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A B S T R A C T

This paper introduces a numerical approach for the practical solution of the modified Fisher–
Kolmogorov–Petrovsky–Piskunov equation that describes population dynamics. The diffusion
term and nonlinear term is based on the operator splitting method and interpolation method,
respectively. The analytic proof of the discrete maximum principle and positivity preserving for
the numerical algorithm is demonstrated. Numerical solution calculated using the proposed
method remains stable without blowing up, which implies that the proposed method is
unconditionally stable. Numerical studies show that the proposed method is second-order
convergence in space and first-order convergence in time. The performance and applicability of
the proposed scheme are studied through various computational tests that present the effects
of model parameters and evolution dynamics.

1. Introduction

The dynamics of population genetics and wave propagations can be explained by a simple, but realistic model by Fisher [1]
which exhibits a traveling wave solution. Another pioneering work by Kolmogorov, Petrovsky and Piskunov [2] studied a more
general equation with reaction term

𝑢𝑡 = 𝛥𝑢 + 𝑓 (𝑢), 0 < 𝑢 < 1, (1)

where 𝑓 is a smooth function that satisfies 𝑓 (0) = 𝑓 (1) = 0, 𝑓 ′(𝑢) > 0 for 0 < 𝑢 < 1, 𝑓 ′(0) = 𝛼 > 0 and 𝑓 ′(𝑢) < 𝛼 for 0 < 𝑢 ≤ 1.
Kolmogorov et al. discussed the traveling wave solution and provided a general approach using 𝑓 = 𝐾𝑢(1 − 𝑢)2. After the classic
works of Fisher and Kolmogorov et al. there are many significant contributions on modification of the Fisher–Kolmogorov–Petrovsky–
Piskunov (Fisher–KPP) equation due to extensive applications in chemistry and biology. One example is the non-local Fisher–KPP
equation, where it models non-local interaction and competition [3]. Variable 𝑥 interprets a morphological trait, the diffusion term
models mutation and modified nonlinear term mimics competition [4]. Berestycki et al. [5] defined a non-local saturation effect
defined through an given convolution kernel and applied the Fisher–KPP equation, which can model saturation or competition
effects. The authors proved the existence of steady states and traveling waves. Therefore, the proposed equation admits traveling
wave solutions. Hamel and Henderson [6] investigated the influence of general non-local advection term to propagation in the
one-dimensional Fisher–KPP equation. This model is a generalization of the Keller–Segel–Fisher system. Achleitner and Kuehn [7]
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proposed an analysis of stationary solutions for the non-local Fisher–KPP equation. The authors expect that results of this paper
can be generalized to obtain solutions of other non-local evolution equations. Shapovalov et al. [8] described the evolution of
spatiotemporal structures depending on the equation parameter domain using the non-local Fisher–KPP equation. The paper also
presents the effect of relaxation on the pattern formation in a non-local population model.

While studies concerning the non-local Fisher–KPP equation modified the nonlinear term, Audrito and Vázquez [9] studied a
oubly nonlinear Fisher–KPP equation where they replaced the diffusion term as 𝛥𝑝𝑢𝑚 where 𝛥𝑝 is the 𝑝−Laplacian defined as

𝛥𝑝𝑣 ∶= ∇ ⋅ (|∇𝑣|𝑝−2∇𝑣) with parameters 𝑚 > 0 and 𝑝 > 1. Fisher–KPP equation is also studied by Xu et al. [10], with the birth
and death function as the nonlinear equation and time delayed degenerate diffusion equation. The governing equation also has a
traveling wave solution like the Fisher–KPP equation, but shows a critical sharp pattern. The existence, uniqueness and regularity
of the traveling wave is demonstrated. Like this, generalized Fisher–KPP equations are proposed by replacing constant parameters
and variable functions for prominent applications in ecology, physiology, combustion, crystallization, plasma physics, and phase
transition problems [11]. Wang et al. [12] studied the global stabilization of solutions to initial–boundary value problems of the
generalized Fisher–KPP equation. The applicability of the proposed method is shown by comparing the results obtained from the
diffusive susceptible–infected–susceptible model. In [13], the authors studied the positivity of solutions to the Fisher–KPP equation
with relaxation time included. Both analytical and numerical results are presented in the paper. An energy analysis of the generalized
theory is given and the existence of a threshold for the relaxation time is shown numerically. Gilding and Kersner [14] presented a
generalization of Fisher–KPP equation that embodies other well-known reaction–convection–diffusion equations:

𝑢𝑡 = (𝑢𝑚)𝑥𝑥 + (𝑢(𝑏0 + 𝑏1𝑢
𝑝))𝑥 +

{

𝑢2−𝑚(1 − 𝑢𝑝)(𝑐0 + 𝑐1𝑢𝑝) for 𝑢 > 0,
0 for 𝑢 = 0,

(2)

where the classic Fisher–KPP equation can be obtained from 𝑚 = 𝑝 = 𝑐0 = 1 and 𝑏0 = 𝑏1 = 𝑐1 = 0. Let us mention that the
Newell–Whitehead–Segel equation [15], FitzHugh–Nagumo model [16,17] and Burgers equation [18] can be found by applying
different parameter values at Eq. (2).

