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a b s t r a c t 

In this study, we develop a fast and accurate computational method for a weighted three-dimensional 

(3D) volume reconstruction from a series of slice data using a phase-field model. The proposed method 

is based on a modified Allen–Cahn (AC) equation with a fidelity term. The algorithm automatically gener- 

ates the necessary slices between the given slices by solving the governing equation. To reconstruct a 3D 

volume, we first set a source slice and target slice. Next, we set the source slice as the initial condition 

and the target slice as the fidelity function. Finally, we retain the numerical solutions during an evolution 

as intermediate slices between the source and target slices. There are two criteria for choosing the in- 

termediate slice: One is based on the area of the symmetric difference between the phase-field solution 

and the target and the other is based on the change of the phase-field solution relative to the area of 

the target. We use the weighted average of the two criteria. To validate the efficiency and accuracy of 

the proposed numerical algorithm, several computational experiments are conducted. Computational test 

results confirm the superior performance of the proposed algorithm. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

Reconstructing a three-dimensional (3D) volume from two- 

imensional (2D) serial cross-sections has received significant at- 

ention because of its various fields of application, such as radia- 

ion treatment planning [1] , medical image processing [2] , surgery 

lanning [3,4] , and medical image inpainting [5] . Kim and Lee 

6] developed a partial differential equation (PDE) for a 3D volume 

econstruction using 2D slice data. The proposed model is based 

n the modified Cahn–Hilliard (CH) equation, allowing it to re- 

onstruct a smooth surface and satisfy the slice constraints. Bretin 

t al. [7] presented a geometric variational approach for the recon- 

truction of a volume from slices that exactly or approximately fit 

he given slices. 

Related approaches can be divided into two categories: 

opological- and variational-based methods. The first category is 

ased on topological assumptions and uses either a parametric or 

mplicit function to interpolate an accurate surface [8,9] . Ju et al. 

10] reconstructed 3D surfaces with curve networks by consider- 

ng the intersections of the plan projections. Liu et al. [11] ex- 
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ended the projection-based approach from parallel plans to an 

rbitrary convex space. Instead of individually reconstructing the 

urface within the space partitioned by the given slices, Zou et al. 

12] proposed a surface reconstruction algorithm that allows global 

opology control. Huang et al. [13] defined interface sets and con- 

idered topology control in the context of multi-labeled domains. 

The second category is from a variational viewpoint, in which 

he surface is obtained by solving an optimization problem [14,15] . 

n [16] , Bertozzi et al. proposed a reconstruction algorithm for bi- 

ary images based on the CH equation. Li et al. [17] utilized a fi-

elity term to reconstruct the surface and maintain the solution 

lose to the given slices. Li et al. [18] proposed a new fidelity term 

o satisfy the constraints of a multi-component system. Using the 

H equation, these methods can provide an accurate volume re- 

onstruction. However, the CH equation incurs a large computa- 

ional cost owing to the fourth-order operator term. In [19] , the 

uthors proposed a modified Allen–Cahn equation (AC) with mean 

urvature motion to recover a volume with small holes or uneven- 

ess owing to lost voxels. 

In this study, we will utilize the second-order AC equation as 

he governing equation to obtain an efficient volume reconstruc- 

ion. However, the original AC equation-based 3D volume recon- 

truction algorithm [20] can produce unacceptable results because 

t does not consider the fact that the slice area changes nonlin- 

arly and quadratically in certain cases. To resolve this problem, a 
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election algorithm was proposed to select suitable data for inter- 

ediate volumes. The main contribution of this study is the uti- 

ization of the second-order equation and a weighted average with 

uadratic change of area for constructing a surface with low com- 

utational cost compared to the fourth-order methods proposed in 

i et al. [17] . 

This paper is organized as follows. We present the governing 

quation and selection algorithm for reconstructing the 3D volume 

rom two given slices in Section 2 . Section 3 presents a numerical 

cheme for the governing equation. In Section 4 , various computa- 

ional experiments are presented to demonstrate the efficiency and 

obustness of the proposed algorithm. Finally, some concluding re- 

arks are presented in Section 5 . 

