 
𝑝
𝑖− 1

2

(
𝜙𝑖+1,𝑗 −𝜙𝑖𝑗

𝑝𝑖
−
𝜙𝑖𝑗 − 𝜙𝑖−1,𝑗

𝑝𝑖−1

)

+ 1 
𝑞
𝑗− 1

2

(
𝜙𝑖,𝑗+1 − 𝜙𝑖𝑗

𝑞𝑗
−
𝜙𝑖𝑗 − 𝜙𝑖,𝑗−1

𝑞𝑗−1

)
.

Secondly and thirdly, we solve Eqs. (6) and (7) using the implicit Euler method. Here, first solve for the equation involving the operator 𝑥
𝑑

using 
the initial condition Φ1 to obtain Φ2 for fixed 𝑗:

Φ2
𝑖𝑗
−Φ1

𝑖𝑗

Δ𝑡 
= 1 
𝑝
𝑖− 1

2

(
Φ2
𝑖+1,𝑗 −Φ2

𝑖𝑗

𝑝𝑖
−

Φ2
𝑖𝑗
−Φ2

𝑖−1,𝑗

𝑝𝑖−1

)
, for 𝑖 = 1,… ,𝑁𝑥. (9)
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Use Φ2 as the initial condition to solve for 𝜙𝑛+1 via 𝑦
𝑑

for fixed 𝑖:

𝜙𝑛+1
𝑖𝑗

−Φ2
𝑖𝑗

Δ𝑡 
= 1 
𝑞
𝑗− 1

2

(
𝜙𝑛+1
𝑖,𝑗+1 − 𝜙

𝑛+1
𝑖𝑗

𝑞𝑗
−
𝜙𝑛+1
𝑖𝑗

− 𝜙𝑛+1
𝑖,𝑗−1

𝑞𝑗−1

)
, for 𝑗 = 1,… ,𝑁𝑦. (10)

This operator splitting approach simplifies the multidimensional problem into a sequence of one-dimensional problems and thus enables more 
efficient numerical computation, especially on anisotropic or nonuniform grids. Equations (9) and (10) can be rewritten, respectively, as follows:

− 1 
𝑝𝑖−1𝑝𝑖− 1

2

Φ2
𝑖−1,𝑗 +

(
1 
Δ𝑡

+ 2 
𝑝𝑖𝑝𝑖−1

)
Φ2
𝑖𝑗
− 1 
𝑝𝑖𝑝𝑖− 1

2

Φ2
𝑖+1,𝑗 =

Φ1
𝑖𝑗

Δ𝑡 
, (11)

− 1 
𝑞𝑗−1𝑞𝑗− 1

2

𝜙𝑛+1
𝑖,𝑗−1 +

(
1 
Δ𝑡

+ 2 
𝑞𝑗𝑞𝑗−1

)
𝜙𝑛+1
𝑖𝑗

− 1 
𝑞𝑗𝑞𝑗− 1

2

𝜙𝑛+1
𝑖,𝑗+1 =

Φ2
𝑖𝑗

Δ𝑡 
. (12)

Finally, we can find a numerical solution 𝜙𝑛+1
𝑖𝑗

for the AC Eq. (3) by applying the three steps mentioned above.

We investigate the stability of the proposed numerical method. In particular, we prove that the numerical solution preserves the maximum bound 
principle. To begin, we state the following lemma, which is used in our analysis to verify the solvability of the linear systems arising in the proposed 
scheme.

Lemma 1. Let 𝐀 = (𝑎𝑖𝑗 ) ∈ℝ𝑛×𝑛 be a real square matrix. Suppose that 𝐀 is strictly diagonally dominant, i.e.,

|𝑎𝑖𝑖| > 𝑛 ∑
𝑗=1
𝑗≠𝑖

|𝑎𝑖𝑗 | for all 𝑖 = 1,… , 𝑛.

Then, 𝐀 is nonsingular. In other words, the matrix 𝐀 admits a unique inverse in ℝ𝑛×𝑛 [23].

The following theorem establishes the stability of the numerical solution in the maximum norm. Specifically, it guarantees that the solution 
remains bounded by 1, provided the initial value is bounded by 1.

Theorem 1. If ‖𝝓𝑛‖∞ ≤ 1, then the numerical solution satisfies ‖𝝓𝑛+1‖∞ ≤ 1.

Proof. We divide the proof into the following three steps for clarity.

Step 1: Nonlinear operator 
The nonlinear term in the AC equation is solved analytically as

Φ1
𝑖𝑗
=

𝜙𝑛
𝑖𝑗√

𝑒
−2Δ𝑡
𝜖2 +

(
𝜙𝑛
𝑖𝑗

)2
(
1 − 𝑒

−2Δ𝑡
𝜖2

) =
𝜙𝑛
𝑖𝑗√

𝑒
−2Δ𝑡
𝜖2

(
1 − (𝜙𝑛

𝑖𝑗
)2
)
+ (𝜙𝑛

𝑖𝑗
)2
.