Three- and multi-dimension Fisher–KPP equation is also a popular topic. One might recall this kind of approach from the
pioneering works of the Fisher–KPP equation. While Fisher [1] studied a 1D classic Fisher equation, Kolmogorov, Petrovsky and
Piskunov [2] studied a more general equation in 2D. Gärtner [19] studied the traveling wave front in high dimension Fisher–
KPP equation and showed that the transition has a width that is uniformly bounded in time. Ducrot [20] also studied asymptotic
behavior in an asymptotic homogeneous medium at multi-dimension case. Prior to the convergence study, a precise estimate of the
location was found. The authors found that the location depends on the rate of medium reaching infinity. Relation between the rate
of convergence and location is also demonstrated. Du and Ni [21] studied the high-dimensional symmetric Fisher–KPP equation
with non-local diffusion and free boundary. Authors focused on the long time dynamics of the proposed model. In the first study,
the threshold condition of the kernel function and spreading speed in finite time were demonstrated. Some specific domains such
as a cone in R𝑁 can be selected as a domain for the high-dimensional Fisher–KPP equation, studied by Lou and Lu [22]. They
adopted the Dirichlet boundary condition and demonstrated the unique convergence of the spreading phenomena. They concluded
that the spreading speed depends on the propagation direction and boundary conditions, and not the shape of the cone. Vyas
et al. [23] studied the neural population dynamics to demonstrate how they are computed and implemented. To describe dynamics
in 3D and high-dimensional data, they introduced linear subspace, null space and manifold. Al-Musawi and Harfash [24] studied
the extended Fisher–KPP equation on open bounded convex domains with dimensions 1 to 3. The semi-discrete and fully discrete
finite element approximation is proposed to solve the governing equation. Proof of the existence and uniqueness of solutions and
various numerical experiments support the proposed methods. Garvey et al. [25] presented a high-throughput platform for studying
heterogeneous cell platforms. The authors mentioned that for a realistic study on tumor cell populations, a 3D culture can be
applied. The mathematical modeling of multi-dimensional population dynamics using the Fisher–KPP equation has been a popular
subject for the past decades [26]. The Fisher–KPP equation has been applied in various population genetic studies such as cell
growth through cell communication and aggregation [27], spreading of biological or chemical species [28] and spreading nature of
invasive species [29].

The paper is organized as follows. The governing equation is given in Section 2. In Section 3, we describe the proposed
computational method for the 3D Fisher–KPP equation. In Section 4, numerical analyses are given. We conducted computational
tests to validate the robustness of the proposed method in Section 5. In Section 6, we draw a conclusion. Additionally, detail operator
splitting method (OSM) algorithm and pseudo code of the complete numerical algorithm is given in Appendices A and B, respectively.

2. Governing equation

This paper is devoted to the numerical method for the 3D modified Fisher–KPP equation that satisfies the discrete maximal
principle, positivity-preserving and unconditionally stable.

𝜕𝑢(𝑥, 𝑦, 𝑧, 𝑡)
𝜕𝑡

= 𝐷𝛥𝑢(𝑥, 𝑦, 𝑧, 𝑡) +𝐾𝑝𝑞𝑢
𝑝(𝑥, 𝑦, 𝑧, 𝑡)[1 − 𝑢(𝑥, 𝑦, 𝑧, 𝑡)]𝑞 , (3)

(𝑥, 𝑦, 𝑧) ∈ 𝛺.

𝑢(𝑥, 𝑦, 𝑧, 𝑡) stands for the density of the population at time 𝑡 and spatial location (𝑥, 𝑦, 𝑧), defined on domain 𝛺. Note that the governing
equation can be obtained from the general Fisher–KPP equation given in Eq. (2).
2 
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Fig. 1. 𝐾𝑝𝑞𝑢𝑝(1 − 𝑢)𝑞 depending on values of 𝑝 and 𝑞.

Diffusion coefficient 𝐷, nonlinear parameter 𝐾𝑝𝑞 and order of nonlinear terms 𝑝, 𝑞 are all positive parameters. The nonlinear
erm 𝐾𝑝𝑞𝑢𝑝(1−𝑢)𝑞 depends on the values of 𝑝 and 𝑞. However, it must satisfy the following to clearly compare the parameter effects.

∫

1

0
𝐾𝑝𝑞𝑢

𝑝(1 − 𝑢)𝑞𝑑𝑢 = 1. (4)

herefore, the nonlinear parameter 𝐾𝑝𝑞 varies according to the order of nonlinear terms like the following:

𝐾𝑝𝑞 =
𝛤 (𝑝 + 𝑞 + 2)

𝛤 (𝑝 + 1)𝛤 (𝑞 + 1)
and 𝛤 (𝑧) = ∫

∞

0
𝑡𝑧−1𝑒−𝑡𝑑𝑡, (5)

which is also given in Fig. 1 and will be used for the entirety of this study.
One consideration of the modified Fisher–KPP equation is that it turns into a numerically stiff problem when the orders of

nonlinear terms 𝑝 and 𝑞 are large. Adopting OSM [30] allows the proposed method to show stable results when dealing with high
order nonlinear terms and solving the stiffness problem. Even though the governing equation is in 3D space, OSM allows simple
and fast numerical computation. Furthermore, unconditional stability and positivity preserving can be achieved more easily by
OSM [31–33]. These aforementioned properties are the main advantages of the proposed method.

