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potential that has two arguments. Firstly, we compute the temporal step constraint
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that guarantees that if the initial condition is bounded by the two arguments of the
minimum, then the numerical solutions are always bounded by them, i.e., the explicit

fﬁz:ﬁgﬁn equation numerical scheme satisfies the maximum principle. Secondly, we compute the
Logarithmic potential temporal step constraint that guarantees that the discrete total energy of the system
Explicit Euler method is non-increasing over time. To validate the preservation of the maximum principle
Stability analysis and the decrease in discrete total energy, we perform numerical experiments.

© 2024 Elsevier Inc. All rights reserved.

1. Introduction

In this study, we investigate a fully explicit finite difference method (FDM) to solve the following Allen—
Cahn (AC) equation [2] with a logarithmic potential and the homogeneous Neumann boundary condition:

OLCD) — Pfefx,t) + el ), x €0, 150 e
n-Ve(x,t) =0, x€dQ, t>0, @)

where ¢(x, t) is the phase field concentration at spatial position x and time ¢, € is a small positive parameter
related to the thickness of the interfacial transition layer, F'(c) is a potential, and n is an outward unit normal
vector on the boundary 9€2. The double-well potential [5,11,23,32,36,38] is a general form of potential energy
within the phase-field equations. On the other hand, in the case of the logarithmic Flory—Huggins energy
potential [30,37], it becomes challenging to analyze due to logarithmic nonlinearity and singularity that
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occurs near the phase-field concentration values of 0 and 1. However, from a physics point of view, the
Flory-Huggins energy potential is considered more realistic than the double-well potential [24]. In [28],
a maximum bound principle preserving linear method for the conservative AC equation with the Flory—
Huggins potential is proposed.

The AC equation models the phenomenon of phase separation occurring in binary alloys [34]. The AC
equation has been used as a basic mathematical model for numerous problems, demonstrating its exten-
sive utility [4,12,29]. Extensive research has been conducted on accurate and efficient numerical methods
for solving the AC equation [3,6-8,10,17,21]. Furthermore, various studies on the AC equation with the
logarithmic Flory—Huggins potential are being actively studied [18,35,37]. Research on structure-preserving
numerical schemes for solving the AC equation has been conducted [9,16,40]. From the total free energy
functional,

£lc) = / <F(c) + §|Vc|2> dx, (3)

the AC equation (1) can be derived by an L2-gradient flow of the energy functional in Eq. (3). By differ-
entiating the energy functional Eq. (3) with respect to the time variable ¢t and applying the homogeneous
Neumann boundary condition (2), we obtain the following

%S(c) = Q/ (%F'(c) + ;V% : Vc) dx
= / (c:F'(c) — €Ac) dx = — / (cr)® dx < 0. (4)
Q Q

In this study, we consider the following logarithmic Flory—Huggins energy potential:
F(c)=0[cn(c) + (1 —¢)In(1 — ¢)] + 20.¢(1 — ¢), for 0 < c <1, (5)

where 6 is the absolute temperature and 6, is the critical temperature [19]. Both parameters 6 and 6. are
constant. We assume that 6. = 1 for simplicity, i.e.,

F(c)=0[cln(c)+ (1 —c)In(1 —¢)] + 2¢(1 —¢), for0<ec< 1. (6)
Equation (1) can be rewritten as follows:

Oc(x,t)

ek —0[In(c(x,t)) — In(1 — e(x,1))] — 2(1 — 2¢(x,t)) + € Ac(x, t). (7)