Since ‖𝝓𝑛‖∞ ≤ 1, we obtain the following inequality

|Φ1
𝑖𝑗
| ≤ |||𝜙𝑛𝑖𝑗 |||√

(𝜙𝑛
𝑖𝑗
)2

= 1.

Therefore, ‖𝚽1‖∞ ≤ 1.

Step 2: 𝑥-direction linear operator 
From Eq. (11), we can obtain the following matrix form:

𝐀𝑥𝚽2
𝑗
=𝚽1

𝑗
, for 𝑗 = 1,… ,𝑁𝑦,

where

𝐀𝑥 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
1 
Δ𝑡

+ 2 
𝑝1𝑝0

)
− 1 
𝑝1𝑝 1

2

0

− 1 
𝑝1𝑝 1

2

(
1 
Δ𝑡

+ 2 
𝑝2𝑝1

)
− 1 
𝑝2𝑝 3

2

− 1 
𝑝2𝑝 3

2

(
1 
Δ𝑡

+ 2 
𝑝3𝑝2

)
− 1 
𝑝3𝑝 5

2
⋱ ⋱ ⋱

0 − 1 
𝑝𝑁𝑥−1𝑝𝑁𝑥−

3
2

(
1 
Δ𝑡

+ 2 
𝑝𝑁𝑥

𝑝𝑁𝑥−1

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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is an (𝑁𝑥 ×𝑁𝑥) matrix, 𝚽2
𝑗
= (Φ2

1,𝑗 ,Φ
2
2,𝑗 ,… ,Φ2

𝑁𝑥,𝑗
)𝑇 and 𝚽1

𝑗
= (Φ1

1,𝑗 ,Φ
1
2,𝑗 ,… ,Φ1

𝑁𝑥,𝑗
)𝑇 , for 𝑗 = 1,2,… ,𝑁𝑦. To examine the diagonal dominance of the 

matrix 𝐀𝑥, we consider each row index 𝑖. For the rows corresponding to 𝑖= 1 and 𝑖 =𝑁𝑥, the diagonal dominance condition is satisfied as follows:

|𝑎11|− 𝑁𝑥∑
𝑗=1
𝑗≠1

|𝑎1𝑗 | = 1 
Δ𝑡

+ 1 
𝑝0𝑝 1

2

> 0,

|𝑎𝑁𝑥𝑁𝑥 |− 𝑁𝑥∑
𝑗=1
𝑗≠𝑁𝑥

|𝑎𝑁𝑥𝑗 | = 1 
Δ𝑡

+ 1 
𝑝𝑁𝑥

𝑝
𝑁𝑥−

3
2

> 0.

For the rows corresponding to 𝑖 = 2,… ,𝑁𝑥 − 1, we have

|𝑎𝑖𝑖|− 𝑁𝑥∑
𝑗=1
𝑗≠𝑖

|𝑎𝑖𝑗 | = 1 
Δ𝑡

> 0.

Hence, the matrix 𝐀𝑥 is strictly diagonally dominant, which guarantees the uniqueness and solvability of the numerical solution.
Equation (11) can be arranged as

Φ2
𝑖𝑗
+ 𝑎𝑖(Φ2

𝑖𝑗
−Φ2

𝑖−1,𝑗 ) + 𝑏𝑖(Φ
2
𝑖𝑗
−Φ2

𝑖+1,𝑗 ) = Φ1
𝑖𝑗
, (13)

where

𝑎𝑖 =
Δ𝑡 

𝑝𝑖𝑝𝑖− 1
2

> 0 and 𝑏𝑖 =
Δ𝑡 

𝑝𝑖𝑝𝑖+ 1
2

> 0.

Suppose that there exist indices 𝑀 and 𝑚, with 1≤𝑀,𝑚 ≤𝑁𝑥, such that for each fixed 𝑗,

Φ2
𝑀,𝑗

= max 
1≤𝑖≤𝑁𝑥

Φ2
𝑖𝑗
> max 

1≤𝑖≤𝑁𝑥
Φ1
𝑖𝑗

and Φ2
𝑚,𝑗

= min 
1≤𝑖≤𝑁𝑥

Φ2
𝑖𝑗
< min 

1≤𝑖≤𝑁𝑥
Φ1
𝑖𝑗
.

Then, from Eq. (13), for 𝑖 =𝑀 and 𝑚, we have the following:

Φ2
𝑀,𝑗

+ 𝑎𝑀 (Φ2
𝑀,𝑗

−Φ2
𝑀−1,𝑗 ) + 𝑏𝑀 (Φ2

𝑀,𝑗
−Φ2

𝑀+1,𝑗 ) = Φ1
𝑀𝑗
, (14)

Φ2
𝑚,𝑗

+ 𝑎𝑚(Φ2
𝑚,𝑗

−Φ2
𝑚−1,𝑗 ) + 𝑏𝑚(Φ

2
𝑚,𝑗

−Φ2
𝑚+1,𝑗 ) = Φ1

𝑚𝑗
. (15)

Since Φ2
𝑀,𝑗

is the maximum, we have Φ2
𝑀,𝑗

−Φ2
𝑀±1,𝑗 ≥ 0, and hence the left-hand side of (14) is greater than or equal to Φ2

𝑀,𝑗
. Similarly, since Φ2

𝑚,𝑗

is the minimum, the terms Φ2
𝑚,𝑗

−Φ2
𝑚±1,𝑗 ≤ 0, and so the left-hand side of Eq. (15) is less than or equal to Φ2

𝑚,𝑗
. These contradict the assumption that

Φ2
𝑀,𝑗

> max 
1≤𝑖≤𝑁𝑥

Φ1
𝑖𝑗
, and Φ2

𝑚,𝑗
< min 

1≤𝑖≤𝑁𝑥
Φ1
𝑖𝑗
.