3. Numerical solution

To numerically solve Eq. (3), we set a 𝑁𝑥×𝑁𝑦×𝑁𝑧 grid 𝛺 = (𝐿𝑥, 𝑅𝑥)×(𝐿𝑦, 𝑅𝑦)×(𝐿𝑧, 𝑅𝑧) in the 3D space. Let 𝛥𝑡 be the time step,
ℎ = (𝑅𝑥−𝐿𝑥)∕𝑁𝑥 = (𝑅𝑦−𝐿𝑦)∕𝑁𝑦 = (𝑅𝑧−𝐿𝑧)∕𝑁𝑧 be the space step, and

{

(𝑥𝑖, 𝑦𝑗 , 𝑧𝑘) = (𝐿𝑥+(𝑖−0.5)ℎ,𝐿𝑦+(𝑗−0.5)ℎ,𝐿𝑧+(𝑘−0.5)ℎ)|1 ≤
𝑖 ≤ 𝑁𝑥, 1 ≤ 𝑗 ≤ 𝑁𝑦, 1 ≤ 𝑘 ≤ 𝑁𝑧

}

be the set of cell centers. On these cell centers, we denote the numerical approximation 𝑢(𝑥𝑖, 𝑦𝑗 , 𝑧𝑘, 𝑡𝑛)
by 𝑢𝑛𝑖𝑗𝑘 where 𝑡𝑛 = 𝑛𝛥𝑡. On the cell centered grid, the governing Eq. (3) is divided by the OSM in the following way:

𝑢𝑛+1𝑖𝑗𝑘 = (𝑂𝑆𝑀◦𝑧
𝑂𝑆𝑀◦𝑦

𝑂𝑆𝑀◦𝑥
𝑂𝑆𝑀 )𝑢𝑛𝑖𝑗𝑘. (6)

Separating the governing equation into different physical processes can achieve simple and efficient numerical computation. Three
discrete linear operators 𝑥

𝑂𝑆𝑀 ,𝑦
𝑂𝑆𝑀 and 𝑧

𝑂𝑆𝑀 maps 𝑢𝑛𝑖𝑗𝑘 to 𝑢∗𝑖𝑗𝑘, 𝑢∗𝑖𝑗𝑘 to 𝑢∗∗𝑖𝑗𝑘 and 𝑢∗∗𝑖𝑗𝑘 to 𝑢∗∗∗𝑖𝑗𝑘 using the following procedures,
respectively:

𝑢∗𝑖𝑗𝑘 − 𝑢𝑛𝑖𝑗𝑘
𝛥𝑡

= 𝐷
𝑢∗𝑖+1,𝑗,𝑘 − 2𝑢∗𝑖𝑗𝑘 + 𝑢∗𝑖−1,𝑗,𝑘

ℎ2
, (7)

𝑢∗∗𝑖𝑗𝑘 − 𝑢∗𝑖𝑗𝑘
𝛥𝑡

= 𝐷
𝑢∗∗𝑖,𝑗+1,𝑘 − 2𝑢∗∗𝑖𝑗𝑘 + 𝑢∗∗𝑖,𝑗−1,𝑘

ℎ2
, (8)

𝑢∗∗∗𝑖𝑗𝑘 − 𝑢∗∗𝑖𝑗𝑘
𝛥𝑡

= 𝐷
𝑢∗∗∗𝑖,𝑗,𝑘+1 − 2𝑢∗∗∗𝑖𝑗𝑘 + 𝑢∗∗∗𝑖,𝑗,𝑘−1

ℎ2
. (9)

Here, we used the one-dimensional discrete Laplacian operator [34]. Lastly, the nonlinear operator 𝑂𝑆𝑀 maps 𝑢∗∗∗𝑖𝑗𝑘 to 𝑢𝑛+1𝑖𝑗𝑘 using
an interpolation method that is discussed later. Combination of discrete linear operators 𝑧

𝑂𝑆𝑀◦𝑦
𝑂𝑆𝑀◦𝑥

𝑂𝑆𝑀 is a discrete solution
for

𝜕𝑢(𝑥, 𝑦, 𝑧, 𝑡)
𝜕𝑡

= 𝐷𝛥𝑢(𝑥, 𝑦, 𝑧, 𝑡), (10)

and the nonlinear operator 𝑂𝑆𝑀 is a solution for
𝜕𝑢(𝑥, 𝑦, 𝑧, 𝑡)

= 𝐾 𝑢𝑝(𝑥, 𝑦, 𝑧, 𝑡)[1 − 𝑢(𝑥, 𝑦, 𝑧, 𝑡)]𝑞 . (11)

𝜕𝑡 𝑝𝑞

3 
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Fig. 2. Interpolation method for solving the nonlinear term.