. 3D volume reconstruction process 

The proposed reconstruction algorithm consists of two parts: 

he calculation of alternative solutions and the selection of inter- 

ediate data. When a series of slices is given, the proposed algo- 

ithm first calculates the alternative solutions for every two con- 

ecutive slices using the governing equation. These alternative so- 

utions are then used to reconstruct the final volume. As the basic 

dea of the proposed algorithm, given two contiguous slices, the 

olume between them can be seen as a continuous transformation 

rom one slice to the other. We first use the governing equation to 

alculate alternative solutions for the given slices. To ensure that 

he beginning and ending shapes are the same as the given slices, 

 fidelity term is added as follows [21] : 

∂φ( x , t) 

∂t 
= −F ′ (φ(x , t)) 

ε2 
+ �φ(x , t) + α

√ 

F (φ(x , t)) (ψ(x ) 

−φ(x , t)) , (1) 

here t > 0 and x ∈ � is the point on the given slice. Here, φ(x , t)

nd ψ(x ) are phase-field functions representing the source and 

arget shapes, respectively. In addition, F (φ) = 0 . 25(φ2 − 1) 2 , ε is 

n interfacial parameter, and α is a parameter controlling the fi- 

elity. If α = 0 , the equation becomes the classical AC equation, 

hich models motion by mean curvature: 

∂φ(x , t) 

∂t 
= − F ′ (φ(x ,t)) 

ε2 + �φ(x , t) . (2) 

e use another property of the AC equation such as preservation 

f a smooth interface transition layer. While preserving the smooth 

nterface transition layer, we evolve the phase-field function de- 

ending on the fidelity term α
√ 

F (φ(x , t)) (ψ(x ) − φ(x , t)) from 

(x , 0) to ψ(x ) . 

The proposed selection algorithm for constructing a volume 

rom two slice data and their alternative solutions is as follows: Let 

 1 and S 2 be the given source and target slice data, respectively. 

e introduce a time-dependent domain �1 (t) with �1 (0) = 

 1 . Using φ(x , t) and ψ(x ) , we define �1 (t) = { x | φ(x , t) ≥ 0 }
nd S 2 = { x | ψ(x ) ≥ 0 } . Let us introduce the following two time-

ependent indicator functions: 

 (t) = Area ( (�1 (t) ∪ S 2 ) \ (�1 (t) ∩ S 2 ) ) (3) 

= | (�1 (t) ∪ S 2 ) \ (�1 (t) ∩ S 2 ) | = 

N x ∑ 

i =1 

N y ∑ 

j=1 

∣∣∣∣ψ i j − φn 
i j 

2 

∣∣∣∣h 

2 , 

(t) = Area (�1 (t)) = | �1 (t) | = 

N x ∑ 

i =1 

N y ∑ 

j=1 

∣∣∣∣1 + φn 
i j 

2 

∣∣∣∣h 

2 , (4) 

here A (t) and B(t) are the discrete areas of sets (�1 (t) ∪ S 2 ) \
�1 (t) ∩ S 2 ) and �1 (t) at time t = n �t . Here, A (t) is the area

f symmetric difference between the two sets, � (t) and S ; and 
1 2 

2

 (t) monotonically decreases over time. However, B(t) can in- 

rease or decrease over time. Fig. 1 (a)–(d) show S 1 , S 2 , �1 (t) , and

 (t) , respectively. Fig. 1 (e) and (f) display the stacking of interme- 

iate shapes between the source and target shapes; and the iso- 

urface of the reconstructed volume at level zero, respectively. 