Therefore, we conclude

max 
1≤𝑖≤𝑁𝑥

Φ2
𝑖𝑗
≤ max 

1≤𝑖≤𝑁𝑥
Φ1
𝑖𝑗

and min 
1≤𝑖≤𝑁𝑥

Φ2
𝑖𝑗
≥ min 

1≤𝑖≤𝑁𝑥
Φ1
𝑖𝑗
,

which implies

‖𝚽2
𝑗
‖∞ ≤ ‖𝚽1

𝑗
‖∞.

By taking the maximum of both sides over all 𝑗, we obtain

‖𝚽2‖∞ ≤ ‖𝚽1‖∞.
In particular, if the initial value satisfies ‖𝚽1‖∞ ≤ 1, then the updated solution satisfies

‖𝚽2‖∞ ≤ 1.

Step 3: 𝑦-direction linear operator 
Without loss of generality, we omit the full matrix form for the 𝑦-direction since the structure of the discretization and the corresponding matrix 
analysis is analogous to that of the 𝑥-direction. As in the 𝑥-direction, the matrix 𝐀𝑦 associated with the 𝑦-direction discretization is strictly diagonally 
dominant, which guarantees the uniqueness and solvability of the numerical solution of Eq. (12). Moreover, the maximum principle also holds:

‖𝝓𝑛+1‖∞ ≤ ‖𝚽2‖∞ ≤ 1, (16)

under the assumption that the initial condition satisfies ‖𝚽2‖∞ ≤ 1. □

By Theorem 1, if the initial solution satisfies ‖𝝓𝑛‖∞ ≤ 1, the numerical solutions preserve the maximum bound principle for each time. Hence, 
the propose method is unconditionally stable.

The proposed algorithms have a flexible structure that allows a direct extension to 3D computational domains. This extension requires only 
minor modifications to the numerical implementation, and the underlying framework remains applicable to higher-dimensional simulations. The 
3D nonuniform discrete computational domain is defined as Ωℎ =

{
(𝑥𝑖, 𝑦𝑗 , 𝑧𝑘)|𝑖 = 1,… ,𝑁𝑥, 𝑗 = 1,… ,𝑁𝑦, 𝑘 = 1,… ,𝑁𝑧

}
for 𝑧𝑘 = 𝐿𝑧 + (𝑘 − 0.5)𝑟𝑘, 
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Table 1
Maximum norm errors and convergence rates.

ℎ 1∕16 1∕32 1∕64 1∕128 1∕256

error 3.547895e-2 9.163102e-3 2.307796e-3 5.777571e-4 1.442050e-4
rate 1.95 1.99 2.00 2.00

where 𝑟𝑘 = 𝑧𝑖+1 − 𝑧𝑖. In the three-dimensional domain, the proposed hybrid scheme for the AC equation can be systematically extended based on 
the 2D numerical scheme through the following four steps.

Φ1
𝑖𝑗𝑘

=
𝜙𝑛
𝑖𝑗𝑘√

𝑒
−2Δ𝑡
𝜖2 +

(
𝜙𝑛
𝑖𝑗𝑘

)2
(
1 − 𝑒

−2Δ𝑡
𝜖2

) , for all 𝑖, 𝑗, 𝑘.

In the following steps, we apply operator splitting in each spatial direction to advance the solution.

Φ2
𝑖𝑗𝑘

−Φ1
𝑖𝑗𝑘

Δ𝑡 
= 1 
𝑝
𝑖− 1

2

(
Φ2
𝑖+1,𝑗𝑘 −Φ2

𝑖𝑗𝑘

𝑝𝑖
−

Φ2
𝑖𝑗𝑘

−Φ2
𝑖−1,𝑗𝑘

𝑝𝑖−1

)
, for 𝑖 = 1,… ,𝑁𝑥.

This equation corresponds to the numerical update in the 𝑥-direction using a finite difference approximation, for fixed 𝑗 and 𝑘. Next, we apply a 
similar procedure in the 𝑦-direction, for fixed 𝑖 and 𝑘.

Φ3
𝑖𝑗𝑘

−Φ2
𝑖𝑗𝑘

Δ𝑡 
= 1 
𝑞
𝑗− 1

2

(
Φ3
𝑖,𝑗+1,𝑘 −Φ3

𝑖𝑗𝑘

𝑞𝑗
−

Φ3
𝑖𝑗𝑘

−Φ3
𝑖,𝑗−1,𝑘

𝑞𝑗−1

)
, for 𝑗 = 1,… ,𝑁𝑦.