When expressing Eqs. (7), (8) and (9) in an implicit form, we obtain a tridiagonal system for index 𝑖, 𝑗 and 𝑘, respectively.
ach tridiagonal system is solved using the Thomas algorithm [35]. We describe the detailed algorithm for solving Eqs. (7)–(9)
n Appendix A. Now that we have solved the diffusion equation using the OSM method, the nonlinear reaction equation remains
nsolved. We discretize Eq. (11) for a numerical solution. Numerical solution of the nonlinear reaction equation is unstable unless
n exceptionally small time step is applied, especially with high 𝑝 and 𝑞 values. Therefore, the nonlinear operator 𝑂𝑆𝑀 is defined
sing an interpolation method for a stable numerical solution. The basic concept of the novel interpolation method is to pre-compute
ccurate numerical solutions for the partial differential equation. Then, linear interpolation is applied based on the pre-computed
alues to obtain the desired numerical solution for each time step. Pre-computation is performed with 𝑁𝜏 times smaller time step

𝛥𝜏 to achieve high accuracy on pre-computing mesh 𝐼 = {𝐼𝑠|𝐼𝑠 = (𝑠 − 1)∕(𝑀 − 1), for 𝑠 = 1,… ,𝑀}. For given 𝛥𝑡, let 𝛷1,… , 𝛷𝑀
be the corresponding pre-computed values in [0, 1]. To achieve stability, the following must be guaranteed so that pre-computed
values are bounded by [0, 1]:

𝑁𝜏 =

{

⌊𝛥𝑡𝐾𝑝𝑞⌋ + 1 if 𝑞 = 1,
⌊𝛥𝑡

( 𝑝
𝑝+𝑞−1

)𝑝( 𝑞−1
𝑝+𝑞−1

)𝑞−1𝐾𝑝𝑞⌋ + 1 if 𝑞 > 1,
(12)

where ⌊𝑥⌋ is the floor function. See [36] for pre-computed solutions 𝛷 on mesh 𝐼 . Therefore, the nonlinear operator 𝑂𝑆𝑀 maps
𝑢∗∗∗ to 𝑢𝑛+1 using the pre-computed solution.

𝑢𝑛+1𝑖𝑗𝑘 =
𝐼𝑠+1 − 𝑢∗∗∗𝑖𝑗𝑘

𝐼𝑠+1 − 𝐼𝑠
𝛷𝑠 +

𝑢∗∗∗𝑖𝑗𝑘 − 𝐼𝑠
𝐼𝑠+1 − 𝐼𝑠

𝛷𝑠+1, (13)

where 𝐼𝑠 ≤ 𝑢∗∗∗𝑖𝑗𝑘 ≤ 𝐼𝑠+1 for some 𝑠.
The schematic illustration of interpolation method is given in Fig. 2. We provided a pseudo code of the complete numerical

algorithm in Appendix B.
Additionally, the discrete total mass of the numerical solution is defined in the following way [37]:

𝑀 = ℎ3
𝑁𝑧
∑

𝑘=1

𝑁𝑦
∑

𝑗=1

𝑁𝑥
∑

𝑖=1
𝑢𝑛𝑖𝑗𝑘.

The total mass calculation plays an important role in discussing the effect of different parameter values.

4. Numerical analysis

The Fisher–KPP equation appears in the investigation of many realistic models, including the dynamics of the population. When
the discrete variable 𝑢𝑖𝑗𝑘 represents the density of the population at a desired position, the requirement of boundedness of the
solutions is a significant physical condition that must be discussed [38,39]. In this section, we show the discrete maximum principle
and positivity preserving of numerical solutions to observe the boundedness of the proposed method.

4.1. The discrete maximum principle

The first step of showing the boundedness of the proposed method starts with showing the discrete maximum principle. That is,
the maximum component of each time step in the numerical method is bounded above by a maximum component [40]. We define
the following notation that indicates the maximum value at some time step 𝑛.

𝑛 𝑛

‖𝑢 ‖∞ = max 𝑢𝑖𝑗𝑘. (14)

4 



S. Kang et al.

W
s
𝑢
s

Journal of Computational and Applied Mathematics 457 (2025) 116273 
‖𝑢∗‖∞, ‖𝑢∗∗‖∞ and ‖𝑢∗∗∗‖∞ is also defined as the maximum value of corresponding step. We will inductively show that the maximum
value for each time step is monotonic decreasing. Therefore, we assume that the discrete maximum principle holds for initial
condition and time step 𝑛 with upper bound 1. First, we apply the triangle inequality to Eq. (26).

|

|

|

(

1
𝛥𝑡

+ 2𝐷
ℎ2

)

𝑢∗𝑖𝑗𝑘
|

|

|

= |

|

|

𝐷
ℎ2

𝑢∗𝑖−1,𝑗𝑘 +
𝐷
ℎ2

𝑢∗𝑖+1,𝑗𝑘 +
𝑢𝑛𝑖𝑗𝑘
𝛥𝑡

|

|

|

≤ |

|

|

𝐷
ℎ2

𝑢∗𝑖−1,𝑗𝑘
|

|

|

+ |

|

|

𝐷
ℎ2

𝑢∗𝑖+1,𝑗𝑘
|

|

|

+ |

|

|

𝑢𝑛𝑖𝑗𝑘
𝛥𝑡

|

|

|

≤ 𝐷
ℎ2

‖𝑢∗‖∞ + 𝐷
ℎ2

‖𝑢∗‖∞ + 1
𝛥𝑡

|𝑢𝑛𝑖𝑗𝑘|. (15)

Eq. (15) holds for all 𝑖, 𝑗 and 𝑘, which implies that |𝑢∗𝑖𝑗𝑘| on the left hand side can be replaced by ‖𝑢∗‖∞.
(

1
𝛥𝑡

+ 2𝐷
ℎ2

)

‖𝑢∗‖∞ ≤ 𝐷
ℎ2

‖𝑢∗‖∞ + 𝐷
ℎ2

‖𝑢∗‖∞ + 1
𝛥𝑡

‖𝑢𝑛‖∞,

‖𝑢∗‖∞ ≤ ‖𝑢𝑛‖∞.