During the temporal evolution of S 1 into S 2 , we retain the inter- 

ediate slice data �1 (a k ) at time t = a k based on A (t) and inter-

ediate data �1 (b k ) at time t = b k based on B(t) for k = 1 , . . . , N z .

ere, N z denotes the number of slices between S 1 and S 2 . k =
 , . . . , N z , let a k be the minimum integer that satisfies Eq. (5) : 

 (a k �t) ≤ N z + 1 − k 

N z + 1 

A ( 0) , (5) 

here A (0) is the initial area of the symmetric difference between 

he source S 1 and target S 2 data, that is, A (0) = (S 1 ∪ S 2 ) \ (S 1 ∩
 2 ) . Eq. (5) indicates that we save the indices that approximately 

atisfy 

 (a 1 �t) ≈ N z A (0) 

N z + 1 

, A (a 2 �t) ≈ (N z − 1) A (0) 

N z + 1 

, . . . , A ( a N z �t) 

≈ A (0) 

N z + 1 

, 

hich also implies that we keep the indices whenever there is an 

pproximately A (0) / (N z + 1) decrement in A (t) , and we assume

hat the symmetric difference A (t) changes linearly with respect 

o the height. 

Next, we describe how to define the value of b k based on B(t) 

nd why it is needed. We consider arbitrary source and target 

hapes, as shown in Fig. 2 (a). In general, the source and target ar- 

as differ. Fig. 2 (b) shows the disks of the same areas correspond- 

ng to the arbitrary shapes in Fig. 2 (a). If we continuously stack the 

lices, we then have a truncated cone (TC), as shown in Fig. 2 (b).

e define 

 TC (z) = π
(

R 2 − R 1 

(N z + 1) h 

z + R 1 

)2 

(6) 

n terms of h , height coordinate z, radius of source R 1 , and radius of

arget R 2 . Here, h is the distance between two consecutive slices. 

s we can see from Eq. (6) , the change in area with respect to

eight is nonlinear and is a quadratic function of z. In general, be- 

ause B(t) increases or decreases depending on the sign of R 1 − R 2 , 

e define b k as the minimum integer that satisfies the following 

ondition: 

ig (R 1 − R 2 ) B(b k �t) ≤ sig (R 1 − R 2 ) B TC (kh ) , for k = 1 , . . . , N z , (7) 

here sig (R ) is the sign function of a real number R , which is −1

f R < 0 , 1 else if R > 0 , and 0 otherwise. Eq. (7) indicates that we

ave the indices which approximately satisfy 

(b 1 �t) ≈ B TC (h ) , B(b 2 �t) ≈ B TC (2 h ) , . . . , B(b N z �t) ≈ B TC (N z

We now describe the proposed algorithm. Using two conditions 

5) and (7) , we generate two index sets, a = { a 1 , a 2 , . . . , a N z } and

 = { b 1 , b 2 , . . . , b N z } . Let 
i jk be a 3D reconstructed volume data on

V = { (x i , y j , z k ) : x i = a + hi, y j = c + h j, z k = hk, 0 ≤ i ≤ N x , 0 ≤
j ≤ N y , 0 ≤ k ≤ N z + 1 } . For a given weighting parameter 0 ≤ θ ≤ 1 ,

e define the 3D volume as 

i jk = 

⎧ ⎨ 

⎩ 

φ0 
i j 

if k = 0 , 

φn k 
i j 

if k = 1 , . . . , N z , 

ψ i j if k = N z + 1 , 

(8) 

here n k = round ((1 − θ ) a k + θb k ) . Here, round (x ) is the round

unction which rounds the input value x to the nearest integer. 

ig. 3 (a) and (b) show schematic illustrations of these processes; 

nd the temporal evolution of A (t) and B(t) along with the corre- 

ponding morphologies, respectively. 
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Fig. 1. Schematic representation of (a) source shape �1 (0) = S 1 , (b) target shape S 2 , (c) intermediate shape �1 (t) , (d) (�1 (t) ∪ S 2 ) \ (�1 (t) ∩ S 2 ) at time t , (e) stacking 

intermediate shapes between source and target shapes, and (f) isosurface of the reconstructed volume at level zero. 