Several implicit stability-preserving numerical schemes have been developed to solve the AC equation.
Uzunca and Karasozen [33] proposed a linear implicit method preserving the energy dissipation law for the
AC equation. Li and Song [26] analyzed a reduced-order energy-stability-preserving iterative method for the
AC equation with a double-well potential. Li and Wang [27] analyzed a conditional energy stable Crank—
Nicolson scheme and proposed an unconditional energy-stable scheme with a stability term for the AC
equation. Song et al. [31] proposed a modified Crank—Nicolson method preserving the maximum-principle
for the phase-field model. Recently, there have been many research results with fully explicit numerical
schemes for the AC equation [1,11,13,15,20,22,39,41]. In particular, Fu et al. [9] proposed Runge-Kutta
methods preserving the maximum bound property and the energy dissipation law for the AC equation.
Zhang et al. [40] proposed a third-order practically unconditionally structure-preserving method for the
modified conservative AC equation.
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In general, implicit or semi-implicit numerical schemes for partial differential equations (PDEs) can use
sufficiently large time steps while maintaining stability. However, we need to use small time steps for accurate
numerical solutions. In the case of the AC equation, which is a second-order PDE, the time step restriction
for stability is comparable to the time step constraint imposed by the accuracy requirement. Therefore, the
time step constraint for the explicit numerical scheme of the AC equation is not severe. The main purpose
of this paper is to investigate the time step restrictions for the explicit numerical scheme that satisfy the
maximum principle and a decrease in the discrete total energy of the system over time.

The outline of this paper is summarized as follows. In Section 2, a computational scheme is introduced
for the AC equation with the logarithmic potential. In Section 3, the robustness of the proposed scheme is
validated through computational experiments, and the results of these experiments are provided. Finally,
the conclusion is drawn in Section 4.

2. Methodology

Now, we introduce discretization of the AC equation and investigate the temporal step restrictions, which
satisfy the maximum principle and a decrease in the discrete total energy of the system over time, for the
fully explicit FDM of the AC equation with a logarithmic potential.

To simplify the description, we focus on the AC equation with a logarithmic potential in Q = (L,, Uy,).
Higher-dimensional analysis can be done in a straightforward manner. We define a number of spatial grid
points as N, the spatial uniform grid size as h = (U — L) /N, and Qp, = {a; = L, + (i —0.5)h, 1 <i < N}.
Let At be the time step size and the numerical approximations ¢ := c(z;, nAt). A final time T is discretized
as T = N;At where N; is a total number of time steps. We denote a discrete operator V, as th?H/Q =
(ciyq —ci')/h. In Qp, the zero Neumann boundary condition is provided as Vielsy = Ve = 0, for
n=1,...,Np. Let Apci' = (Vnclyq 0= Vel )/ = (cf_y—2c!+cl 1)/h? be a discrete Laplacian operator

and |||l = max |c}'| be a discrete maximum norm, where ¢" = (cf,c5,---,c%). The convergence
1<i<N

accuracies in time and space for the AC equation (1) with a logarithmic potential can be expressed as
follows:

n+1l n
% +O(A) =0(In(1—cP) —Ine?) —2(1 —2¢1) + EApc? + O(h?). (8)

Therefore, we consider the following fully explicit method for approximating the AC equation:

Al _en 2

=0 — ) ~Inef) —2(1 - 2¢) + % (cr ) —2e" + ¢ y) . (9)

2.1. Discrete maximum principle

<

Let ¢, and cg be the two arguments of the minimum of the logarithmic potential (5) with 0 < ¢, < %

Cg<1.

Theorem 1. Suppose that the initial values satisfy 0 < ¢, < c? <cg <1, for1 <i< N. Then, for alln > 0,
the numerical solutions of the scheme (9) satisfy 0 < ¢, < c?“ <cg <1, for 1 <i< N, if At satisfies

2

At < ————
— Mh? +2¢%’

(10)

where M = max (F" (¢cq) , F" (cg)).
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Proof. Equation (9) can be rewritten as

2

=+ At (9 (In(1—¢)—1Incl)—2(1—2c) + % (cfq —2¢ + c?+1)> . (11)

The proof is divided into three distinct cases.

1
Case 1. ¢} = 3

1
From Eq. (11) and 0 < ¢, < 3 < ¢g <1, the numerical solution satisfies
1 At et 1 EAt, n 1 At
§+?(2Ca—1)§6i :54— h2 (C'L—l_]‘+01+1)§§+?(20[3_1)

2

h
Therefore, ¢, < C?H < cg provided that At satisfies At < 23
€

n
Case 2. ¢! =cg or cq
First, we consider when ¢} = c¢g. The numerical solution (11) is rewritten as

