
Journal of Computational and Applied Mathematics 453 (2025) 116159

A
0

Contents lists available at ScienceDirect

Journal of Computational and Applied Mathematics

journal homepage: www.elsevier.com/locate/cam

A fourth-order finite difference method for the Allen–Cahn equation
Seokjun Ham a, Seungyoon Kang a, Youngjin Hwang a, Gyeonggyu Lee a,
Soobin Kwak a, Jyoti b, Junseok Kim a,∗

a Department of Mathematics, Korea University, Seoul, 02841, Republic of Korea
b The Institute of Basic Science, Korea University, Seoul, 02841, Republic of Korea

A R T I C L E I N F O

Keywords:
Allen–Cahn equation
Fourth-order accurate
Finite difference method
Penta-diagonal matrix

A B S T R A C T

In this study, we present a spatially fourth-order accurate hybrid numerical scheme for the
Allen–Cahn (AC) equation in two-dimensional (2D) and three-dimensional (3D) spaces. The
proposed hybrid numerical method splits the AC model into nonlinear and linear components
using the operator splitting technique. The nonlinear component is solved by using an analytic
solution. In 3D space, the linear diffusion term is solved by splitting it into the 𝑥-, 𝑦-, and
𝑧-directional single spatial variable diffusion equations. The fully implicit scheme for temporal
difference and the spatially fourth-order finite difference discretization are applied. The system
of discrete equations becomes a penta-diagonal matrix that can be directly solved without any
iterative techniques. Stability analysis and various computational experiments are performed to
verify the numerical convergence and stability of the proposed method in 2D and 3D spaces.
Furthermore, we compared the convergence rate, error, and CPU time between the proposed
fourth-order and standard second-order schemes.

1. Introduction

We present a finite difference method (FDM) for the Allen–Cahn (AC) equation [1]:
𝜕𝜙(𝐱, 𝑡)

𝜕𝑡
= −

𝐹 ′(𝜙(𝐱, 𝑡))
𝜖2

+ 𝛥𝜙(𝐱, 𝑡), 𝐱 ∈ 𝛺, 𝑡 > 0, (1)

𝐧 ⋅ ∇𝜙(𝐱, 𝑡) = 0, 𝐱 ∈ 𝜕𝛺, (2)

where 𝛺 ⊂ R𝑑 for 𝑑 = 2, 3; 𝜙(𝐱, 𝑡) is an order parameter which takes the values between two immiscible phases −1 and 1; 𝜖 > 0; and
𝐹 (𝜙) = 0.25(𝜙2 − 1)2. The AC equation can be obtained from the 𝐿2 gradient flow of the following total free energy functional:

(𝜙) = ∫𝛺

(

𝐹 (𝜙)
𝜖2

+ 1
2
|∇𝜙|2

)

𝑑𝐱. (3)

Also, differentiating the total free energy functional Eq. (3) with respect to time 𝑡, we can derive as follows:

𝑑
𝑑𝑡

(𝜙) = ∫𝛺

(

𝐹 ′(𝜙)
𝜖2

𝜙𝑡 + ∇𝜙 ⋅ ∇𝜙𝑡

)

𝑑𝐱

= ∫𝛺

(

𝐹 ′(𝜙)
𝜖2

− 𝛥𝜙
)

𝜙𝑡𝑑𝐱 = −∫𝛺
|

|

𝜙𝑡
|

|

2 𝑑𝐱 ≤ 0, (4)

using the integration by part and the homogeneous Neumann boundary condition.

∗ Corresponding author.
E-mail address: cfdkim@korea.ac.kr (J. Kim).
vailable online 26 July 2024
377-0427/© 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

https://doi.org/10.1016/j.cam.2024.116159
Received 1 November 2023; Received in revised form 31 May 2024

https://www.elsevier.com/locate/cam
https://www.elsevier.com/locate/cam
mailto:cfdkim@korea.ac.kr
https://doi.org/10.1016/j.cam.2024.116159
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cam.2024.116159&domain=pdf
https://doi.org/10.1016/j.cam.2024.116159


Journal of Computational and Applied Mathematics 453 (2025) 116159S. Ham et al.

e
a
c

T
p
r
g
q
v
c
O
s
p
e
r
c
w
p
n
H
w
b
s
N
o
c
d
t
t
s
t
t
h
r
c
t
a
s
t

a
f
a
h
e
s
T

2
p

2

i
t

The AC equation is a model of the physical phenomenon for anti-phase domain coarsening in a binary alloy [1]. Because the AC
quation can be applied to various physical study, many kind of numerical approach es to solve the AC equation are developed such
s finite difference [2–4], finite element [5–7], and spectral [8] methods. A large number of studies demonstrating the AC equation
ontains a stability and error analysis [9], and some such as [10] focus on proving the stability.

Wang et al. [2] proposed a linear energy stable and maximum principle preserving semi-implicit scheme for the AC equation.
he authors considered the AC equation with double well potential adopting a stabilized energy factorization. Xiao and Feng [11]
resented a second-order operator splitting method (OSM) for the AC equation. The proposed method reduces high storage
equirements and complexity preserves maximum bounded principle. Numerical tests such as multi-phase separations and crystal
rowth in two and three dimensions are given. He et al. [3] proposed a spatial fourth-order scheme by using a fourth-order
uasi-compact scheme and Strang’s splitting for the fractional AC equation. Because fractional AC equation is a popular topic,
arious high-order schemes for the reaction–diffusion equation have been presented. There also have been studies on stability and
onvergence analysis works for the OSM to various partial differential equations and phase field models. Zhai et al. [12] proposed
SM combined with pseudo-spectral method for space fractional nonlinear Schrödinger equation. Zhai et al. [13] presented the

emi-implicit spectral deferred correction method with the OSM to solve the fractional Gray–Scott model. Almushaira et al. [14]
roposed a high-order multi-dimensional space-fractional method for reaction–diffusion equations and provided stability, accuracy,
fficiency, and some applications including AC model. Wang [15] proposed a high-order compact method for time-fractional
eaction–diffusion equations with variable coefficients. The method is developed under the nonhomogeneous Neumann boundary
ondition. Authors proved unconditional stability and second-order convergence. In [16], a second-order Strang splitting scheme
ith exponential integrating factor was introduced for the AC equation with logarithmic Flory–Huggins potential. The maximum
rinciple, energy stability, and convergence were proved for the proposed scheme. The compact scheme is a kind of high order
umerical solver [17,18]. In particular, there are various studies that used the compact scheme to solve the AC equation [18–21].
owever, the compact scheme is hard to calculate boundary points. Furthermore, it requires an additional approximation scheme
hich makes the high numerical computation and computational cost. Zhai et al. [21] proposed the compact difference scheme
ased on the Crank–Nicolson/Adams–Bashforth scheme combined with the Douglas–Gunn ADI method in the three-dimensional (3D)
pace to solve the AC equation. They presented the numerical simulation using the three boundary conditions which are Dirichlet,
eumann, and periodic boundary conditions. To maintain the accuracy and simplicity of the system, they consider the fourth-
rder accurate Padé approximations. Zhang et al. [22] proposed third-order explicit structure-preserving schemes for two modified
onservative AC equations(with RSLM and with BBLM). Mass conservation, convergence and stability is proven in the study and they
emonstrated various numerical experiments to demonstrate the advantages of the proposed method. Rizwan et al. [23] presented
he high-order compact scheme to solve the AC equation coupled with the incompressible Navier–Stokes equations to simulate
he two phase incompressible flow. Lee et al. [24] studied a high-order conservative AC equation that is unconditionally energy
table with nonlocal Lagrange multiplier. The unconditional stability is analytically shown and numerical experiments illustrates
he accuracy and energy stability of the proposed scheme. The fourth-order compact FDM was studied to solve the AC equation in
he 3D space by Long et al. [20]. To overcome the time step restriction, they used linearly stabilized splitting scheme and achieved
igh-order accuracy and stability of the system. Also, they took a linear multigrid solver to improve the efficiency and stability. In
ecent years, the fourth-order numerical algorithm to solve the AC equation is solved with additional stabilized term [25]. They
onsider the Crank–Nicolson/Adams–Bashforth method to deal with the non-linear term. In addition, in the iteration, they consider
hat the three level subiterations which are consistent with the Crank–Nicolson/Adams–Bashforth method to preserve the stability
nd accuracy. Bo et al. [26] solved the AC equation in the two-dimensional (2D) space using fully discrete compact difference
cheme with second-order accuracy in time and fourth-order in space. They investigated the energy stability of the scheme under
he condition of discrete maximum principle with reasonable spacial mesh and time steps.