Fig. 2. Disk with an area equal to the slice area: (a) arbitrary shapes and (b) corre- 

sponding disk shapes with equivalent areas. 
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Fig. 3. (a) Schematic diagram of determining discrete time used to save intermediate da

B(t) with corresponding morphologies. 

3 
If θ = 0 , the volume is then reconstructed based only on A (t) ;

f θ = 1 , then the volume is reconstructed based only on B(t) . Note

hat if the areas of the source and target are the same, we cannot 

se θ = 1 because B(t) is almost constant, and it is difficult to ex- 

ract slices between the source and target shapes. Therefore, in this 

ase, it is preferable to use θ = 0 . 

. Numerical solution 

In this section, we introduce an efficient numerical scheme for 

he proposed algorithm. Let � = (L x , R x ) × (L y , R y ) be a two-

imensional domain and �h = { (x i , y j ) : x i = L x + hi, y j = L y +
j, 0 ≤ i ≤ N x , 0 ≤ j ≤ N y } be the discrete computational domain,

here h is the space step. Let φn 
i j 

= φ(x i , y j , n �t ) , where �t de-

otes the temporal step. Using the operator splitting method, we 

plit Eq. (1) into the heat, nonlinear, and fidelity terms as follows: 
ta by applying θ . (b) Schematic illustration of the temporal evolution of A (t) and 
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Fig. 4. Volume reconstruction from synthetic images: (a) θ = 0 , (b) θ = 0 . 5 , and (c) θ = 1 . 
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∂φ(x , t) 

∂t 
= �φ(x , t) , (9) 

∂φ(x , t) 

∂t 
= −F ′ (φ(x , t)) 

ε2 
, (10) 

∂φ(x , t) 

∂t 
= α

√ 

F (φ(x , t)) (ψ(x ) − φ(x , t)) . (11) 

irst, we compute the heat Eq. (9) using the finite difference 

ethod (FDM): 

φ∗
i j 

− φn 
i j 

�t 
= �d φ

n 
i j , (12) 

here �d φ
n 
i j = (φn 

i +1 , j + φn 
i −1 , j + φn 

i, j+1 + φn 
i, j−1 − 4 φn 

i j ) /h 2 under 

he Dirichlet boundary condition. Second, using the separation of 

ariables [22] , the analytical solution of nonlinear Eq. (10) is 

∗∗
i j = φ∗

i j 

/ 

√ (
1 −

(
φ∗

i j 

)2 
)

e 
− 2�t 

ε2 + 

(
φ∗

i j 

)2 
. (13) 

hird, the numerical solution of the fidelity term (11) is an ordi- 

ary differential equation (ODE), which can be obtained as follows: 

n +1 
i j 

= ψ i j + (φ∗∗
i j − ψ i j ) e 

−α�t 
√ 

F (φ∗∗
i j 

) 
. (14) 

he proposed method consists of two closed-form solutions for 

he ODEs and one numerical approximation for the explicit heat 

quation. The proposed computational method for Eqs. (12) –(14) 

s simple to implement and can achieve fast convergence. Let N

e the mesh grid size. The computational complexity of the ODEs 

s O (N) . For the heat equation, we use an explicit FDM with a

omputational complexity of O (N) . In summary, the complexity of 

he entire processing is O (N) . Furthermore, we can apply a fast 

iscrete cosine transform and implicit methods to Eq. (9) with 

 computational complexity of O (N log N) . In addition, the pro- 

osed computational method can be straightforwardly applied to 

 GPU-accelerated discrete cosine transform implementation that 

erforms up to several times faster than CPU-only alternatives. In 

his study, we propose a method ( Eqs. (12) –(14) ) which is simpler

o implement. 