Finally, the update in the 𝑧-direction is performed to obtain the solution at the next time step 𝜙𝑛+1, for fixed 𝑖 and 𝑗.

𝜙𝑛+1
𝑖𝑗𝑘

−Φ3
𝑖𝑗𝑘

Δ𝑡 
= 1 
𝑟
𝑘− 1

2

(
𝜙𝑛+1
𝑖𝑗,𝑘+1 − 𝜙

𝑛+1
𝑖𝑗𝑘

𝑟𝑘
−
𝜙𝑛+1
𝑖𝑗𝑘

− 𝜙𝑛+1
𝑖𝑗,𝑘−1

𝑟𝑘−1

)
, for 𝑘 = 1,… ,𝑁𝑧.

3. Computational tests

The computational tests are performed to verify that the proposed numerical method satisfies certain properties of the AC equation. The interfacial 
thickness is controlled by setting 𝜖 = 𝜖𝑚 =𝑚ℎ∕[2

√
2 tanh−1(0.9)] [24].

3.1. Convergence test

To validate the accuracy of the proposed computational method, we conduct a convergence test. The computational domain is Ω = (−0.5,1.5) ×
(0,0.5), and the exact solution is as follows:

𝜙exact(𝑥, 𝑦, 𝑡) =
1
2

⎛⎜⎜⎝1 − tanh
⎛⎜⎜⎝
𝑥− 3𝑡 √

2𝜖

2
√
2𝜖 

⎞⎟⎟⎠
⎞⎟⎟⎠ ,

which represents a traveling interface profile centered at 𝑥 = 3𝑡∕
√
2𝜖, with interface thickness controlled by the parameter 𝜖.

The convergence analysis is based on the maximum norm of the error, defined as ‖𝜙 −𝜙exact‖∞, which captures the largest pointwise deviation 
between the numerical and exact solutions. The numerical tests are performed on a mesh with spatial step sizes ℎ and ℎ∕2. The spatial grid size is 
halved from ℎ = 1∕16 to 1∕256, and the corresponding time step size is chosen as Δ𝑡 = 0.5ℎ2 to ensure temporal accuracy consistent with the spatial 
discretization. The final time is fixed at 𝑇 = 0.0078125, and the interface thickness parameter is set to 𝜖 = 0.25∕(2

√
2 tanh−1(0.9)).

Table 1 summarizes the maximum norm errors and the observed convergence rates. The results indicate that the proposed method achieves 
first-order accuracy in time and second-order accuracy in space. Specifically, as the mesh is refined by a factor of two, the numerical error decreases 
approximately by a factor of four, which is consistent with second-order spatial convergence. The explicit Euler time-stepping discretization yields 
first-order temporal accuracy, which is preserved by adopting the time step size Δ𝑡 ∼ ℎ2.

3.2. Motion by mean curvature

We implement the numerical simulation using the proposed scheme to numerically solve the AC equation on the domain Ωℎ = (−3,3)2. The initial 
condition is

𝜙(𝑥, 𝑦,0) = tanh

(
1 −

√
𝑥2 + 𝑦2√
2𝜖 

)
with parameter values as 𝜖 = 𝜖15, 𝑁𝑥 = 200, 𝑁𝑦 = 200, ℎ= 6∕200, Δ𝑡= 1.0ℎ2.

Fig. 2 presents the computational results of solving the AC equation using the proposed adaptive FDM. Fig. 2(a) compares the analytic solution 
for the radius (denoted by the solid line) with the numerical solutions. Here, the numerical results are obtained using the proposed splitting order 
and reverse splitting order. In the reverse splitting order, the linear operators are solved before the nonlinear operator. The radius, represented 
by 𝑅(𝑡) =

√
1 − 2𝑡 [25], decreases over time, which indicates the shrinking of an interface due to the dynamics dictated by the AC equation. The 



Computer Physics Communications 315 (2025) 109712

7

H. Kim, S. Ham, S. Kwak et al. 

Fig. 2. (a) Temporal evolution of the numerical radius compared with the analytic radius over time. Blue circles and red dots denote the numerical radius computed 
in forward and reverse computational order, respectively, while the solid line represents the analytic solution. (b)--(c) Temporal evolution of the zero-level contour 
of numerical solutions with the adaptive refinement mesh at 𝑡= 0, and 𝑡= 1000Δ𝑡. The displayed mesh is shown at 50% resolution for clarity.