In this study, we consider the fourth-order numerical scheme to solve the AC equation in 2D and 3D space. We use the OSM
nd separate the AC equation into a nonlinear equation and a linear equation. The nonlinear term is solved by using the closed-
orm solution, based on explicit Euler’s method for the temporal derivative. The linear term is solved by splitting it into the 𝑥-, 𝑦-
nd 𝑧-directions, considering the implicit scheme for temporal difference. We note that using OSM has the advantage of allowing
igher-dimensional problems to be solved with a simple, non-iterative direct solver. However, it is difficult to prove the original
nergy stability of the governing equation with the OSM. Stability of the proposed method is proven based on the von Neumann
tability analysis. We conduct numerical experiments such as energy decrease and motion by mean curvature in 2D and 3D spaces.
he convergence rate, error and cpu time is compared between the proposed method and a second-order scheme.

The outline of this paper is organized as follows. In Section 2, we present the fourth-order accurate hybrid method on grids in
D and 3D spaces. We conduct computational tests and stability analysis in Section 3. Finally, our conclusions and future works are
resented in Section 4.

. Numerical method

Now, we present computational solution algorithms for the AC model, using the hybrid method that combines OSM and the
mplicit Euler method. We demonstrate the discretization theory for the 2D domain and extend from the 2D discretized algorithm
2

o the 3D domain in Sections 2.1 and 2.2, respectively.
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2.1. Two-dimensional space

We consider the AC equation on the 2D domain 𝛺 = (𝐿𝑥, 𝑅𝑥) × (𝐿𝑦, 𝑅𝑦). We discretize the domain with the cell-centered grid
that consists 𝑥𝑖 and 𝑦𝑗 are grid points. Let 𝛺ℎ =

{

(𝑥𝑖, 𝑦𝑗 )| 𝑥𝑖 = 𝐿𝑥 + ℎ(𝑖 − 0.5), 𝑦𝑗 = 𝐿𝑦 + ℎ(𝑗 − 0.5), for 𝑖 = 1,… , 𝑁𝑥, 𝑗 = 1,… , 𝑁𝑦
}

be the discrete domain. Here, the spatial mesh size is equal in all directions: ℎ = (𝐿𝑥 −𝑅𝑥)∕𝑁𝑥 = (𝐿𝑦 −𝑅𝑦)∕𝑁𝑦. We set the value of
𝜖 to depend on the number of grids [27]. Let 𝛥𝑡 = 𝑇 ∕𝑁𝑡 be time step. We denote 𝜙(𝑥𝑖, 𝑦𝑗 , 𝑛𝛥𝑡) by the numerical approximation 𝜙𝑛

𝑖𝑗 .
In the 2D domain 𝛺, the AC model (1) can be written as

𝜕𝜙(𝑥, 𝑦, 𝑡)
𝜕𝑡

= −
𝐹 ′(𝜙(𝑥, 𝑦, 𝑡))

𝜖2
+ 𝜙𝑥𝑥(𝑥, 𝑦, 𝑡) + 𝜙𝑦𝑦(𝑥, 𝑦, 𝑡), (𝑥, 𝑦) ∈ 𝛺, 𝑡 > 0. (5)

For the AC Eq. (5), we use the following temporal operator splitting discretization [28].

𝜙(𝑥, 𝑦, (𝑛 + 1)𝛥𝑡) = (𝛥𝑡
𝑦 ◦𝛥𝑡

𝑥 ◦ 𝛥𝑡)𝜙(𝑥, 𝑦, 𝑛𝛥𝑡), (6)

which has three-step operators.
First, we obtain 𝛷1(𝑥, 𝑦) from 𝜙(𝑥, 𝑦, 𝑛𝛥𝑡) and the nonlinear operator  𝛥𝑡 as

𝛷1(𝑥, 𝑦) =  𝛥𝑡𝜙(𝑥, 𝑦, 𝑛𝛥𝑡). (7)

Here, 𝛷1(𝑥, 𝑦) is a solution of the following nonlinear equation at time 𝜏 = 𝛥𝑡:

𝜕𝑝(𝑥, 𝑦, 𝜏)
𝜕𝜏

= −
𝐹 ′(𝑝(𝑥, 𝑦, 𝜏))

𝜖2
(8)

with the initial condition 𝑝(𝑥, 𝑦, 0) = 𝜙(𝑥, 𝑦, 𝑛𝛥𝑡), i.e., 𝛷1(𝑥, 𝑦) = 𝑝(𝑥, 𝑦, 𝛥𝑡).
Second, 𝛷2(𝑥, 𝑦) is obtained from 𝛷1(𝑥, 𝑦) and 𝑥-direction linear operator 𝛥𝑡

𝑥 as

𝛷2(𝑥, 𝑦) = 𝛥𝑡
𝑥 𝛷1(𝑥, 𝑦). (9)

Here, 𝛷2(𝑥, 𝑦) is a solution of the linear equation at time 𝜏 = 𝛥𝑡:
𝜕𝑞(𝑥, 𝑦, 𝜏)

𝜕𝜏
= 𝑞𝑥𝑥(𝑥, 𝑦, 𝜏) (10)

with the initial condition 𝑞(𝑥, 𝑦, 0) = 𝛷1(𝑥, 𝑦), i.e., 𝛷2(𝑥, 𝑦) = 𝑞(𝑥, 𝑦, 𝛥𝑡).
Finally, we get 𝜙(𝑥, 𝑦, (𝑛 + 1)𝛥𝑡) from 𝛷2 and 𝑦-direction linear operator 𝛥𝑡

𝑦 as

𝜙(𝑥, 𝑦, (𝑛 + 1)𝛥𝑡) = 𝛥𝑡
𝑦 𝛷2(𝑥, 𝑦). (11)

Here, 𝜙(𝑥, 𝑦, (𝑛 + 1)𝛥𝑡) is a solution of the linear equation at time 𝜏 = 𝛥𝑡:
𝜕𝑟(𝑥, 𝑦, 𝜏)

𝜕𝜏
= 𝑟𝑦𝑦(𝑥, 𝑦, 𝜏) (12)

with the initial condition 𝑟(𝑥, 𝑦, 0) = 𝛷2(𝑥, 𝑦), i.e., 𝜙(𝑥, 𝑦, (𝑛 + 1)𝛥𝑡) = 𝑟(𝑥, 𝑦, 𝛥𝑡). Eqs. (10) and (12) are solved using the fully implicit
Euler method. The homogeneous Neumann boundary condition is applied to all three operators.

Now we describe each step with numerical schemes. First, we solve Eq. (8)

𝜕𝑝(𝑥, 𝑦, 𝜏)
𝜕𝜏

= −
𝐹 ′(𝑝(𝑥, 𝑦, 𝜏))

𝜖2
. (13)

We obtain the solution, for any time 𝜏 > 0, using the separation of variables [29,30] as follows:

𝑝(𝑥, 𝑦, 𝜏) =
𝑝(𝑥, 𝑦, 0)

√

𝑒
−2𝜏
𝜖2 + (𝑝(𝑥, 𝑦, 0))2

(

1 − 𝑒
−2𝜏
𝜖2

)

. (14)

Here 𝑝(𝑥, 𝑦, 0) ∶= 𝜙(𝑥, 𝑦, 𝑛𝛥𝑡), then we can get 𝛷1(𝑥, 𝑦) = 𝑝(𝑥, 𝑦, 𝛥𝑡).
Next, to solve the linear terms, we discretize Eqs. (10) and (12) using fourth-order discrete Laplacian with implicit Euler’s method

as follows:
𝑞𝑛+1𝑖𝑗 − 𝑞𝑛𝑖𝑗

𝛥𝜏
= 𝛥𝑥

ℎ𝑞
𝑛+1
𝑖𝑗 , (15)

𝑟𝑛+1𝑖𝑗 − 𝑟𝑛𝑖𝑗
𝛥𝜏

= 𝛥𝑦
ℎ𝑟

𝑛+1
𝑖𝑗 , (16)

where

𝛥𝑥
ℎ𝑞𝑖𝑗 =

−𝑞𝑖−2,𝑗 + 16𝑞𝑖−1,𝑗 − 30𝑞𝑖𝑗 + 16𝑞𝑖+1,𝑗 − 𝑞𝑖+2,𝑗
12ℎ2

, (17)