Then, ‖𝑢∗∗‖∞ ≤ ‖𝑢∗‖∞ and ‖𝑢∗∗∗‖∞ ≤ ‖𝑢∗∗‖∞ can be proved similarly. Lastly, we show that 𝑢𝑛+1𝑖𝑗𝑘 is bounded by 1. Recall that index
𝑠 satisfies 𝐼𝑠 ≤ 𝑢∗∗∗𝑖𝑗𝑘 ≤ 𝐼𝑠+1 and 𝛷𝑠 and 𝛷𝑠+1 are bounded by [0, 1], we obtain the following from Eq. (13).

𝑢𝑛+1𝑖𝑗𝑘 =
𝐼𝑠+1 − 𝑢∗∗∗𝑖𝑗𝑘

𝐼𝑠+1 − 𝐼𝑠
𝛷𝑠 +

𝑢∗∗∗𝑖𝑗𝑘 − 𝐼𝑠
𝐼𝑠+1 − 𝐼𝑠

𝛷𝑠+1 ≤
𝐼𝑠+1 − 𝑢∗∗∗𝑖𝑗𝑘

𝐼𝑠+1 − 𝐼𝑠
+

𝑢∗∗∗𝑖𝑗𝑘 − 𝐼𝑠
𝐼𝑠+1 − 𝐼𝑠

= 1.

We have shown that if the discrete maximum principle holds for time step 𝑛, it also holds for time step 𝑛 + 1. Inductively, the
proposed method satisfies the discrete maximum principle.

4.2. Positivity preserving

In this section, we prove the positivity preserving of the proposed method. Continued from the last section, this will conclude
the boundedness of the numerical scheme for the Fisher–KPP equation. Mathematical induction is also applied for this section.
Assume that positivity preserving holds until time step 𝑛 and the initial condition is positive. Let 𝑢∗𝐼𝐽𝐾 be the minimum value of the
numerical solution of the 𝑥-direction OSM for the linear equation

− 𝐷
ℎ2

𝑢∗𝑖−1,𝑗𝑘 +
(

1
𝛥𝑡

+ 2𝐷
ℎ2

)

𝑢∗𝑖𝑗𝑘 −
𝐷
ℎ2

𝑢∗𝑖+1,𝑗𝑘 =
𝑢𝑛𝑖𝑗𝑘
𝛥𝑡

, (16)

where 𝐼, 𝐽 and 𝐾 are indices of the minimum solution on the computational grid. When 2 ≤ 𝐼 ≤ 𝑁𝑥 − 1, Eq. (16) at the minimum
solution is given as following:

− 𝐷
ℎ2

𝑢∗𝐼−1,𝐽𝐾 +
(

1
𝛥𝑡

+ 2𝐷
ℎ2

)

𝑢∗𝐼𝐽𝐾 − 𝐷
ℎ2

𝑢∗𝐼+1,𝐽𝐾 =
𝑢𝑛𝐼𝐽𝐾
𝛥𝑡

,

1
𝛥𝑡

𝑢∗𝐼𝐽𝐾 −
𝑢𝑛𝐼𝐽𝐾
𝛥𝑡

= 𝐷
ℎ2

𝑢∗𝐼−1,𝐽𝐾 − 2𝐷
ℎ2

𝑢∗𝐼𝐽𝐾 + 𝐷
ℎ2

𝑢∗𝐼+1,𝐽𝐾 ,

1
𝛥𝑡

(

𝑢∗𝐼𝐽𝐾 − 𝑢𝑛𝐼𝐽𝐾
)

= 𝐷
ℎ2

[

(𝑢∗𝐼−1,𝐽𝐾 − 𝑢∗𝐼𝐽𝐾 ) + (𝑢∗𝐼+1,𝐽𝐾 − 𝑢∗𝐼𝐽𝐾 )
]

≥ 0.

According to the assumption, 𝑢𝑛𝐼𝐽𝐾 ≥ 0, and therefore we obtain 𝑢∗𝐼𝐽𝐾 ≥ 0. Next, Eq. (16) when 𝐼 = 1 is given as following using
the zero Neumann boundary condition:

(

1
𝛥𝑡

+ 𝐷
ℎ2

)

𝑢∗1𝑗𝑘 − 𝐷
ℎ2

𝑢∗2𝑗𝑘 =
𝑢𝑛1𝑗𝑘
𝛥𝑡

,

1
𝛥𝑡

𝑢∗1𝐽𝐾 −
𝑢𝑛1𝐽𝐾
𝛥𝑡

= 𝐷
ℎ2

𝑢∗2𝐽𝐾 − 𝐷
ℎ2

𝑢∗1𝐽𝐾 ,

1
𝛥𝑡

(

𝑢∗1𝐽𝐾 − 𝑢𝑛1𝐽𝐾
)

= 𝐷
ℎ2

(

𝑢∗2𝐽𝐾 − 𝑢∗1𝐽𝐾
)

.

e can see that 𝑢∗𝐼𝐽𝐾 ≥ 0 also holds when 𝐼 = 1. The case of 𝐼 = 𝑁𝑥 can be proved similarly. Three cases imply that the minimum
olution is positive, therefore 𝑢∗𝑖𝑗𝑘 ≥ 0 holds for all 𝑖, 𝑗 and 𝑘. Proof for the 𝑦 and 𝑧-direction OSM is done similarly, i.e., 𝑢∗∗𝑖𝑗𝑘 ≥ 0 and
∗∗∗
𝑖𝑗𝑘 ≥ 0 for all 𝑖, 𝑗 and 𝑘. The solution of the OSM holds positivity preserving. Positivity preserving for the interpolation method is
hown in the same way as proving the discrete maximum principle. Recall that 𝛷𝑠, 𝛷𝑠+1 ∈ [0, 1] for all 𝑠 = 1,… ,𝑀 .