Fig. 3. Motion by mean curvature on a uniform mesh at times (a) 𝑡 = 0, (b) 𝑡 = 3000Δ𝑡, and (c) 𝑡 = 5000Δ𝑡. First and second rows are top views and mesh plots, 
respectively.

close agreement between the numerical and analytic radii throughout the entire simulation demonstrates the accuracy of the adaptive scheme and 
indicates that the splitting order has little influence on the numerical solution. Figs. 2(b) and (c) display the spatial grids and the zero-level contours 
of the computational solution at two distinct times, 𝑡 = 0 and 𝑡 = 1000Δ𝑡, respectively. The initial state shows a well-defined circle that diminishes 
in size by 𝑡= 1000Δ𝑡. The adaptive mesh refinement around the interface is evident, with a denser grid near the circle to capture the sharp gradient 
accurately. This targeted refinement is crucial for maintaining the efficiency and accuracy of the numerical scheme without unnecessarily increasing 
computational costs across the entire domain.

3.3. Efficiency of adaptive mesh

We perform a computational experiment for solving the AC equation on the adaptive finite difference grids. The size of computational domain is 
set to Ωℎ = (0,50)2. To verify the efficiency of the proposed adaptive finite difference scheme, we consider two circles with different radii as initial 
condition (Fig. 3(a) and Fig. 4(a)):

𝜙(𝑥, 𝑦,0) = 1 + tanh

(
7 −

√
(𝑥− 10)2 + (𝑦− 10)2√

2𝜖 

)

+tanh

(
4 −

√
(𝑥− 40)2 + (𝑦− 40)2√

2𝜖 

)
.
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Fig. 4. Motion by mean curvature on a adaptive mesh at times (a) 𝑡 = 0, (b) 𝑡 = 3000Δ𝑡, and (c) 𝑡 = 5000Δ𝑡. First and second rows are top views and mesh plots, 
respectively.

Fig. 5. Temporal evolution of AC equation on a adaptive mesh at times (a) 𝑡= 10Δ𝑡, (b) 𝑡= 500Δ𝑡, and (c) 𝑡= 1600Δ𝑡. First and second rows are top view and mesh 
plots, respectively.

Here, the values of parameters are used as 𝑁𝑥 = 1000, 𝑁𝑦 = 1000, ℎ= 50∕1000, Δ𝑡= 1.0ℎ2, and 𝜖 = 𝜖20. Numerical behaviors of the AC equation by 
solving the proposed scheme on the uniform and adaptive finite difference grids can be seen in Fig. 3 and Fig. 4. Over time, the two circles shrink 
due to mean curvature motion, with the circle of smaller radius disappearing first. As the interface of the two circles shrinks, the number of grids 
near the interface adaptively decreases according to the proposed method, see Figs. 4(b) and (c).

We recorded the CPU times required for the main iterations of the proposed method on both uniform and adaptive meshes, to assess the efficiency 
of the proposed adaptive mesh refinements. For 5000 iterations, the proposed method took 165.23 seconds on uniform grids and 40.41 seconds on 
adaptive meshes. These results demonstrate that the adaptive mesh approach was approximately 4 times faster than the uniform grid approach, 
confirming the efficiency of the proposed adaptive FDM.

3.4. Random initial perturbation

After setting a randomly perturbed initial condition, a numerical experiment is conducted in the computational region Ωℎ = (0,2) × (0,1). The 
initial condition is set to

𝜙(𝑥, 𝑦,0) = 0.01(2rand(𝑥, 𝑦) − 1),

where rand has a random value in [0,1]. We used parameter values as 𝑁𝑥 = 200, 𝑁𝑦 = 100, ℎ= 2∕200, Δ𝑡= 0.45ℎ2 and 𝜖 = 𝜖8.
The initial random perturbation evolves over time due to the phase separation property of the AC equation as shown in Fig. 5(b). As time 

progresses, the perturbation coalesces into a single phase (see, Fig. 5(c)) and eventually shrinks, because the dynamics of the AC equation is governed 
by a non-conserved order parameter. In this test, we verify that the proposed method adaptively changes the finite difference grids as the interfaces 
of the phases evolve.

Now, we shall perform a computational test to numerically investigate the discrete maximum principle and energy dissipation properties. Let us 
consider the following discrete energy functional:

ℎ(𝜙𝑛) =
𝑁𝑥∑
𝑖=1 

𝑁𝑦∑
𝑗=1 

𝐹 (𝜙𝑛
𝑖𝑗
)

𝜖2
𝑝
𝑖− 1

2
𝑞
𝑗− 1

2
+ 0.5

𝑁𝑥−1∑
𝑖=1 

𝑁𝑦−1∑
𝑗=1 

𝑞𝑗

𝑝𝑖 

(
𝜙𝑛
𝑖+1,𝑗 − 𝜙

𝑛
𝑖𝑗

)2
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Fig. 6. Temporal evolution of the normalized discrete total free energy for the AC equation. Plots on a adaptive mesh at times 𝑡= 10Δ𝑡, 𝑡= 700Δ𝑡, and 𝑡= 2000Δ𝑡. 

Fig. 7. Evolutionary dynamics of AC equation on a adaptive mesh at times (a) 𝑡= 0, (b) 𝑡 = 50Δ𝑡, and (c) 𝑡 = 200Δ𝑡. First and second rows are top view and mesh 
plots, respectively.