𝛥𝑦 𝑟 =
−𝑟𝑖,𝑗−2 + 16𝑟𝑖,𝑗−1 − 30𝑟𝑖𝑗 + 16𝑟𝑖,𝑗+1 − 𝑟𝑖,𝑗+2 . (18)
3

ℎ 𝑖𝑗 12ℎ2
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Here, 𝑞𝑛𝑖𝑗 and 𝑟𝑛𝑖𝑗 denote 𝑞(𝑥𝑖, 𝑦𝑗 , 𝑛𝛥𝜏) and 𝑟(𝑥𝑖, 𝑦𝑗 , 𝑛𝛥𝜏), respectively. The fourth-order finite difference formula can be derived by the
Taylor expansion. Rewriting Eqs. (15) and (16) in the following ways:

𝛼𝑞𝑛+1𝑖−2,𝑗 − 16𝛼𝑞𝑛+1𝑖−1,𝑗 + (1 + 30𝛼) 𝑞𝑛+1𝑖𝑗 − 16𝛼𝑞𝑛+1𝑖+1,𝑗 + 𝛼𝑞𝑛+1𝑖+2,𝑗 = 𝑞𝑛𝑖𝑗 , (19)

𝛼𝑟𝑛+1𝑖,𝑗−2 − 16𝛼𝑟𝑛+1𝑖,𝑗−1 + (1 + 30𝛼) 𝑟𝑛+1𝑖𝑗 − 16𝛼𝑟𝑛+1𝑖,𝑗+1 + 𝛼𝑟𝑛+1𝑖,𝑗+2 = 𝑟𝑛𝑖𝑗 , (20)

where 𝛼 = 𝛥𝜏∕(12ℎ2). We can derive the following matrix formula using Eqs. (19)–(20) and the homogeneous Neumann boundary
condition.

𝐴𝐪𝑛+1𝑗 = 𝐪𝑛𝑗 , for 𝑗 = 1,… , 𝑁𝑦, (21)

𝐴𝐫𝑛+1𝑖 = 𝐫𝑛𝑖 , for 𝑖 = 1,… , 𝑁𝑥, (22)

where

𝐴 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 + 14𝛼 −15𝛼 𝛼 0 … 0 0 0 0

−15𝛼 1 + 30𝛼 −16𝛼 𝛼 0 … 0 0 0

𝛼 −16𝛼 1 + 30𝛼 −16𝛼 𝛼 0 … 0 0

0 𝛼 −16𝛼 1 + 30𝛼 −16𝛼 𝛼 0 … 0

⋮ ⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮ ⋮

0 … 0 𝛼 −16𝛼 1 + 30𝛼 −16𝛼 𝛼 0

0 0 … 0 𝛼 −16𝛼 1 + 30𝛼 −16𝛼 𝛼

0 0 0 … 0 𝛼 −16𝛼 1 + 30𝛼 −15𝛼

0 0 0 0 … 0 𝛼 −15𝛼 1 + 14𝛼

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

𝐪𝑗 = (𝑞1,𝑗 ,… , 𝑣𝑁𝑥 ,𝑗 ) and 𝐫𝑖 = (𝑟𝑖,1,… , 𝑟𝑖,𝑁𝑦
). 𝐴 is a penta-diagonal matrix that can be directly solved without applying an iterative

ethod. Also, 𝐴 is constructed so that holding the homogeneous boundary condition. We can take 𝛥𝜏 = 𝛥𝑡 in Eqs. (15) and (16).
hen, from Eq. (21), we can obtain 𝛷2(𝑥, 𝑦) = 𝑞(𝑥, 𝑦, 𝛥𝑡) with an initial condition 𝑞(𝑥, 𝑦, 0) ∶= 𝛷1(𝑥, 𝑦). Finally, applying an initial
ondition 𝑟(𝑥, 𝑦, 0) ∶= 𝛷2(𝑥, 𝑦) to Eq. (22), we can get the computational solution 𝜙(𝑥, 𝑦, (𝑛 + 1)𝛥𝑡) = 𝑟(𝑥, 𝑦, 𝛥𝑡).

We clarify the assumptions and limitations of the proposed method. According to Eq. (14), the phase grows exponentially due to
he effect of the nonlinear term. If the time step is excessively large, the solution does not evolve and becomes pinned. Therefore,
o ensure the accuracy of the solution, it is assumed that exceptionally large time steps are not used, despite the proposed scheme
eing unconditionally stable.

.2. Three-dimensional space

In this section, we expand the AC equation into the 3D domain 𝛺 = (𝐿𝑥, 𝑅𝑥) × (𝐿𝑦, 𝑅𝑦) × (𝐿𝑧, 𝑅𝑧) using the hybrid numerical
olution algorithm. Let 𝛺ℎ =

{

(𝑥𝑖, 𝑦𝑗 , 𝑧𝑘)|𝑥𝑖 = 𝐿𝑥 + ℎ(𝑖 − 0.5), 𝑦𝑗 = 𝐿𝑦 + ℎ(𝑗 − 0.5), 𝑧𝑘 = 𝐿𝑧 + ℎ(𝑘 − 0.5), for 𝑖 = 1,… , 𝑁𝑥, 𝑗 =
,… , 𝑁𝑦, 𝑘 = 1,… , 𝑁𝑧

}

. Here, the spatial mesh sizes are equal in all directions: ℎ = (𝐿𝑥 −𝑅𝑥)∕𝑁𝑥 = (𝐿𝑦 −𝑅𝑦)∕𝑁𝑦 = (𝐿𝑧 −𝑅𝑧)∕𝑁𝑧.
e denote 𝜙(𝑥𝑖, 𝑦𝑗 , 𝑧𝑘, 𝑛𝛥𝑡) by the numerical approximation 𝜙𝑛

𝑖𝑗𝑘.
In the three-dimensional (3D) domain 𝛺 ⊂ R3, the AC model (1) can be written as

𝜕𝜙(𝐱, 𝑡)
𝜕𝑡

= −
𝐹 ′(𝜙(𝐱, 𝑡))

𝜖2
+ 𝜙𝑥𝑥(𝐱, 𝑡) + 𝜙𝑦𝑦(𝐱, 𝑡) + 𝜙𝑧𝑧(𝐱, 𝑡), 𝐱 ∈ 𝛺, 𝑡 > 0, (23)

where 𝐱 = (𝑥, 𝑦, 𝑧) ∈ 𝛺. For the AC Eq. (23), we use the following temporal operator splitting discretization.

𝜙(𝐱, (𝑛 + 1)𝛥𝑡) = (𝛥𝑡
𝑧 ◦𝛥𝑡

𝑦 ◦𝛥𝑡
𝑥 ◦ 𝛥𝑡)𝜙(𝐱, 𝑛𝛥𝑡), (24)

which has four-step operators: nonlinear operator  𝛥𝑡, 𝑥-direction linear operator 𝛥𝑡
𝑥 , 𝑦-direction linear operator 𝛥𝑡

𝑦 , and
𝑧-direction linear operator 𝛥𝑡

𝑧 .
First, we obtain 𝛷1(𝐱) from 𝜙(𝐱, 𝑛𝛥𝑡) and nonlinear operator  𝛥𝑡 as

𝛷1(𝐱) =  𝛥𝑡𝜙(𝐱, 𝑛𝛥𝑡). (25)

Here, 𝛷1(𝐱) is a solution of the following nonlinear equation at time 𝜏 = 𝛥𝑡:
𝜕𝑝(𝐱, 𝜏)

𝜕𝜏
= −

𝐹 ′(𝑝(𝐱, 𝜏))
𝜖2

(26)

with the initial condition 𝑝(𝐱, 0) = 𝜙(𝐱, 𝑛𝛥𝑡), i.e., 𝛷1(𝐱) = 𝑝(𝐱, 𝛥𝑡).
Second, 𝛷2(𝐱) is obtained from 𝛷1(𝐱) and 𝑥-direction linear operator 𝛥𝑡

𝑥 as

𝛷2(𝐱) = 𝛥𝑡
𝑥 𝛷1(𝐱). (27)

Here, 𝛷2(𝐱) is a solution of the linear equation at time 𝜏 = 𝛥𝑡:
𝜕𝑞(𝐱, 𝜏)

= 𝑞 (𝐱, 𝜏) (28)
4
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with the initial condition 𝑞(𝐱, 0) = 𝛷1(𝐱), i.e., 𝛷2(𝐱) = 𝑞(𝐱, 𝛥𝑡).
Third, 𝛷3(𝐱) is obtained from 𝛷2(𝐱) and 𝑦-direction linear operator 𝛥𝑡

𝑦 as

𝛷3(𝐱) = 𝛥𝑡
𝑦 𝛷2(𝐱). (29)

Here, 𝛷3(𝐱) is a solution of the linear equation at time 𝜏 = 𝛥𝑡:

𝜕𝑟(𝐱, 𝜏)
𝜕𝜏

= 𝑟𝑦𝑦(𝐱, 𝜏) (30)

with the initial condition 𝑟(𝐱, 0) = 𝛷2(𝐱), i.e., 𝛷3(𝐱) = 𝑟(𝐱, 𝛥𝑡).
Finally, we get 𝜙(𝐱, (𝑛 + 1)𝛥𝑡) from 𝛷3 and 𝑧-direction linear operator 𝛥𝑡

𝑧 as

𝜙(𝐱, (𝑛 + 1)𝛥𝑡) = 𝛥𝑡
𝑧 𝛷3(𝐱). (31)

Here, 𝜙(𝐱, (𝑛 + 1)𝛥𝑡) is a solution of the linear equation at time 𝜏 = 𝛥𝑡:
𝜕𝑠(𝐱, 𝜏)

𝜕𝜏
= 𝑠𝑧𝑧(𝐱, 𝜏) (32)

ith the initial condition 𝑠(𝐱, 0) = 𝛷3(𝐱), i.e., 𝜙(𝐱, (𝑛 + 1)𝛥𝑡) = 𝑟(𝐱, 𝛥𝑡). Eqs. (28) and (30) are solved using the fully implicit Euler’s
method. The homogeneous Neumann boundary condition is applied to all four operators.