2
1 e At
gt =cs+ T (ciy = 2c5 + i) -

Because ¢! | — 2¢g + ¢!y < 0, we have that At <ep I ey — 205 + ¢y = 0, the time step is not
2

h
subject to any constraints or limitations; otherwise, i.e., ¢ | — 2¢cg + ¢’y < 0, then At < 22 results in
€

T > c5 + 1(2cq — 2¢5) = cq. Therefore, we have that ¢, < ¢! < cg.
2

h
Similarly, when ¢! = ¢,, we have ¢, < C;H_l < cg with At < 22 as well.
€

1 1
Case3.§<c?<05 orca<c?<§

1 2
Let 3 < e <cg. InEq. (11),if 0 (—Inc +In(1 —¢f')) —2(1 —2¢}') + % (¢ y =2} + ¢ y) >0, then

1
we always have C;H_l > ¢q. From Eq. (11), since 3 < ¢} < cg, we can obtain the following inequality
1 e?
A< e + At <9 (—Inc! +In(1—¢}')) —2(1—2c}) + 72 (2¢p — 20?)) .

Next, we want to determine the condition of At which satisfies

2
ot + At <0 (—Inel +In(1—c)) —2(1—2c7) + % (2c — 20?)) < cp.

Then, it can be rewritten as

2 2
At (F/ (cg) — F' () + hi? (e — cf)) <cg—c} (12)

where F’ (cg) = 0. By dividing both sides of (12) by (¢g — ¢') > 0, we have
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cg —cf +F

At (F’ (cs) = F' (c}) 2€2> <1

Therefore, we obtain the following constraint for At.

At < L
= F'(cg) — F' () 2
— s
cg — ¢} h
F'(c5) — F' () F' (c5) — F' (c?
Here, the (cg) — (<) since 0 < (cs) — (i) < F" (cg), we have the following time step condition
g — G e — ¢
h2
At

< —F———.
~ F" (cp) h? + 2¢2

T

7
, then ¢

Similarly, when the right hand side of Eq. (11) is less than or equal to ¢} < ¢g is always valid.

From Eq. (11), we take the following inequality

2
> At (9 (—Inef +In(1—¢))—2(1—2c7) + % (2¢q — 20?)) . (13)

n+1

From the inequality (13), to satisfy that ¢, < ¢, we consider the following inequality

2

cr+ At (0(1nc?+1n(1c?))2(120?)+ €

2 (2¢5 — 20?)) > Cq- (14)

Since F' (cq) =0 and ¢, — ¢} < 0, it can be rewritten as

At <F/ (ca) = F7(ef) | E) <1

Co —CP h?

1
Then, since F' (cq) > F' (c}!) on cq < 3 < ci’, we get the following condition

h2
At < —.
— 2¢2

1
Now, we consider that ¢, < ¢! < 3 Similarly, in Eq. (11), if 6 (—In¢] +In(1 —¢})) —2(1 —2¢7) +
% (cfy —2c! 4+ ¢y) <0, then we have ¢ < cs. We want to find the condition of At satisfying that

2
&+ At (9 (—Ine” +1n(1—c)) —2(1— 2" + % (2¢" — 2cy)> > Ca.

Then, we obtain that

/ _ (e 2
A (Flea) = Fe) | 263
Co — CP h?

F'(ca) = F'(c})

K3

Here, since 0 < < F" (ca), the following condition is derived

'

Ca — Cj
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h2
At ——————.
~ F" (cq) h? + 262

2
Lastly, when 6 (—In¢ +In(1—¢})) —2(1 —2¢}) + % (P —2cf +¢y) > 0, then !t > ¢, always

holds true. From Eq. (11), we consider the following inequality

2
C;L LAt <9 (_ lnC? T1n (1 N C?)) -9 (]_ — 20?) ;2 (20 — 207)) < C3-

It can be rewritten as

w(Fle =P 3y

1
Therefore, since F' (cg) < F’' (c}') on ¢} < 5 < ¢p, we can derive the following condition

2
At < Qh? O
We note that a critical time step is denoted by
h2
(5t(M7 h, 6) = m,

where M = max(F" (cq), F"(cg)).
2.2. Energy stability analysis

We now examine the energy stability of the explicit Euler FDM, which considers the AC equation with a
logarithmic potential, while adhering to the analyzed time step constraint (10) on 2. The analysis described

here follows a comparable procedure as presented in [11,14]. We denote the discrete lo-inner product as
N