+0.5
𝑁𝑥−1∑
𝑖=1 

𝑁𝑦−1∑
𝑗=1 

𝑝𝑖

𝑞𝑗

(
𝜙𝑛
𝑖,𝑗+1 −𝜙

𝑛
𝑖𝑗

)2

The maximum value and minimum value are defined as: (𝜙𝑛)max = max
𝑖𝑗 𝜙𝑛

𝑖𝑗
and (𝜙𝑛)min = min

𝑖𝑗 𝜙𝑛
𝑖𝑗

. Fig. 6 shows the temporal evolution of the 
normalized discrete total free energy for the AC equation. The snapshot plots three key metrics over a logarithmic time scale: the normalized total 
free energy ℎ(𝜙𝑛)∕ℎ(𝜙0) (red color), and the maximum value (blue color) and minimum value (yellow color) of the field variable, 𝜙𝑛 . A curve of 
ℎ(𝜙𝑛)∕ℎ(𝜙0) shows the relative change in the total free energy as a function of time, which indicates energy dissipation of the Ac equation. The 
curve starts near unity and fluctuates slightly as time progresses, which suggests that while the governing equation loses energy due to the dynamics 
of phase separation, the proposed method effectively controls the rate of energy change, maintaining stability and accuracy. The maximum and 
minimum values of 𝜙𝑛 curves indicate the evolution of the extreme values of the field variable over time. Initially, the values span a wide range, 
which narrows as the AC equation evolves. This behavior is typical in phase separation processes modeled by the AC equation, where the extremes 
gradually approach the equilibrium state. The non-monotonic approach towards these equilibrium values reflects the complex interaction dynamics 
within the governing equation, possibly capturing transient growth in localized areas before stabilizing.

3.5. Evolution of a simple initial shape

We use the domain size and parameter values as Ωℎ = (0,2) × (0,1), 𝑁𝑥 = 160, 𝑁𝑦 = 80, ℎ= 2∕160, Δ𝑡= 0.45ℎ2, and 𝜖 = 𝜖4. The initial condition 
is considered key shape as shown in Fig. 7(a). From the numerical results shown in Figs. 7(b) and (c), we observe that over time, the interfaces 
corresponding to long and thin shape (tail) shrinks first, while the interfaces corresponding to short and thick shape shrink (head) later. We can see 
that the finite difference grids also change adaptively along the shape of interface.

3.6. Evolution of a complex initial shape

The domain size and parameter values are used as Ωℎ = (0,2) × (0,1), 𝑁𝑥 = 160, 𝑁𝑦 = 80, ℎ = 2∕160, Δ𝑡 = 0.45ℎ2 and 𝜖 = 𝜖4. We set the initial 
condition as squared maze (Fig. 8(a)). The numerical behaviors of evolutionary dynamics can be seen in Fig. 8. The interface is reduced along 
the motion by mean curvature while maintaining its shape. As the shape of the interface evolves, we can see that the finite difference grids also 
adaptively change well along the shape of the interface.
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Fig. 8. Evolutionary dynamics for squared maze shape initial condition on a 2D adaptive mesh with 𝜖 = 𝜖4. (a) top views, (b) mesh plots. 

4. Conclusions

In conclusion, we have introduced an unconditionally stable adaptive FEM for the AC equation, which plays an important role in modeling 
phase separation in multi-component alloy systems. The AC equation, characterized by its reaction-diffusion nature, effectively captures the complex 
dynamics of phase interfaces through the interplay of diffusion and nonlinear reaction terms. A key aspect of these dynamics, the motion by mean 
curvature, naturally leads to the shrinking of interfaces over time. Based on this principle, our proposed scheme efficiently reduces the computational 
domain as the interface contracts. Through a series of rigorous numerical experiments, we have demonstrated that our approach not only maintains 
unconditional stability but also significantly improves computational efficiency without compromising accuracy. The results consistently validate 
the robustness and reliability of the proposed algorithm across various scenarios and show its potential as a powerful tool for simulating phase 
separation phenomena in complex materials. This research provides the groundwork for future studies focused on advancing adaptive schemes for 
other reaction-diffusion equations and similar computational models in materials science.
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Appendix A

The following Listing 1 is the MATLAB source code to numerically implement for Fig. 5, which is also available in the public GitHub repository:

https://github.com/hdkim4681/AdaptiveAC

Listing 1: MATLAB source code for Fig. 5.

1 c l e a r a l l ; c l o s e a l l ; c l c ; 
2 L x = 0 ; R x = 2 ; L y = 0 ; R y = 1 ; % D o m a i n d e f i n i t i o n 
3 % G l o b a l g r i d s i z e a n d s t e p s i z e 
4 G N x = 2 0 0 ; h = ( R x − L x ) / G N x ; G N y = r o u n d ( ( R y − L y ) / h ) ; 
5 % G e n e r a t e u n i f o r m g l o b a l g r i d p o i n t s i n x a n d y 
6 x = l i n s p a c e ( L x + 0 . 5 * h , R x − 0 . 5 * h , G N x ) ; 
7 y = l i n s p a c e ( L y + 0 . 5 * h , R y − 0 . 5 * h , G N y ) ; 
8 % T i m e s t e p s i z e a n d i n t e r f a c i a l p a r a m e t e r 
9 d t = 0 . 4 5 * h ̂  2 ; m = 8 ; e p s i l o n = m * h / ( 2 * s q r t ( 2 ) * a t a n h ( 0 . 9 ) ) ; 