. Numerical experiments 

In this study, we focus on 3D reconstruction using the given 

lice data. For preparation of the 2D slice images, we refer the 

eader to [23,25] for image segmentation techniques such as the 

evel-set method [24] . 
4 
.1. Basic mechanism and accuracy of the algorithm 

In this section, we demonstrate the results of the proposed al- 

orithm with different θ values. The proposed algorithm is illus- 

rated through the following synthetic function, the volume and 

urface of which are defined as positive-valued and zero-level sets, 

espectively: 

(x ) = tanh [(0 . 2 −
√ 

(x − 0 . 5) 2 + (y − 0 . 5) 2 + 0 . 1 z) / ( 
√ 

2 ξ )] , 

here ξ = 4 h/ [2 
√ 

2 tanh 

−1 (0 . 9)] . All tests are performed on � =
0 , 1) × (0 , 1) × (0 , 42 / 128) with a 128 × 128 × 42 mesh grid. The

ther numerical parameters are �t = 0 . 1 h 2 , ε = h , α = 30 0 0 , and

 z = 40 . The results are presented in Fig. 4 . We also measure our

lgorithm by using the error e h = ‖ (φh − ψ h ) /ψ h ‖ 2 , where ψ h is

he theoretical values obtained from the function. The errors are 

 . 7 × 10 −4 , 1 . 6 × 10 −3 and 1 . 8 × 10 −3 for θ = 0 , 0 . 5 , and 1, respec-

ively. These numerical results are in good agreement with the the- 

retical values. 

.2. Volume reconstruction from multi-slice data 

In this section, we describe the use of multi-slice data to ex- 

mine whether the proposed algorithm reconstructs the volume 

ell. We arbitrarily generate multi-slice data ( S 1 , S 2 , S 3 , and S 4 )

s shown in Fig. 5 (a)–(d) in � = (0 , 1) × (0 , 1) . The parameters

sed are θ = 0 . 5 , N x = N y = 100 , N z = 20 , �t = 0 . 1 h 2 , ε = h , and

= 30 0 0 . Fig. 5 (e) shows the reconstructed volume using S 1 , S 2 ,

 3 , and S 4 , demonstrating that the proposed algorithm achieves a 

olume reconstruction well from multiple slices. 

To further assess the efficiency of our method, we reconstruct 

 spherical shell surface with the same initial conditions as in 

im and Lee [6] . The experiments are performed on the domain 

= (0 , 65) × (0 , 65) × (0 , 65) . The inner and outer radii of the

pherical shell are 12 and 24, respectively. We choose 17 slices 

nd use mesh grids consisting of N = 33 × 33 × 33 , 65 × 65 × 65 ,

29 × 129 × 129 , and 257 × 257 × 257 with N z = 1 , 3, 7, and 15,

espectively. In Fig. 6 (a)–(c), we show the surface reconstructions 

ith different mesh grid 65 × 65 × 65 , 129 × 129 × 129 , and 257 ×
57 × 257 , respectively. The numerical parameters �t = 0 . 1 h 2 , ε =
 , θ = 0 , and α = 30 0 0 are chosen. The computational results in-

icate that the proposed algorithm can successfully reconstruct 

mooth surfaces. 

In Fig. 7 , we plot the total CPU time versus mesh grid N with a

inear fitting. The results indicate that the convergence rate of the 

omputational cost is linear with respect to N as expected from the 

iscretization. Furthermore, the proposed algorithm is faster than 

im and Lee’s method [6] . 
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Fig. 5. (a)–(d) are multi slice data: S 1 , S 2 , S 3 , and S 4 , respectively. (e) is the reconstructed volume with S 1 , S 2 , S 3 , and S 4 . 

Fig. 6. Volume reconstruction with different sized mesh grids. (a) N = 65 × 65 × 65 , (b) N = 129 × 129 × 129 , and (c) N = 257 × 257 × 257 . 

Fig. 7. Computational results with a linear fitting for the total CPU time versus the 

mesh grid. 
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.3. Volume reconstructions using complex slice data 

In this section, we describe the reconstruction of a 3D volume 

ith several more complicated and complex slice data: the mini- 

al surface, dragon, bunny, and armadillo. We consider the effect 

f a different N z and the number of slice data between two given 

lices. 