Now we describe each step with numerical schemes. First, we solve Eq. (26)

𝜕𝑝(𝐱, 𝜏)
𝜕𝜏

= −
𝐹 ′(𝑝(𝐱, 𝜏))

𝜖2
. (33)

We can obtain the analytic solution,

𝑝(𝐱, 𝜏) = 𝑝(𝐱, 0)
√

𝑒
−2𝜏
𝜖2 + (𝑝(𝐱, 0))2

(

1 − 𝑒
−2𝜏
𝜖2

)

. (34)

for any time 𝜏 > 0, using the separation of variables [29], which does not affect the order of accuracy of the scheme [30]. Here
𝑝(𝐱, 0) ∶= 𝜙(𝐱, 𝑛𝛥𝑡), then we can get 𝛷1(𝐱) = 𝑝(𝐱, 𝛥𝑡).

Next, to solve the linear terms, we discretize Eqs. (28), (30), and (32) using a fourth-order discrete Laplacian with the implicit
Euler method as follows:

𝑞𝑛+1𝑖𝑗𝑘 − 𝑞𝑛𝑖𝑗𝑘
𝛥𝜏

= 𝛥𝑥
ℎ𝑞

𝑛+1
𝑖𝑗𝑘 , (35)

𝑟𝑛+1𝑖𝑗𝑘 − 𝑟𝑛𝑖𝑗𝑘
𝛥𝜏

= 𝛥𝑦
ℎ𝑟

𝑛+1
𝑖𝑗𝑘 , (36)

𝑠𝑛+1𝑖𝑗𝑘 − 𝑠𝑛𝑖𝑗𝑘
𝛥𝜏

= 𝛥𝑧
ℎ𝑠

𝑛+1
𝑖𝑗𝑘 , (37)

where

𝛥𝑥
ℎ𝑞𝑖𝑗𝑘 =

−𝑞𝑖−2,𝑗𝑘 + 16𝑞𝑖−1,𝑗𝑘 − 30𝑞𝑖𝑗𝑘 + 16𝑞𝑖+1,𝑗𝑘 − 𝑞𝑖+2,𝑗𝑘
12ℎ2

, (38)

𝛥𝑦
ℎ𝑟𝑖𝑗𝑘 =

−𝑟𝑖,𝑗−2,𝑘 + 16𝑟𝑖,𝑗−1,𝑘 − 30𝑟𝑖𝑗𝑘 + 16𝑟𝑖,𝑗+1,𝑘 − 𝑟𝑖,𝑗+2,𝑘
12ℎ2

, (39)

𝛥𝑧
ℎ𝑠𝑖𝑗𝑘 =

−𝑠𝑖𝑗,𝑘−2 + 16𝑠𝑖𝑗,𝑘−1 − 30𝑠𝑖𝑗𝑘 + 16𝑠𝑖𝑗,𝑘+1 − 𝑠𝑖𝑗,𝑘+2
12ℎ2

. (40)

Here, 𝑞𝑛𝑖𝑗𝑘, 𝑟𝑛𝑖𝑗𝑘, and 𝑠𝑛𝑖𝑗𝑘 denote 𝑞(𝑥𝑖, 𝑦𝑗 , 𝑧𝑘, 𝑛𝛥𝜏), 𝑟(𝑥𝑖, 𝑦𝑗 , 𝑧𝑘, 𝑛𝛥𝜏), and 𝑠(𝑥𝑖, 𝑦𝑗 , 𝑧𝑘, 𝑛𝛥𝜏), respectively. Rewriting Eqs. (35)–(37) in the
following ways:

𝛼𝑞𝑛+1𝑖−2,𝑗𝑘 − 16𝛼𝑞𝑛+1𝑖−1,𝑗𝑘 + (1 + 30𝛼) 𝑞𝑛+1𝑖𝑗𝑘 − 16𝛼𝑞𝑛+1𝑖+1,𝑗𝑘 + 𝛼𝑞𝑛+1𝑖+2,𝑗𝑘 = 𝑞𝑛𝑖𝑗𝑘, (41)

𝛼𝑟𝑛+1𝑖,𝑗−2,𝑘 − 16𝛼𝑟𝑛+1𝑖,𝑗−1,𝑘 + (1 + 30𝛼) 𝑟𝑛+1𝑖𝑗𝑘 − 16𝛼𝑟𝑛+1𝑖,𝑗+1,𝑘 + 𝛼𝑟𝑛+1𝑖,𝑗+2,𝑘 = 𝑟𝑛𝑖𝑗𝑘, (42)

𝛼𝑠𝑛+1𝑖,𝑗,𝑘−2 − 16𝛼𝑠𝑛+1𝑖,𝑗,𝑘−1 + (1 + 30𝛼) 𝑠𝑛+1𝑖𝑗𝑘 − 16𝛼𝑠𝑛+1𝑖,𝑗,𝑘+1 + 𝛼𝑠𝑛+1𝑖,𝑗,𝑘+2 = 𝑠𝑛𝑖𝑗𝑘, (43)

where 𝛼 = 𝛥𝜏∕(12ℎ2). We can derive the following matrix formula using Eqs. (41)–(43) and the homogeneous Neumann boundary
condition.

𝐴𝐪𝑛+1𝑗𝑘 = 𝐪𝑛𝑗𝑘, for 𝑗 = 1,… , 𝑁𝑦 and 𝑘 = 1,… , 𝑁𝑧, (44)

𝐴𝐫𝑛+1𝑖𝑘 = 𝐫𝑛𝑖𝑘, for 𝑖 = 1,… , 𝑁𝑥 and 𝑘 = 1,… , 𝑁𝑧, (45)

𝐴𝐬𝑛+1 = 𝐬𝑛 , for 𝑖 = 1,… , 𝑁 and 𝑗 = 1,… , 𝑁 , (46)
5
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where

𝐴 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 + 14𝛼 −15𝛼 𝛼 0 … 0 0 0 0

−15𝛼 1 + 30𝛼 −16𝛼 𝛼 0 … 0 0 0

𝛼 −16𝛼 1 + 30𝛼 −16𝛼 𝛼 0 … 0 0

0 𝛼 −16𝛼 1 + 30𝛼 −16𝛼 𝛼 0 … 0

⋮ ⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮ ⋮

0 … 0 𝛼 −16𝛼 1 + 30𝛼 −16𝛼 𝛼 0

0 0 … 0 𝛼 −16𝛼 1 + 30𝛼 −16𝛼 𝛼

0 0 0 … 0 𝛼 −16𝛼 1 + 30𝛼 −15𝛼

0 0 0 0 … 0 𝛼 −15𝛼 1 + 14𝛼

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

𝐪𝑗𝑘 = (𝑞1,𝑗𝑘,… , 𝑣𝑁𝑥 ,𝑗𝑘), 𝐫𝑖𝑘 = (𝑟𝑖,1,𝑘,… , 𝑟𝑖,𝑁𝑦 ,𝑘) and 𝐬𝑖𝑗 = (𝑟𝑖𝑗,1,… , 𝑟𝑖𝑗,𝑁𝑧
). 𝐴 is a penta-diagonal matrix and can be directly solved

ithout applying an iterative method. Also, 𝐴 is constructed so that holding the homogeneous boundary condition. We can take
𝜏 = 𝛥𝑡 into Eqs. (35), (36) and (37). Then, from Eq. (44), we can obtain 𝛷2(𝐱) = 𝑞(𝐱, 𝛥𝑡) with an initial condition 𝑞(𝐱, 0) ∶= 𝛷1(𝐱).
imilarly, we obtain 𝛷3(𝐱) = 𝑟(𝐱, 𝛥𝑡) from Eq. (45) with an initial condition 𝑟(𝐱, 0) ∶= 𝛷2(𝐱). Finally, applying an initial condition
(𝐱, 0) ∶= 𝛷3(𝑥, 𝑦) to Eq. (46), we can get the computational solution 𝜙(𝐱, (𝑛 + 1)𝛥𝑡) = 𝑠(𝐱, 𝛥𝑡).