10 % S e t r a n d o m i n i t i a l c o n d i t i o n f o r p h i i n [ − 0 . 0 1 , 0 . 0 1 ] 
11 f o r i = 1 : G N x 
12 f o r j = 1 : G N y 
13 p h i 0 ( i , j ) = 0 . 0 1 * ( 2 * r a n d ( 1 ) − 1 ) ; 
14 e n d 
15 e n d 
16 % I d e n t i f y r e g i o n s n e a r t h e i n t e r f a c e a n d a d d b u f f e r 
17 x t = [ ] ; y t = [ ] ; b f = 1 ; % b u f f e r s i z e 
18 f o r i = 1 : G N x 
19 f o r j = 1 : G N y 
20 i f a b s ( p h i 0 ( i , j ) ) < 0 . 9 8 
21 i i = r o u n d ( ( x ( i ) − L x ) / h + 0 . 5 ) ; 
22 j j = r o u n d ( ( y ( j ) − L y ) / h + 0 . 5 ) ; 
23 x t = [ x t m a x ( i i − b f , 1 ) : m i n ( i i + b f , G N x ) ] ; 
24 y t = [ y t m a x ( j j − b f , 1 ) : m i n ( j j + b f , G N y ) ] ; 
25 e n d 
26 e n d 
27 e n d 
28 % B a c k g r o u n d c o a r s e g r i d s a m p l i n g 
29 s = 4 ; b g x = [ 1 : s : G N x G N x ] ; b g y = [ 1 : s : G N y G N y ] ; 
30 % M e r g e t a g g e d a n d b a c k g r o u n d g r i d s 
31 x t = u n i q u e ( [ x t b g x ] ) ; y t = u n i q u e ( [ y t b g y ] ) ; 
32 % P l o t i n i t i a l c o n d i t i o n 
33 n e w x = x ( x t ) ; n e w y = y ( y t ) ; p h i 1 = p h i 0 ( x t , y t ) ; 
34 [ x x , y y ] = m e s h g r i d ( n e w x , n e w y ) ; 
35 f i g u r e ( 1 ) ; c l f ; m e s h ( x x , y y , p h i 1 ’ ) ; v i e w ( − 1 3 , 7 7 ) 
36 a x i s ( [ L x R x L y R y − 1 1 ] ) ; a x i s i m a g e ; 
37 f i g u r e ( 2 ) ; c l f ; m e s h ( x x , y y , p h i 1 ’ ) ; v i e w ( 0 , 9 0 ) ; a x i s i m a g e ; 
38 N x = l e n g t h ( n e w x ) ; N y = l e n g t h ( n e w y ) ; 
39 % M a i n l o o p p a r a m e t e r s 
40 N t = 3 0 0 0 ; % T o t a l t i m e s t e p s 
41 r e m e s h = 2 0 ; % R e m e s h i n g i n t e r v a l 
42 n s = 1 0 0 ; % P l o t t i n g i n t e r v a l 
43 % M a i n i t e r a t i o n l o o p 
44 f o r i t e r = 1 : N t 
45 i f m o d ( i t e r , r e m e s h ) = = 0 | | i t e r = = 1 % R e m e s h i n g c o n d i t i o n 
46 i f i t e r > 1 % R e c o m p u t e a c t i v e r e g i o n b a s e d o n i n t e r f a c e 
47 x t = [ ] ; y t = [ ] ; 
48 f o r i = 1 : N x 
49 f o r j = 1 : N y 
50 i f a b s ( p h i 1 ( i , j ) ) < 0 . 9 8 
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51 i i = r o u n d ( ( n e w x ( i ) − L x ) / h + 0 . 5 ) ; 
52 j j = r o u n d ( ( n e w y ( j ) − L y ) / h + 0 . 5 ) ; 
53 x t = [ x t m a x ( i i − b f , 1 ) : m i n ( i i + b f , G N x ) ] ; 
54 y t = [ y t m a x ( j j − b f , 1 ) : m i n ( j j + b f , G N y ) ] ; 
55 e n d 
56 e n d 
57 e n d 
58 % M e r g e w i t h b a c k g r o u n d g r i d 
59 x t = u n i q u e ( [ x t b g x ] ) ; y t = u n i q u e ( [ y t b g y ] ) ; 
60 % U p d a t e m e s h a n d i n t e r p o l a t e p h i 
61 n e w x = x ( x t ) ; n e w y = y ( y t ) ; N x = l e n g t h ( x t ) ; N y = l e n g t h ( y t ) ; 
62 [ x x 1 , y y 1 ] = m e s h g r i d ( n e w x , n e w y ) ; 
63 % B i l i n e a r i n t e r p o l a t i o n 
64 p h i 1 = i n t e r p 2 ( x x , y y , p h i 1 ’ , x x 1 , y y 1 ) ’ ; x x = x x 1 ; y y = y y 1 ; 
65 e n d 
66 % C o m p u t e n o n u n i f o r m g r i d s p a c i n g a n d h a r m o n i c m e a n 
67 p = n e w x ( 2 : e n d ) − n e w x ( 1 : e n d − 1 ) ; 
68 p = [ p ( 1 ) p p ( e n d ) ] ; 
69 p h = ( p ( 1 : e n d − 1 ) + p ( 2 : e n d ) ) / 2 ; 
70 q = n e w y ( 2 : e n d ) − n e w y ( 1 : e n d − 1 ) ; 
71 q = [ q ( 1 ) q q ( e n d ) ] ; 
72 q h = ( q ( 1 : e n d − 1 ) + q ( 2 : e n d ) ) / 2 ; 
73 % C o n s t r u c t 1 D c o e f f i c i e n t s i n x − d i r e c t i o n 
74 a x = z e r o s ( 1 , N x ) ; b x = a x ; c x = a x ; 
75 f o r i = 1 : N x 
76 a x ( i ) = − 1 / ( p h ( i ) * p ( i ) ) ; 
77 b x ( i ) = 1 / d t + 2 / ( p ( i + 1 ) * p ( i ) ) ; 
78 c x ( i ) = − 1 / ( p h ( i ) * p ( i + 1 ) ) ; 
79 e n d 
80 % C o n s t r u c t 1 D c o e f f i c i e n t s i n y − d i r e c t i o n 
81 a y = z e r o s ( 1 , N y ) ; b y = a y ; c y = a y ; 
82 f o r j = 1 : N y 
83 a y ( j ) = − 1 / ( q h ( j ) * q ( j ) ) ; 
84 b y ( j ) = 1 / d t + 2 / ( q ( j + 1 ) * q ( j ) ) ; 
85 c y ( j ) = − 1 / ( q h ( j ) * q ( j + 1 ) ) ; 
86 e n d 
87 % N e u m a n n b o u n d a r y c o n d i t i o n m o d i f i c a t i o n 
88 b x ( 1 ) = b x ( 1 ) + a x ( 1 ) ; b x ( N x ) = b x ( N x ) + c x ( N x ) ; 
89 b y ( 1 ) = b y ( 1 ) + a y ( 1 ) ; b y ( N y ) = b y ( N y ) + c y ( N y ) ; 
90 e n d 
91 % N o n l i n e a r s t a b i l i z a t i o n s t e p 
92 p h i 1 = p h i 1 . / s q r t ( ( 1 − p h i 1 . ̂  2 ) * e x p ( − 2 * d t / e p s i l o n ̂  2 ) + p h i 1 . ̂  2 ) ; 
93 % S o l v e i m p l i c i t x − d i r e c t i o n u s i n g T h o m a s a l g o r i t h m 
94 f o r j = 1 : N y 
95 f = p h i 1 ( 1 : N x , j ) / d t ; p h i 1 ( 1 : N x , j ) = t h o m a s ( a x , b x , c x , f ) ; 
96 e n d 
97 % S o l v e i m p l i c i t y − d i r e c t i o n u s i n g T h o m a s a l g o r i t h m 
98 f o r i = 1 : N x 
99 g = p h i 1 ( i , 1 : N y ) / d t ; p h i 1 ( i , 1 : N y ) = t h o m a s ( a y , b y , c y , g ) ’ ; 