Fig. 8 (a)–(c) illustrate the volume reconstructions for the min- 

mal surface with N z = 2 , 4, and 8, respectively. The tests are

erformed on � = (0 , 1) × (0 , 1) × (0 , 1) with a mesh grid 128 ×
28 × 128 . The other parameters are chosen as θ = 0 , �t = 0 . 1 h 2 ,

= 3 h , and α = 10 , 0 0 0 . The results show that our algorithm

orks well for different numbers of inpainted slices. 

Fig. 9 (a) and (b) show the reconstructed volume from the 

hinese-dragon and XYZ-dragon models, respectively. From left to 
5 
ight, the original dragon model, parallel slices data used, and re- 

onstructed volume are shown, respectively. Fig. 9 (a) is performed 

n � = (0 , 1) × (0 , 420 / 410) × (0 , 199 / 410) with a mesh grid

ize of 410 × 420 × 199 . Fig. 9 (b) is performed on � = (0 , 1) ×
0 , 344 / 238) × (0 , 190 / 238) with a mesh grid 238 × 344 × 190 .

n addition, 67 and 64 slices are chosen for testing the Chinese- 

ragon and XYZ-dragon models, respectively. The other parame- 

ers are chosen as θ = 0 , �t = 0 . 1 h 

2 , ε = 3 h, and α = 10 , 0 0 0 . By

omparing the input slice data with their corresponding results, we 

an see that our algorithm can accurately reconstruct the volume 

nd retain the details. 

We also test our algorithm using the bunny and armadillo mod- 

ls, which have more details, such as the outline of the muscle 

nd texture of the skin. These two reconstructions are performed 

n the domains � = (0 , 1) × (0 , 213 / 169) × (0 , 193 / 169) and

= (0 , 1) × (0 , 180 / 165) × (0 , 118 / 165) with 169 × 213 × 193

nd 165 × 180 × 118 sized mesh grids, respectively. In addition, 65 

nd 40 slices are chosen for the bunny and armadillo models, re- 

pectively. The other parameters are the same as those used in the 

forementioned tests. The computational results shown in Fig. 10 

emonstrate that our algorithm can reconstruct clear volumes. 

.4. Quantitative comparisons 

In this section, we compare our proposed method to related 

ethods using the accuracy and efficiency as quantitative met- 

ics. To show the difference between the reconstructed volume and 

round truth, we use the Hausdorff distance between the vertices 

f two surfaces. The Hausdorff distance d H (X 1 , X 2 ) between two 

ertex sets X 1 and X 2 is defined as follows: 

 H (X 1 , X 2 ) = max { sup 

x 1 ∈ X 1 
{ inf 

x 2 ∈ X 2 
{ d(x 1 , x 2 ) }} , sup 

x 2 ∈ X 2 
{ inf 

x 1 ∈ X 1 
{ d(x 1 , x 2 ) }}} , 
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Fig. 8. Volume reconstruction of minimal surface with different numbers of inpainted slices: (a) N z = 2 , (b) N z = 4 , and (c) N z = 8 . 

Fig. 9. Volume reconstructions from (a) Chinese-dragon and (b) XYZ-dragon models. From left to right, the original dragon model, parallel slice data used, and reconstructed 

volume, respectively. 

Fig. 10. Volume reconstructions for (a), (b) bunny and (c), (d) armadillo from different angles. 

Table 1 

Comparisons of reconstruction errors between our method and other methods. 

‘NSlice’ is the number of parallel slices used. 

NSlices 10 20 30 50 60 

Li et al.’s method [17] 0.0471 0.0413 0.0367 0.0261 0.0173 

Zou’s method [15] 0.0468 0.0395 0.0312 0.0167 0.0104 

Our method 0.0417 0.0312 0.0245 0.0113 0.0083 
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here d(x 1 , x 2 ) represents the Euclidian distance between vertices 

 1 and x 2 . 

Table 1 lists the Hausdorff distance for the armadillo model 

ith different numbers of parallel slices. We compare the cur- 

ent results with the those from Zou’s method [15] and Li et al.’s 

ethod [17] . We observe that the computational results obtained 

rom the proposed algorithm are qualitatively in good agreement 

ith those in Zou [15] . 