(c,), = hZcmi . As a result of the free energy functional (3), we obtain a discrete energy functional
i=1

En(c™) and decompose it into two parts as shown below

N
En(ct) = hz [0 (ciIne! +(1—c)In(1—¢l)) + 2} (1 — )]
i=1
h€2 N-1
H S |Vae,y | = £0 e + e, (15)
i=1
where EM (e *hz e 4+ (1—cM)In(l—c?)) 427 (1 — )] and E@(c Z‘thwr

Then, we can descrlbe the fully explicit scheme as the gradient of discrete total energy by

ntl _en 1
% = —EVEh(c”)i, for i = 1, ce ,N. (16)

For the discrete energy functionals £ (¢) and £ (¢) in (15), we consider the following Hessian matrices
H® and H®, which are defined as the Jacobian of VEM (¢) and VE®)(c).
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{Hu)’H(z)} _ {v2g(1)(c)7v25(2)(c)}

F (¢1) 0 1 -1 0
F7 (¢5) 1 2 -1
= h . s h€2 .. o . .. 5
" (CN—l) -1 2 -1
0 F” (en) 0 11
0 0
where F” (¢) = ST 4. Here, the homogeneous Neumann boundary condition is applied. Then, for

k=1,2,...,N, the eigenvalues of H® and H® are

w_,(8., 0 @ _ 4 o (k—Dr
Ak _h(ck+1—ck ), A= . sin TN

respectively. Let v, = wy/|wyg| be the orthonormal eigenvector corresponding to the eigenvalues )\,(f), where

(k—Dr  3(k—Dm (2N —1)(k — 1)7r>

wk:(cos 5N , COS N -, Co8 oN

Then, we can express c”T1 — ¢ with terms of v, as

N
e = g QpVi.
k=1

Theorem 2. Assume that the AC equation with a logarithmic potential satisfies the zero Neumann boundary
condition. If the initial condition satisfies 0 < cq < ¢ < cg <1, for 1 <i¢ < N, then the discrete energy
decreasing property is satisfied by the numerical solutions acquired through the fully explicit Euler method

(9)
Ep(c™™) < &),
if the time step satisfies:

h2

At ————
— MAh? + 2¢2

where M = max (F" (¢qo), F" (cg))

Proof. We can obtain &,(c"*!) by applying the Taylor expansion at ¢” up to the second order as

1
En(c™) = &n(c™) + <EVE;L(C"), - c">
h

1
+ (5 VPEO (e e et e
2h .

where £ = ac™ + (1 — a)c™! and 0 < a < 1. Then, we have the following equation,

1
En(c™) — &n(c") = <_h VEL(c™), " — c”>
h

1
4 _v2€ n+1l _ n7 n+1l _ n> . 18
(Frea@Es —enen—e) (18)
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By using the Hessian matrix and Eq. (16), Eq. (18) can be rewritten as
E(e™) — E(c)

=" 1 1 1 2 1 1
:_<T,c’”r —c">h—|—<ﬁ(H()+H( (et —em), et —c”>h

2h h
1 m
< n+l . n . n+l _ n e n+l . n n+l __ _n
< At<c c’,c c>h+2<c c,c c>h
1
—|—<—H(2)(c”Jrl c"),c"tt —c"> (19)
2h N
N
1 m 1 (2)
= Z <|:— E‘F 5 +%)‘k ]akvk;alvl>h
k=1
B A ST S (i Vi P
T At 2 B2 oN |TRTRS)
N
1 m 2%  ,(k—1Drn] ,
_ e T T 20
;[At+2+h2 Sy Y (20)

where m = maxlgpgN()\z(,l)/h). We note that in Eq. (19), the following has been used:

N

1 1
<EH(1)<C"+1 —c"),c"t — c”> = E <EH(1)(dkek),dlel>
h

k=1 h

N

(1) N (1)
AL Ap
1 h gi=1 h

k=

m

§<cn+1 _ cn7cn+1 _ cn> ,
h

where e, = (0,...,0, 1 ,0,...,0) is a standard basis and c"*! — c" = Zgzl diey. If the time step
k-th pT)sition

satisfies At < #12627 where M = max (F" (¢o), F" (cg)), then the following inequality can be derived

from Eq. (20):