𝑢𝑛+1𝑖𝑗𝑘 =
𝐼𝑠+1 − 𝑢∗∗∗𝑖𝑗𝑘

𝐼𝑠+1 − 𝐼𝑠
𝛷𝑠 +

𝑢∗∗∗𝑖𝑗𝑘 − 𝐼𝑠
𝐼𝑠+1 − 𝐼𝑠

𝛷𝑠+1

≥
𝐼𝑠+1 − 𝑢∗∗∗𝑖𝑗𝑘

𝐼𝑠+1 − 𝐼𝑠
× 0 +

𝑢∗∗∗𝑖𝑗𝑘 − 𝐼𝑠
𝐼𝑠+1 − 𝐼𝑠

× 0 = 0.

This concludes the proof for the positivity preserving of the proposed numerical method.
5 
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Fig. 3. From left to right, represent 𝑥–𝑦, 𝑦–𝑧 and 𝑧–𝑥 direction. The initial condition and numerical solution is illustrated in gray and white, respectively.

Table 1
Temporal errors and convergence rates with an analytic solution.
Case 𝛥𝑡 = 0.5∕4 Rate 𝛥𝑡 = 0.5∕8 Rate 𝛥𝑡 = 0.5∕16 Rate 𝛥𝑡 = 0.5∕32

𝑙2-error 1.76 × 10−1 0.99 8.88 × 10−2 0.98 4.51 × 10−2 0.95 2.33 × 10−2

Table 2
Spatial errors and convergence rates with an analytic solution.
Case ℎ = 40∕32 Rate ℎ = 40∕64 Rate ℎ = 40∕128 Rate ℎ = 40∕256

𝑙2-error 1.11 × 10−1 1.98 2.81 × 10−2 1.98 7.14 × 10−3 1.92 1.89 × 10−3

5. Numerical experiments

In this section, we verify the convergence rate and unconditional stability of the proposed method, observe the effect of the
diffusion coefficient and the order of the nonlinear term. Then, numerical examples using step functions and traveling waves are
presented. Each of these is explored through numerical simulations. Unless otherwise stated, we applied the zero Neumann boundary
condition for each numerical test and the coefficient 𝐾𝑝𝑞 is defined by Eq. (5).

5.1. Convergence test

The convergence rates in time and space are shown numerically using the following initial condition:

𝑢(𝑥, 𝑦, 𝑧, 0) = 1

1 + 𝑒𝑥∕
√

2
, (17)

with the following exact solution [41]:

𝑢ext(𝑥, 𝑦, 𝑧, 𝑡) = 1

1 + 𝑒𝑥∕
√

2−𝑡∕2
, (18)

in domain 𝛺 = (−20, 20) × (−20, 20) × (−20, 20) with 𝐷 = 𝐾𝑝𝑞 = 1, 𝑝 = 2 and 𝑞 = 1. According to the discretization of the diffusion,
we expect first-order convergence in time and second-order convergence in space. Fig. 3 illustrates the figure at times 0 and 4 in all
three directions.

First, we set final time 𝑇 = 0.5, number of space steps, 𝑁𝑥 = 𝑁𝑦 = 𝑁𝑧 = 256 and apply a set of increasing time steps 𝑁𝑡 = 4, 8, 16
and 32 to obtain the convergence rate for time. The error under a particular time step is defined as the 𝑙2-norm of the difference
between the analytic solution and the numerical solution. The corresponding convergence rate is defined by two 𝑙2-norm errors with
decreasing time steps.

𝑒𝛥𝑡 = ‖𝑢𝑖𝑗𝑘 − 𝑢ext
𝑖𝑗𝑘‖2, convergence rate = log2

(

‖𝑒𝛥𝑡‖2∕‖𝑒𝛥𝑡∕2‖2
)

(19)

The convergence rate for space is defined similarly. Table 1 lists resulting 𝑙2-norm errors and corresponding convergence rates. We
can find that the numerical scheme is first-order convergence in time.

Next, we set final time 𝑇 = 0.5, number of time steps 𝑁𝑡 = 4096 and apply a set of increasing space steps 𝑁𝑥 = 𝑁𝑦 = 𝑁𝑧 =
32, 64, 128 and 256 with corresponding space step size ℎ = 40∕𝑁𝑥 = 40∕𝑁𝑦 = 40∕𝑁𝑧 to obtain the convergence rate for space.
Table 2 lists resulting 𝑙2-norm errors and corresponding convergence rates. We can find that the numerical scheme is second-order
convergence in space.