. Numerical experiments

This section presents details of numerical tests such as stability tests, convergence tests, and maximum principle tests of the
roposed scheme on the AC equation. Unless otherwise specified, we consider the cell-centered grid to ensure the homogeneous
eumann boundary condition.

.1. Stability analysis

In this section, we prove the stability of the proposed numerical solution algorithm described in Section 2. For simplicity, we
onsider the following operator splitting discretization in Eq. (6) in 2D space. The proof for 3D is similar to that for 2D.

heorem 1. Suppose that 𝜙𝑛
𝑖𝑗 is bounded |𝜙𝑛

𝑖𝑗 | ≤ 1 for 𝑖 = 1,… , 𝑁𝑥 and 𝑗 = 1,… , 𝑁𝑦. Then, the proposed fourth-order FDM

𝜙𝑛+1
𝑖𝑗 = (𝛥𝑡

𝑦 ◦𝛥𝑡
𝑥 ◦ 𝛥𝑡)𝜙𝑛

𝑖𝑗 (47)

reserves the boundedness of the numerical solution |𝜙𝑛+1
𝑖𝑗 | ≤ 1 for any time step 𝛥𝑡. Here, the proposed method is consistent with the following

teps:

𝛷1(𝑥, 𝑦) =  𝛥𝑡𝜙(𝑥, 𝑦, 𝑛𝛥𝑡), (48)
𝛷2(𝑥, 𝑦) = 𝛥𝑡

𝑥 𝛷1(𝑥, 𝑦), (49)

𝜙(𝑥, 𝑦, (𝑛 + 1)𝛥𝑡) = 𝛥𝑡
𝑦 𝛷2(𝑥, 𝑦). (50)

roof. In the first step (48), 𝛷1(𝑥, 𝑦) is obtained analytically by Eq. (14) as follows:

𝛷1(𝑥, 𝑦) =
𝜙(𝑥, 𝑦, 𝑛𝛥𝑡)

√

𝑒
−2𝛥𝑡
𝜖2 + (𝜙(𝑥, 𝑦, 𝑛𝛥𝑡))2

(

1 − 𝑒
−2𝛥𝑡
𝜖2

)

, (51)

which ensures that |𝛷1(𝑥, 𝑦)| ≤ 1 for any 𝛥𝑡, since |𝜙(𝑥, 𝑦, 𝑛𝛥𝑡)| ≤ 1. In the second step (49), we consider the following heat equation
with the given initial condition and the homogeneous Neumann boundary condition.

𝜕𝑞(𝑥, 𝑦, 𝜏)
𝜕𝜏

= 𝑞𝑥𝑥(𝑥, 𝑦, 𝜏), (52)

𝑞(𝑥, 𝑦, 0) = 𝛷1(𝑥, 𝑦), (53)
𝐧 ⋅ ∇𝑞(𝑥, 𝑦, 𝜏) = 0. (54)

Eq. (52) can be discretized with the fourth-order accurate implicit method as follows:

𝑞𝑛+1𝑖 − 𝑞𝑛𝑖
𝛥𝜏

=
−𝑞𝑛+1𝑖−2 + 16𝑞𝑛+1𝑖−1 − 30𝑞𝑛+1𝑖 + 16𝑞𝑛+1𝑖+1 − 𝑞𝑛+1𝑖+2

12ℎ2
, (55)

for 𝑖 = 1,… , 𝑁𝑥. Since we only consider the 𝑥-direction, we omit subscript 𝑗, which is the index of the 𝑦-direction. The boundary
ondition is implemented as

𝑞 ∶= 𝑞 , 𝑞 ∶= 𝑞 , 𝑞 ∶= 𝑞 , 𝑞 ∶= 𝑞 . (56)
6
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For a given discrete value 𝑞𝑛𝑖 , we apply the discrete cosine transform to obtain 𝑞𝑛𝑀 and the inverse discrete cosine transform :

𝑞𝑛𝑀 = 𝛼𝑀
𝑁
∑

𝑖=1
𝑞𝑛𝑖 cos

(

𝛽𝑀𝜋(𝑥𝑖 − 𝐿𝑥)
)

, (57)

𝑞𝑛𝑖 =
𝑁
∑

𝑀=1
𝛼𝑀𝑞𝑛𝑀 cos

(

𝛽𝑀𝜋(𝑥𝑖 − 𝐿𝑥)
)

, (58)

where

𝛼𝑀 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

√

1
𝑁

, for 𝑀 = 1,
√

2
𝑁

, for 𝑀 ≥ 2,
𝛽𝑀 = 𝑀 − 1

𝑅𝑥 − 𝐿𝑥
, for 𝑀 = 1,… , 𝑁. (59)

By using inverse discrete cosine transform (58), discrete values 𝑞𝑛𝑖 can be represented as a summation of cosine functions, which
satisfies the homogeneous Neumann boundary condition. Since the cosine functions in Eq. (58) are the basis functions of 𝑞𝑛𝑖 with
respect to 𝑀 , we can consider 𝑞𝑛𝑖 omitting the subscript 𝑀 as follows:

𝑞𝑛𝑖 = 𝛼𝑞𝑛 cos
(

𝛽𝜋(𝑥𝑖 − 𝐿𝑥)
)

. (60)

In Eq. (60), we notate the amplitude at 𝑛th time as 𝜉𝑛 ∶= 𝛼𝑞𝑛. Substituting the discrete cosine mode 𝑞𝑛𝑖 = 𝜉𝑛 cos
(

𝛽𝜋(𝑥𝑖 − 𝐿𝑥)
)

into
Eq. (55), we obtain

|𝜉| = 1
1 + 4𝛼

[

cos2
(

𝛽𝜋(𝑥𝑖 − 𝐿𝑥)
)

− 8 cos
(

𝛽𝜋(𝑥𝑖 − 𝐿𝑥)
)

+ 7
]

= 1
1 + 4𝛼

{

[cos
(

𝛽𝜋(𝑥𝑖 − 𝐿𝑥)
)

− 4]2 − 9
} ≤ 1, (61)

where 𝛼 = 𝛥𝜏∕(12ℎ2). By the von Neumann stability analysis [31], for any time step 𝛥𝜏, the numerical method (55) is unconditionally
stable. Taking 𝛥𝜏 = 𝛥𝑡, it implies that |𝛷2(𝑥, 𝑦) = 𝑞(𝑥, 𝑦, 𝛥𝑡)| ≤ 1. Analogously, when applied to the 𝑦-direction, we can obtain
|𝜙𝑛+1

𝑖𝑗 | ≤ 1, which guarantees the boundedness of the numerical solution for any time step 𝛥𝑡. □

We demonstrate the stability of the proposed method by considering the dynamics of phase separation in the 2D domain
𝛺 = (0, 1)2. We take the numerical parameters as 𝑁𝑥 = 𝑁𝑦 = 256, ℎ = 1∕𝑁𝑥 = 1∕𝑁𝑦 and the following random perturbed initial
condition:

𝜙(𝑥, 𝑦, 0) = rand(𝑥, 𝑦), (62)

where rand(𝑥, 𝑦) is a random number in [−1, 1]. Fig. 1 shows temporal evolutions of the AC equation with different time steps
𝛥𝑡 = 0.1ℎ2, 𝛥𝑡 = ℎ2, and 𝛥𝑡 = 10ℎ2. In Fig. 1 the numerical solutions of the AC equation do not blow up for the given time steps and
remain bounded by −1 and 1, which confirms the stability of the proposed method.

3.2. Numerical maximum principle and total energy decreasing

The total energy non increasing property of Eq. (4) and the maximum principle property [1] of the AC equation is demonstrated
by numerical experiments of the proposed scheme in 2D and 3D space. To validate this, we consider the computational domain
𝛺ℎ = (0, 1)2 and (0, 1)3, respectively. The initial condition is 𝜙(𝑥, 𝑦, 0) = 0.1rand(𝑥, 𝑦) and 𝜙(𝑥, 𝑦, 𝑧, 0) = 0.1rand(𝑥, 𝑦, 𝑧) where rand(𝑥, 𝑦)
and rand(𝑥, 𝑦, 𝑧) have random values between −1 and 1 in 2D and 3D, respectively.