100 e n d 
101 % V i s u a l i z a t i o n 
102 i f m o d ( i t e r , n s ) = = 0 
103 f i g u r e ( 3 ) ; c l f ; m e s h ( x x , y y , p h i 1 ’ ) ; v i e w ( − 1 3 , 7 7 ) 
104 a x i s ( [ L x R x L y R y − 1 1 ] ) ; a x i s i m a g e ; 
105 f i g u r e ( 4 ) ; c l f ; m e s h ( x x , y y , p h i 1 ’ ) ; v i e w ( 0 , 9 0 ) ; a x i s i m a g e ; 
106 e n d 
107 e n d 
108 % T h o m a s a l g o r i t h m f o r t r i d i a g o n a l l i n e a r s y s t e m 
109 f u n c t i o n x = t h o m a s ( a l p h a , b e t a , g a m m a , f ) 
110 n = l e n g t h ( f ) ; 
111 f o r i = 2 : n 
112 m u l t = a l p h a ( i ) / b e t a ( i − 1 ) ; 
113 b e t a ( i ) = b e t a ( i ) − m u l t * g a m m a ( i − 1 ) ; 
114 f ( i ) = f ( i ) − m u l t * f ( i − 1 ) ; 
115 e n d 
116 x ( n ) = f ( n ) / b e t a ( n ) ; 
117 f o r i = n − 1 : − 1 : 1 
118 x ( i ) = ( f ( i ) − g a m m a ( i ) * x ( i + 1 ) ) / b e t a ( i ) ; 
119 e n d 
120 e n d 
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Data availability

All data used in this article can be shared upon appropriate request.
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