N N
" n 1 2¢2 Mh? + 2¢€? M
gh(C 'H)—é'h(c )S E Oéi<§M+ﬁ—T>:—7 E Oéigo
k=1 k=1

Here, we have used m = maxlgpgN()\z(,l)/h) <M. O
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¢ Initial condition t = 500A¢ c Initial condition t = 500A¢t
ol - t=50At —t=4339At | gl - t=50At ——t = 4339A¢

0 0.2 0.4 0.6 08 = 1 0 0.2 0.4 0.6 08 = 1
(a) (b)
1
Cﬂ ,,,,,,,,,,,,, 5O
f —o—max(c) with At = 1.0095¢
-+-max(c) with At = 0.994t
05 ‘ —o—min(c) with At = 1.0096¢ 1
~+-min(c) with At = 0.995t
C(y 7777777777777 B > S S = = = & € © © o M
0 \ \ \ \ \
0 10 20 30 40 50 t 60

Fig. 1. (a) is evolution of ¢ with At = 1.0096t. (a) is evolution of ¢ with At = 0.996¢. (c) is evolution results of max(c) and min(c)
with At = 1.0096t and At = 0.996¢.

3. Structure-preservation

By observing the maximum principle and discrete energy decrease of the numerical solution, we demon-
strate the structure-preservation of the numerical solution with the proposed critical time step for the AC
equation. We set the initial condition as follows:

¢(x,0) = 0.2rand(z) + 0.4 on Q= (0,1),

where rand(z) is a random value between 0 and 1. For the computational tests, the parameters used are

# = 0.9, N = 400, and ¢ = 0.015. We define discrete maximum and minimum values of the numerical
luti = ; and mi = mi ; tively.

solution as max(c) [nax i an min(c)  in_ i, respectively

To validate that the proposed analyzed time-step restriction 6t = (h?/(Mh? + 2¢%)) guarantees the
maximum principle of the numerical solution, we consider two time steps At = 1.0096t and At = 0.996t.
Fig. 1 shows profiles of ¢(z,t) and evolutions of max(c) and min(c) with At = 1.0096¢t and At = 0.990¢.
When we use the time step as 1.009¢, we obtain an oscillated numerical solution, which does not preserve
the structure. We investigate the temporal variation of discrete total energy. The discrete total energy
functional is defined as follows:

N 9 N-1
n n € n n
En(c )hZF(Ci)+2< a-a 2+Z iy —¢) Jr(CN+1CN)2>~

=1

The initial condition and parameters are the same as in the previous numerical test. Fig. 2 shows the
variation in total energy over time for At = 1.0096t and At = 0.996t. From the result of Fig. 2, we can
observe that the proposed time-step restriction §t is a critical value, which preserves the structure of the
numerical solution for the explicit scheme of the AC equation.
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0 :
At = 1.0096¢
En(c) At = 0.995t
/)(/
-0.05 - VA
01} / 1
045 ‘ ‘ ‘ ‘ ‘
0 10 20 30 40 50 t 60

Fig. 2. The discrete total energy variation.

4. Conclusions

When using a small time step size for high accuracy in numerical solutions, the explicit Euler method is
one of the simplest and fastest methods. Moreover, considering that the logarithmic Flory—Huggins potential
represents the physics involved, the time step analysis of the explicit Euler FDM that preserves the structure
of the AC equation using the logarithmic potential becomes significant. We presented a stability analysis
of a structure-preserving explicit FDM for the AC equation with a logarithmic potential that has two
arguments of the minimum. First, we computed the temporal step constraint which guarantees that if the
initial condition is bounded by the two arguments of the minimum, then the numerical solutions are always
bounded by them, i.e., the explicit numerical scheme satisfies the maximum principle. Second, we proved that
the computed critical time step guarantees that the discrete total energy of the system is non-increasing over
time. Numerical experiments, demonstrating the preservation of the maximum principle and the decrease
in discrete total energy of the numerical solution, were performed. As future work, we will apply the current
methodology to the AC equation with a high-order polynomial free energy [25].
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