In general, the Fisher–KPP equation does not have an analytic solution. The previous convergence test considered a special case
with an analytic solution. To highlight the versatility of the proposed method, we consider the case of 𝑝 = 1 and 𝑞 = 9 which
the analytic solution does not exist under the authors’ knowledge. Initial condition, computational domain and final time remain
unchanged. 𝑁𝑥 = 𝑁𝑦 = 𝑁𝑧 = 256 and 𝑁𝑡 = 4096 is used for temporal and spatial convergence tests, respectively. We chose reference
solutions 𝑢ref for time and space convergence rates using small time step and space step size, respectively. The time reference solution
for time convergence at final time 𝑇 is obtained with 𝑁 = 256. The same number of time steps, 𝑁 = 4, 8, 16 and 32 are applied to
𝑡 𝑡

6 
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Table 3
Temporal errors and convergence rates with a reference solution.
Case 𝛥𝑡 = 0.5∕4 Rate 𝛥𝑡 = 0.5∕8 Rate 𝛥𝑡 = 0.5∕16 Rate 𝛥𝑡 = 0.5∕32

𝑙2-error 4.86 × 10−2 0.99 2.46 × 10−2 1.03 1.20 × 10−2 1.09 5.66 × 10−3

Table 4
Spatial errors and convergence rates with a reference solution.
Case ℎ = 40∕16 Rate ℎ = 40∕32 Rate ℎ = 40∕64

𝑙2-error 4.17 × 10−1 2.19 9.12 × 10−2 1.90 2.44 × 10−2

Fig. 4. Numerical solutions using 𝛥𝑡 = 1, 0.1, 0.01 and exact solution when (a)𝑧 = 0.05 and (b) 𝑦 = 𝑧 = 0.05.

Table 5
Error when applying different time steps.
Time step 1 0.1 0.01

𝑙2-error 0.4039 0.1243 0.0131

calculate the convergence rate for time. The 𝑙2-norm error is defined based on the reference solution, instead of the exact solution.
Table 3 lists resulting 𝑙2-norm errors and corresponding convergence rates. We can find that first-order convergence in time still
holds.

The reference solution for space convergence at final time 𝑇 is obtained with 𝑁𝑥 = 𝑁𝑦 = 𝑁𝑧 = 512. 𝑙2-norm errors when
𝑁𝑥 = 𝑁𝑦 = 𝑁𝑧 = 16, 32 and 64 based on the reference solution using interpolation is defined in the following way:

𝑒ℎ = ‖

‖

‖

𝑢𝑖𝑗𝑘 −
1
8

∑

𝑎,𝑏,𝑐∈{0,1}
𝑢ref
2𝑝𝑖−2𝑝−1+𝑎,2𝑝𝑗−2𝑝−1+𝑏,2𝑝𝑘−2𝑝−1+𝑐

‖

‖

‖

2,

where 𝑝 = 3, 4 and 5 with respect to 𝑁𝑥 = 64, 32 and 16, respectively. Table 4 lists resulting 𝑙2-norm errors and corresponding
convergence rates. We can find that second-order convergence in space still holds.

5.2. Stability test

The unconditional stability can be demonstrated by applying large time steps for the proposed method. For the initial
condition (17), the computational grid is given as 𝛺 = (−50, 50) × (−0.5, 0.5) × (−0.5, 0.5) with parameters 𝑁𝑥 = 1000, 𝑁𝑦 = 𝑁𝑧 = 10,
𝑝 = 𝑞 = 1, 𝐷 = 𝐾𝑝𝑞 = 1 and final time 𝑇 = 10 are used. Tests have been performed on three different time steps 𝛥𝑡 = 1, 0.1, 0.01
which includes a exceptionally large time step 𝛥𝑡 = 1. For each test, we calculated the 𝑙2-norm error which is defined in Eq. (19).
The results are given in Fig. 4(a) when 𝑧 = 0.05 and Fig. 4(b) when 𝑦 = 𝑧 = 0.05. Large time step such as 𝛥𝑡 = 1 is used, albeit the
solution did not blow up. The error is given at Table 5. We can see that the numerical solutions did not blow up and agree with
the exact solution when a sufficiently small time step is given.

5.3. Maximum principle and positive preserving

In this section, we revisit the maximum principle and positive preserving through numerical simulations. On the computational
grid 𝛺 = (0, 1) × (0, 1) × (0, 1) and 𝑁 = 𝑁 = 𝑁 = 64 with parameters 𝐷 = 𝑝 = 𝑞 = 1, we apply a randomly perturbed initial
𝑥 𝑦 𝑧

7 



S. Kang et al. Journal of Computational and Applied Mathematics 457 (2025) 116273 
Fig. 5. Snapshot images of slice planes and temporal evolution of the maximum and minimum value.

condition where all values are in [0, 1]. Computational simulation is performed with time step 𝛥𝑡 = 10−4 until final time 𝑇 = 0.01.
Fig. 5 contains snapshot images of slice planes and temporal evolution of the maximum and minimum value of 𝑢𝑛𝑖𝑗𝑘, which confirms
that the proposed method preserves positivity and maximum principle.

5.4. Effect of the diffusion coefficient

We performed computational experiments to validate the effect of diffusion coefficient 𝐷 using the following initial condition.