Let us consider the following decomposition of the fourth-order discrete Laplacian operator:

𝛥𝑥
ℎ𝜙𝑖𝑗 =

−𝜙𝑖−2,𝑗 + 16𝜙𝑖−1,𝑗 − 30𝜙𝑖𝑗 + 16𝜙𝑖+1,𝑗 − 𝜙𝑖+2,𝑗

12ℎ2

= − 1
12

𝜙𝑖−2,𝑗 − 2𝜙𝑖−1,𝑗 + 𝜙𝑖𝑗

ℎ2
+ 14

12
𝜙𝑖−1,𝑗 − 2𝜙𝑖𝑗 + 𝜙𝑖+1,𝑗

ℎ2

− 1
12

𝜙𝑖𝑗 − 2𝜙𝑖+1,𝑗 + 𝜙𝑖+2,𝑗

ℎ2

= − 1
12ℎ

(𝜙𝑖𝑗 − 𝜙𝑖−1,𝑗

ℎ
−

𝜙𝑖−1,𝑗 − 𝜙𝑖−2,𝑗

ℎ

)

(63)

+ 14
12ℎ

(𝜙𝑖+1,𝑗 − 𝜙𝑖𝑗

ℎ
−

𝜙𝑖𝑗 − 𝜙𝑖−1,𝑗

ℎ

)

− 1
12ℎ

(𝜙𝑖+2,𝑗 − 𝜙𝑖+1,𝑗

ℎ
−

𝜙𝑖+1,𝑗 − 𝜙𝑖𝑗

ℎ

)

.

From Eq. (63), we define a discrete first derivative as

𝐷𝑥𝜙 1 = − 1 𝜙𝑖𝑗 − 𝜙𝑖−1,𝑗 + 14 𝜙𝑖+1,𝑗 − 𝜙𝑖𝑗 − 1 𝜙𝑖+2,𝑗 − 𝜙𝑖+1,𝑗 . (64)
7
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Fig. 1. Snapshots of temporal evolutions of the AC equation with random perturbed initial condition and different time steps (a) 𝛥𝑡 = 0.1ℎ2, (b) 𝛥𝑡 = ℎ2, and
(c) 𝛥𝑡 = 10ℎ2.

Other discrete first derivatives are similarly defined. Therefore,

𝛥𝑥
ℎ𝜙𝑖𝑗 =

𝐷𝑥
ℎ𝜙𝑖+ 1

2 ,𝑗
−𝐷𝑥

ℎ𝜙𝑖− 1
2 ,𝑗

ℎ
, 𝛥𝑦

ℎ𝜙𝑖𝑗 =
𝐷𝑦

ℎ𝜙𝑖,𝑗+ 1
2
−𝐷𝑦

ℎ𝜙𝑖,𝑗− 1
2

ℎ
. (65)

Similar definitions are applied for 3D space. Now, we define the discrete energy functional 𝑑 (𝜙) in 𝑑-dimension for 𝑑 = 2, 3 as
follows:

2(𝜙𝑛) = ℎ2
𝑁𝑥
∑

𝑖=1

𝑁𝑦
∑

𝑗=1

𝐹 (𝜙𝑛
𝑖𝑗 )

𝜖2

+ ℎ2

2

𝑁𝑦
∑

𝑗=1

(

1
2

(

𝐷𝑥
ℎ𝜙 1

2 ,𝑗

)2
+

𝑁𝑥−1
∑

𝑖=1

(

𝐷𝑥
ℎ𝜙𝑖+ 1

2 ,𝑗

)2
+ 1

2

(

𝐷𝑥
ℎ𝜙𝑁𝑥+

1
2 ,𝑗

)2
)

+ ℎ2

2

𝑁𝑥
∑

𝑖=1

(

1
2

(

𝐷𝑦
ℎ𝜙𝑖, 12

)2
+

𝑁𝑦−1
∑

𝑗=1

(

𝐷𝑦
ℎ𝜙𝑖,𝑗+ 1

2

)2
+ 1

2

(

𝐷𝑦
ℎ𝜙𝑖,𝑁𝑦+

1
2

)2
)

,

3(𝜙𝑛) = ℎ3
𝑁𝑥
∑

𝑖=1

𝑁𝑦
∑

𝑗=1

𝑁𝑧
∑

𝑘=1

𝐹 (𝜙𝑛
𝑖𝑗𝑘)

𝜖2

+ ℎ3

2

𝑁𝑦
∑

𝑗=1

𝑁𝑧
∑

𝑘=1

(

1
2

(

𝐷𝑥
ℎ𝜙 1

2 ,𝑗,𝑘

)2
+

𝑁𝑥−1
∑

𝑖=1

(

𝐷𝑥
ℎ𝜙𝑖+ 1

2 ,𝑗,𝑘

)2
+ 1

2

(

𝐷𝑥
ℎ𝜙𝑁𝑥+

1
2 ,𝑗,𝑘

)2
)

+ ℎ3

2

𝑁𝑥
∑

𝑖=1

𝑁𝑧
∑

𝑘=1

(

1
2

(

𝐷𝑦
ℎ𝜙𝑖, 12 ,𝑘

)2
+

𝑁𝑦−1
∑

𝑗=1

(

𝐷𝑦
ℎ𝜙𝑖,𝑗+ 1

2 ,𝑘

)2
+ 1

2

(

𝐷𝑦
ℎ𝜙𝑖,𝑁𝑦+

1
2 ,𝑘

)2
)

+ ℎ3

2

𝑁𝑥
∑

𝑖=1

𝑁𝑦
∑

𝑗=1

(

1
2

(

𝐷𝑧
ℎ𝜙𝑖,𝑗, 12

)2
+

𝑁𝑧−1
∑

𝑗=1

(

𝐷𝑧
ℎ𝜙𝑖,𝑗,𝑘+ 1

2

)2
+ 1

2

(

𝐷𝑧
ℎ𝜙𝑖,𝑗,𝑁𝑧+

1
2

)2
)

,

where ℎ is spatial mesh size for ℎ = 1∕𝑁𝑥 = 1∕𝑁𝑦 = 1∕𝑁𝑧 and interfacial thickness 𝜖 is chosen as 6ℎ∕(2
√

2 tanh−1(0.9)). To validate
the maximum principle, we define (⋅)max and (⋅)min as

(𝜙𝑛) = max𝜙𝑛 and (𝜙𝑛) = min𝜙𝑛 in 2D, (66)
8
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Fig. 2. Snapshots of evolutionary dynamics and discrete energy functional for the AC equation in (a) 2D and (b) 3D. 𝑑 (𝜙𝑛)∕𝑑 (𝜙0), (𝜙𝑛)max and (𝜙𝑛)min are
shown on a semi-logarithmic scale.

(𝜙𝑛)max = max
𝑖𝑗𝑘

𝜙𝑛
𝑖𝑗𝑘 and (𝜙𝑛)min = min

𝑖𝑗𝑘
𝜙𝑛
𝑖𝑗𝑘 in 3D. (67)

To demonstrate the boundedness and total energy non-increasing property, we designed numerical experiments for 2D and 3D. We
consider 𝑁𝑥 = 𝑁𝑦 = 256, 𝜖 = 6ℎ∕(2

√

2 tanh−1(0.9)) for 2D and 𝑁𝑥 = 𝑁𝑦 = 𝑁𝑧 = 64, 𝜖 = 4ℎ∕(2
√

2 tanh−1(0.9)) for 3D. For both
tests, the spatial step size is ℎ = 1∕𝑁𝑥 and temporal step size is 𝛥𝑡 = 0.5ℎ2. Fig. 2(a) and (b) illustrate 𝑑 (𝜙𝑛)∕𝑑 (𝜙0), (𝜙𝑛)min and
(𝜙𝑛)max according to the temporal evolving of computational solution for 2D and 3D spaces, respectively. Numerical tests confirm
the maximum bound principle and the total energy non-increasing property for the proposed fourth-order hybrid scheme.