For comparison with Li et al.’s method [17] , we perform vol- 

me reconstructions using a human head and slice data of a hu- 

an brain from [26] . The simulation of the human head is per- 

ormed on (0 , 1) × (0 , 1) × (0 , 286 / 256) with a mesh grid size of

56 × 256 × 286 . Here, 96 parallel slice data are chosen. To test 

he human brain, we use 108 parallel slice data and set the sim- 

lation on the domain (0 , 1) × (0 , 1) × (0 , 322 / 256) with a 256 ×
6 
56 × 322 mesh grid. The other parameters �t = 0 . 1 h 

2 , ε = 3 h,

nd α = 10 , 0 0 0 are used. 

Fig. 11 shows the reconstructed volumes. From left to right, 

hese are the original volumes, the results obtained using Li et al.’s 

ethod [17] , and the results obtained using our proposed method, 

espectively. We can see that the proposed method can success- 

ully manage complex topologies and maintain more topological 

etails compared with Li et al.’s method [17] . The CPU times re- 

uired for the human head and brain reconstruction are 12.72 s 

nd 17.15 s, respectively. However, it takes 65.45 s and 91.26 s for 

i et al.’s method [17] . The proposed algorithm achieves a recon- 

truction extremely quickly because the proposed method utilizes 

he second-order equation with lower computation cost compared 

o the fourth-order method in Li et al. [17] . 

.5. Limitations of our method 

Because our method first calculates alternative solutions for ev- 

ry two consecutive slices using the governing equation, and these 

lternative solutions are then selected to reconstruct the final vol- 

me, we can reconstruct the volume from a set of slice data. As a 

imitation of our proposed implementation, when we choose slice 

ata with few slices, our method may fail to recover the volume 

ith small details, and the volumes may be reconstructed with a 

taircase effect (see Fig. 12 (a)). Here, 34 slice data are used. A pos- 

ible way to overcome this disadvantage is to apply the modified 
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Fig. 11. Volume reconstructions for human head and brain models: (a) original surfaces, (b) results obtained by Li et al.’s method [17] , and (c) results obtained using our 

approach. 

Fig. 12. Limitations of our method: (a) reconstructed volume with few slice data and (b) volume with post-processing using Eqs. (15) and (16) . 
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C equation to the entire domain with a few iterations: 

∂ϕ(x , t) 

∂t 
= −F ′ (ϕ(x , t)) 

ε2 
+ �ϕ(x , t) 

+ α
√ 

F (ϕ(x , t)) (φ(x ) − ϕ(x , t)) , (15) 

(x , 0) = φ(x ) . (16) 

ig. 12 (b) shows the results obtained using Eqs. (15) and (16) with 

he initial volume shown in Fig. 12 (a). As can be seen the staircase

ffect is reduced and the volume becomes smooth. It is generally 

ifficult to remove the staircase effect and retain small volumes. In 

he future, we will extend our method to recover small volumes 

ith fewer slice data. 

. Conclusion 

In this study, we presented an efficient and accurate compu- 

ational algorithm for a weighted 3D volume reconstruction from 

ulti-slice data using a shape transformation. The proposed al- 

orithm is based on a modified AC equation with a fidelity term 

hich includes the target shape. To reconstruct a 3D volume from 

he given source and target slices, we first set the source slice as 

he initial condition and the target slice as the fidelity function. 

fter simulating the transformation process, the numerical solu- 

ions were maintained and used as intermediate slices between the 

ource and target slices. Using a weighted average of two criteria, 

hese intermediate slices were selected to reconstruct the final vol- 

me. To validate the efficiency and accuracy of the proposed com- 

utational method, several computational experiments were per- 

ormed and the results of the numerical tests confirmed the supe- 

ior performance of the proposed algorithm. Because the proposed 
7 
ethod is intrinsically parallel, it would be interesting to imple- 

ent the proposed algorithm on parallel computers in a future re- 

earch topic. 
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