3.3. Convergence test

In this section, we demonstrate the convergence rate of the AC equation using the traveling wave. For a given initial condition
𝜙(𝑥, 𝑦, 0), the traveling wave has an exact solution 𝜙𝑒𝑥𝑡(𝑥, 𝑦, 𝑇 ) at time 𝑇 for the AC equation:

𝜙(𝑥, 𝑦, 0) = 1
2
− 1

2
tanh

(

𝑥

2
√

2𝜖

)

, (68)

𝜙𝑒𝑥𝑡(𝑥, 𝑦, 𝑇 ) = 1
2
− 1

2
tanh

(

𝑥 − 𝑠𝑇

2
√

2𝜖

)

, (69)

where 𝜖 = 0.2∕(2
√

2 tanh−1(0.9)) is a constant and 𝑠 is the speed of the traveling wave [32,33]. By applying Eq. (69) into Eq. (5), we
obtain the following equation:

√

2𝑠 − 3𝜖
sech2

(

𝑥 − 𝑠𝑡
√

)

= 0. (70)
9
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Table 1
𝑙2-norm error and spatial convergence rate on the AC equation.

𝑁𝑥 = 16 Rate 𝑁𝑥 = 32 Rate 𝑁𝑥 = 64

Second-order 8.9135e−3 1.9291 2.3406e−3 1.9753 5.9525e−4
Fourth-order 2.1711e−3 3.5784 1.8175e−4 3.9140 1.2057e−5

Table 2
𝑙2-norm error and temporal convergence rate on the AC equation.

𝛥𝑡 = 0.8ℎ2 Rate 𝛥𝑡 = 0.4ℎ2 Rate 𝛥𝑡 = 0.2ℎ2

Fourth-order 1.3581e−2 1.0853 6.4011e−3 0.9784 3.2487e−3

Therefore, the speed of the traveling wave that satisfies Eq. (70) is 𝑠 = 3𝜖∕
√

2. The traveling wave is applied on a rectangular domain
−0.5, 1.5) × (−0.5, 0.5) where the number of spatial steps are 𝑁𝑥 = 64, 𝑁𝑦 = 32 and step size ℎ = 1∕32. For a final time 𝑇 = 0.01,
he temporal step size is determined using the spatial step size: 𝛥𝑡 = 1e−7. The number of time steps are determined accordingly,
𝑡 = 𝑇 ∕𝛥𝑡 = 100 000. Numerical results and the exact solution is illustrated in Fig. 3(a). The white, red, and green surfaces indicate

he initial condition, numerical result, and exact solution, respectively. Now that we have confirmed that the numerical solution of
he traveling wave matches with the exact solution, we calculate the discrete 𝑙2-norm error. For a final time 𝑇 , the error 𝐸 between
he numerical solution 𝜙 and exact solution 𝜙𝑒𝑥𝑡 is defined as

𝑒𝑖𝑗 = 𝜙(𝑥𝑖, 𝑦𝑗 ) − 𝜙𝑒𝑥𝑡(𝑥𝑖, 𝑦𝑗 ) for 𝑖 = 1,… , 𝑁𝑥 and 𝑗 = 1,… , 𝑁𝑦,

𝐸 = {𝑒𝑖𝑗 , for 𝑖 = 1,… , 𝑁𝑥 and 𝑗 = 1,… , 𝑁𝑦}. (71)

he discrete 𝑙2-error ‖ ⋅ ‖2 is defined as follows:

‖𝐸‖2 =

√

√

√

√

√

1
𝑁𝑥𝑁𝑦

𝑁𝑦
∑

𝑗=1

𝑁𝑥
∑

𝑖=1
(𝑒𝑖𝑗 )2. (72)

Using the above defined error and 𝑙2-norm, the spatial convergence rate is calculated by log2(‖𝐸1‖2∕‖𝐸2‖2) where 𝐸1 is the error
with spatial step size ℎ and 𝐸2 is the error with spatial step size ℎ∕2. Temporal convergence rate is calculated similarly by using a
half decreased temporal step size. To calculate the spatial convergence rate, we set 𝑇 = 0.01, 𝛥𝑡 = 1e−7, 𝑁𝑥 = 2𝑛 for 𝑛 = 4, 5, 6, and

𝑦 = 𝑁𝑥∕2 on a rectangular domain (−0.5, 1.5)×(−0.5, 0.5). Fig. 3(b)–(d) illustrates the error difference for the proposed fourth-order
cheme and a second-order scheme. In 2D and 3D space, the Laplace operator is approximated by using second-order discretization
s follows:

𝛥𝜙𝑖𝑗 = 𝜙𝑥𝑥 + 𝜙𝑦𝑦

=
𝜙𝑖−1,𝑗 − 2𝜙𝑖𝑗 + 𝜙𝑖+1,𝑗

ℎ2
+

𝜙𝑖,𝑗−1 − 2𝜙𝑖𝑗 + 𝜙𝑖,𝑗+1

ℎ2
+ (ℎ2), (73)

𝛥𝜙𝑖𝑗𝑘 = 𝜙𝑥𝑥 + 𝜙𝑦𝑦 + 𝜙𝑧𝑧

=
𝜙𝑖−1,𝑗𝑘 − 2𝜙𝑖𝑗𝑘 + 𝜙𝑖+1,𝑗𝑘

ℎ2
+

𝜙𝑖,𝑗−1,𝑘 − 2𝜙𝑖𝑗𝑘 + 𝜙𝑖,𝑗+1,𝑘

ℎ2
(74)

+
𝜙𝑖𝑗,𝑘−1 − 2𝜙𝑖𝑗𝑘 + 𝜙𝑖𝑗,𝑘+1

ℎ2
+ (ℎ2).

he error of the fourth-order scheme decreases significantly faster than the second-order scheme. Error and convergence rate results
n Table 1 show that the scheme is fourth-order accurate in space.

Next, the temporal convergence rate is calculated when 𝑁𝑥 = 96 𝑁𝑦 = 48, ℎ = 1∕48, 𝜖 = 4ℎ∕(2
√

2 tanh−1(0.9)), 𝑇 = 0.002, and
𝑑𝑡 = 0.8ℎ2∕2𝑁 , where 𝑁 = 0, 1, 2. Results in Table 2 show that the proposed scheme is first-order accurate in time. In this study, we
focus on the fourth-order space-accurate scheme for the AC equation. The proposed method can be extended using the second-order
time-accurate operator splitting scheme [34,35] and alternating direction implicit method [36,37].

3.4. Boundary error

In this section, we investigate the numerical error at the boundary when using the fourth-order scheme in 2D space. Since there
are no closed-form analytic solutions for the general initial and boundary conditions of the AC equation, we use a manufactured
solution to compute the numerical error of the proposed numerical method. The manufactured benchmark problem solution for the
AC equation is defined as follows [38]:

𝛷(𝑥, 𝑦, 𝑡) = 𝛼(𝑡) cos(𝑘𝑥𝑥) cos(𝑘𝑦𝑦),

where

𝛼(𝑡) = 𝛼(0) exp
[(

1 − 𝑘2𝑥 − 𝑘2𝑦

)

𝑡
]

10
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Fig. 3. (a) Initial condition (white), exact solution (green), and numerical result (red) at time 𝑇 = 0.01. (b)–(d) Error when 𝑁𝑥 = 16, 32 and 64.

is temporal amplitude for the given initial amplitude 𝛼(0). Then, the modified AC equation for the benchmark problem is defined

as follows:

𝜙 (𝑥, 𝑦, 𝑡) = −
𝐹 ′(𝜙(𝑥, 𝑦, 𝑡))

+ 𝛥𝜙(𝑥, 𝑦, 𝑡) + 𝑠(𝑥, 𝑦, 𝑡), (75)
11
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Table 3
𝑙2-error and convergence rate at the boundary.

ℎ = 1∕32 Rate ℎ = 1∕64 Rate ℎ = 1∕128 Rate ℎ = 1∕256

‖𝐸bd‖2 3.4049e−4 1.9991 8.5175e−5 1.9998 2.1297e−5 1.9999 5.3244e−6

Table 4
Average CPU time and error using fourth-order and second-order scheme.

𝑁𝑥 ×𝑁𝑦 = 64 × 32 𝑁𝑥 ×𝑁𝑦 = 128 × 64 𝑁𝑥 ×𝑁𝑦 = 256 × 128

CPU time Error CPU time Error CPU time Error

Second-order 1.1151 1.7529e−3 3.5223 4.4297e−6 11.5213 1.1106e−6
Fourth-order 1.7363 1.2448e−6 5.4918 8.3195e−8 18.6312 9.0309e−9

where

𝑠(𝑥, 𝑦, 𝑡) = 𝛷𝑡(𝑥, 𝑦, 𝑡) +
𝐹 ′(𝛷(𝑥, 𝑦, 𝑡))

𝜖2
− 𝛥𝛷(𝑥, 𝑦, 𝑡).

We solve Eq. (75) numerically by using the proposed OSM as follows:

𝜙(𝐱, (𝑛 + 1)𝛥𝑡) = (𝛥𝑡◦𝛥𝑡
𝑦 ◦𝛥𝑡

𝑥 ◦ 𝛥𝑡)𝜙(𝑥, 𝑦, 𝑛𝛥𝑡),

where 𝛥𝑡 is operator for source term 𝑠(𝑥, 𝑦, 𝑡).
For the convergence test at the boundary, we consider the following initial condition on the computational domain 𝛺 =

(−1, 1) × (−1, 1).

𝜙(𝑥, 𝑦, 0) = 0.1 cos(2𝜋𝑥) cos(2𝜋𝑦).

The discrete 𝑙2-error on the boundary is defined as follows:

‖𝐸bd‖2 =
√

𝑒
2(𝑁𝑥 +𝑁𝑦)

,

here

𝑒 =
𝑁𝑦
∑

𝑗=1

(

[

𝜙𝑁𝑡
1,𝑗 −𝛷(𝐿𝑥, 𝑦𝑗 , 𝑇 )

]2
+
[

𝜙𝑁𝑡
𝑁𝑥 ,𝑗

−𝛷(𝑅𝑥, 𝑦𝑗 , 𝑇 )
]2
)

+
𝑁𝑥
∑

𝑖=1

(

[

𝜙𝑁𝑡
𝑖,1 −𝛷(𝑥𝑖, 𝐿𝑦, 𝑇 )

]2
+
[

𝜙𝑁𝑡
𝑖,𝑁𝑦

−𝛷(𝑥𝑖, 𝑅𝑦, 𝑇 )
]2
)

.

It exhibits second-order accuracy at the boundary, employing the discrete first derivative defined in Eq. (64) and the homoge-
neous Neumann boundary condition. Table 3 lists the 𝑙2-errors and convergence rates at the boundary. Results in Table 3 demonstrate
that the proposed fourth-order method achieves second-order accurate at the boundary. Consequently, while the proposed numerical
method achieves second-order accuracy at the boundary, from the perspective of the entire domain, this can be considered negligible.
As shown in Table 1, the proposed method achieves fourth-order accuracy in space over the entire domain.

3.5. CPU time and error comparison

Continuing from Section 3.3, we analyze the CPU time and error of the proposed fourth-order scheme and the second-order
scheme. Using the initial condition (68), 𝜖 = 0.2∕(2

√

2 tanh−1(0.9)) and 𝑠 = 3∕(
√

2𝜖) on the space (−1, 1) × (−0.5, 0.5), we ran the
fourth- and second-order schemes until the final time 𝑇 = 0.0001 and 𝑁𝑡 = 10000. We constructed three different tests, each using

𝑥 × 𝑁𝑦 = 64 × 32, 128 × 64, and 256 × 128. Each test is performed 5 times, calculating the CPU time and 𝑙2-norm error of the
ourth-order scheme and second-order scheme. Each case is tested on a 6-core workstation with 16 Gb of RAM memory. Table 4
ists the average CPU time and error for both schemes.

Note the case where 𝑁𝑥 = 256 at the second-order scheme and 𝑁𝑥 = 64 at the fourth-order scheme. Both cases have similar 𝑙2-
orm error, however the CPU time is remarkably smaller with the fourth-order scheme. Fig. 4(a) illustrates the CPU time(blue) and
2-norm error(green) respect to 𝑁𝑥 for the second-order scheme(dotted line) and fourth-order scheme(solid line). Error is shown in a
ogarithmic scale. The error is smaller when using the fourth-order scheme and costs longer CPU time. However, observing Fig. 4(b)
here it illustrates the value of (CPU time) × (Error), we can see that it converges but smaller at the fourth-order scheme. We can

onclude that the fourth-order scheme is the superior option.
12
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Fig. 4. (a) CPU time and 𝑙2-norm error respect to 𝑁𝑥. (b) (CPU time) × (Error) respect to 𝑁𝑥.

Fig. 5. Temporal evolution of the zero level contour and radius 𝑅(𝑡) in 2D.

3.6. Motion by mean curvature

We consider the motion by mean curvature with the AC equation. The zero level set of 𝜙 moves according to motion by mean
curvature as 𝜖 converges to zero [39]. Model a circle with an initial radius 𝑅0, which is given as

𝜙(𝑥, 𝑦, 0) = tanh

(

𝑅0 −
√

𝑥2 + 𝑦2
√

2𝜖

)

, (76)

on 𝛺 = (−1, 1) × (−1, 1) with 𝑁𝑥 ×𝑁𝑦 mesh. We used parameters 𝑅0 = 0.8, ℎ = 1∕64, 𝛥𝑡 = 0.05ℎ2, 𝑇 = 0.3 and 𝜖 = 𝜖9. 𝜖𝑚 is defined as
𝜖𝑚 = ℎ𝑚∕(2

√

2 tanh−1(0.9)) [32]. The analytic solution for this model at time 𝑡 is a circle with radius 𝑅(𝑡) =
√

𝑅2
0 − 2𝑡. Fig. 5 shows

the zero-level contours of the analytic and numerical solution with 𝑁𝑥 = 𝑁𝑦 = 128.
Next, we consider a sphere with the initial radius 𝑅0. The initial condition is given as

𝜙(𝑥, 𝑦, 𝑧, 0) = tanh

(

𝑅0 −
√

𝑥2 + 𝑦2 + 𝑧2
√

2𝜖

)

, (77)

on 𝛺 = (−1, 1) × (−1, 1) × (−1, 1) with 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 mesh. The used parameters are 𝑅0 = 0.8, ℎ = 1∕32, 𝛥𝑡 = 0.1ℎ2, 𝑇 = 0.15

and 𝜖 = 𝜖7. The radius 𝑅(𝑡) =
√

𝑅2
0 − 4𝑡 is the analytic solution at time 𝑡. Fig. 6 shows the temporal evolution of the sphere with

𝑁𝑥 = 𝑁𝑦 = 𝑁𝑧 = 64. We can observe that for both 2D and 3D, the motion by mean curvature property of the AC equations holds
when applying the proposed numerical method.

Here, we compare the numerical results for second-order and fourth-order schemes and present advantages of the fourth-order
scheme over the second-order scheme. First, we consider the following circle shaped initial condition

𝜙(𝑥, 𝑦, 0) = tanh

(

0.8 −
√

𝑥2 + 𝑦2
√

2𝜖

)

on 𝛺 = (−1, 1) × (−1, 1) with 128 × 128 mesh. Here, we use ℎ = 1∕64, 𝛥𝑡 = 0.25ℎ2 and 𝜖 = 2.6ℎ∕(2
√

2 tanh−1(0.9)). Fig. 7 shows
temporal evolutions of the zero-level contour of the numerical solutions for the second-order scheme and fourth-order scheme. The
13
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Fig. 6. Temporal evolution of the zero level contour and radius 𝑅(𝑡) in 3D.

Fig. 7. Temporal evolutions of the zero-level contour of the numerical solutions for the fourth-order scheme and second-order scheme.

interface of the Allen–Cahn equation, driven by motion by mean curvature flow, should shrink as demonstrated in the results of
Section 3.5. However, in the case of the second-order scheme, the solution becomes pinned and does not evolve for small interfacial
parameter 𝜖. Therefore, compared to a second-order scheme, the fourth-order scheme can capture sharp interface details more
effectively.

4. Conclusions

In this paper, we proposed the fourth-order accurate hybrid method on grids for the AC equation. The proposed method consists
of the OSM. In the proposed scheme, we used the implicit Euler’s scheme and operator splitting scheme to solve discrete Laplace
term in each direction in 2D and 3D respectively. And, we used the analytic solution to solve nonlinear term. We proved the stability
of our scheme using the von Neumann stability analysis. Several numerical simulations demonstrated the superior performance of
the proposed scheme and compared it with the second order scheme. We also showed that the our proposed scheme satisfies the
motion by mean curvature flow and the total energy decreasing property by numerical simulation. Furthermore, compared to a
second-order scheme, this method permits the use of a finer interfacial parameter 𝜖, thereby enhancing accuracy and providing
more detailed modeling at the same resolution, such as other reaction–diffusion equations.

Given in Section 3.3, our method shows high performance on spatial convergence. However, one weakness is when the error
from the time derivative is the dominant error. In cases like this, the high spatial convergence rate is less effective, reducing the
convergence rate of the entire scheme. This is because the scheme is fourth-order accurate in space but first-order accurate in time.
Therefore, for future work, we plan to develop our numerical scheme to be unconditionally stable and second-order accurate in
time. To achieve this goal we are considering semi-implicit Euler’s scheme [30] and half step evolution operators [40].

Data availability

Data will be made available on request.
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