𝑢(𝑥, 𝑦, 𝑧, 0) = 0.2 cos(2𝜋𝑥) cos(2𝜋𝑦) cos(2𝜋𝑧) + 0.5, (20)

where 𝑇 = 0.06, 𝛥𝑡 = 0.005, 𝑁𝑥 = 𝑁𝑦 = 𝑁𝑧 = 64 and 𝑝 = 𝑞 = 1 on domain 𝛺 = (0, 1) × (0, 1) × (0, 1). Figs. 6 and 7 show the
effect of diffusion coefficient 𝐷 by illustrating the isosurfaces of level 0.5 and 0.6, respectively. At the top, the initial condition
𝑢(𝑥, 𝑦, 𝑧, 0) and the evolution of the total mass are given. From top to bottom indicates 𝐷 = 0.001, 𝐷 = 0.01, 𝐷 = 0.1 and from left to
right indicates 𝑡 = 0.02, 𝑡 = 0.04, 𝑡 = 0.06. Comparing Figs. 6 and 7 we can obtain two conclusions: the total mass increases as time
progresses, and it is roughly independent to 𝐷. However, the isosurface of level 0.5 varies depending on the value of 𝐷. Therefore,
the coefficient 𝐷 only affects the speed of diffusion and has none or little effect on the total mass.

The correlation between 𝐷 and the total mass can be explained using the divergence theorem. Using the zero Neumann boundary
condition, 𝛥𝑢 = 0 for all 𝑡. Therefore, the total mass does not change when solving the diffusion Eq. (10). The total mass evolution
illustrated in Fig. 6(b) will depend on Eq. (11), i.e., orders of nonlinear term.

Additionally, we can observe that the impact of different 𝐷 values is more apparent in Fig. 6 (isosurface of level 0.5) than Fig. 7
(isosurface of level 0.6). In this numerical test, the diffusion equation varied by the value of 𝐷 and the nonlinear equation was
unchanged. We can conclude that the diffusion equation is more dominant than the nonlinear equation at 𝑢 = 0.5. Therefore 𝐷
has a significant impact on the evolution dynamics. However, when 𝑢 = 0.6, the nonlinear equation is dominant, making 𝐷 have a
minor impact.

5.5. Orders of nonlinear term

As described in Section 1, orders of nonlinear term 𝑝 and 𝑞 significantly affect the dynamics of the modified Fisher–KPP equation.
According to the last section, we expect values of 𝑝 and 𝑞 to have a major impact on the evolution of the total mass. In order to
focus on the evolutionary difference between different values of 𝑝 and 𝑞, the following initial condition

𝑢(𝑥, 𝑦, 𝑧, 0) = 0.45 cos(2𝜋𝑥) cos(2𝜋𝑦) cos(2𝜋𝑧) + 0.5, (21)

is applied on domain 𝛺 = (0, 1) × (0, 1) × (0, 1) with 𝐷 = 0.001. Unless otherwise stated, we use 𝑁𝑥 = 𝑁𝑦 = 𝑁𝑧 = 256 and 𝛥𝑡 = 0.01
for this section. Note that we minimized the diffusion term and emphasized the nonlinear reaction term by applying a small value
of 𝐷. First we consider the case when 𝑝 and 𝑞 are equal, then study the case when they are different.
8 
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Fig. 6. Effect of 𝐷 demonstrated by isosurfaces of level 0.5. Evolution of initial condition (a) at different conditions (c) 𝐷 = 0.001, (d) 𝐷 = 0.01 and (e) 𝐷 = 0.1
observed below. (b) illustrates the total mass of numerical results.

5.5.1. Nonlinear term with same order
We must mention the variations of 𝐾𝑝𝑞𝑢𝑝(1 − 𝑢)𝑞 with different parameter values. As shown in Fig. 8, the maximum value is

reached at 𝑢 = 0.5.
We first demonstrate when 𝑝 and 𝑞 have same values. Orders 𝑝 = 𝑞 = 1 and 𝑝 = 𝑞 = 10 are applied until final time 𝑇 = 0.4.

Fig. 9 illustrates isosurfaces of the numerical results. Fig. 9(a) is the isosurface of initial condition at level 0.5 and Fig. 9(b) is the
isosurface of initial condition at level 0.7. Fig. 9(c) shows the evolution of the total mass for 𝑝 = 𝑞 = 1 and 𝑝 = 𝑞 = 10, where the
total mass for 𝑝 = 𝑞 = 1 overtakes the total mass of 𝑝 = 𝑞 = 10. Fig. 9(d) and (e) are the isosurfaces of 𝑝 = 𝑞 = 1 at level 0.5 and
0.7, respectively. Fig. 9(f) and (g) are the isosurfaces when 𝑝 = 𝑞 = 10 at level 0.5 and 0.7, respectively. Evolutionary snapshots are
listed in the order of 𝑡 = 0.1, 𝑡 = 0.2 and 𝑡 = 0.4. The overtake of total mass can be explained through Fig. 8. The diffusion equation
has the mass conservation property. Therefore we focus on the nonlinear equation. In Fig. 8, 𝐾𝑝𝑞𝑢𝑝(1 − 𝑢)𝑞 of 𝑝 = 𝑞 = 1 is overtaken
by 𝐾𝑝𝑞𝑢𝑝(1 − 𝑢)𝑞 of 𝑝 = 𝑞 = 10 as 𝑢 increases from 0.5 to 1. Therefore, when total mass increases from 0.5 to 1, 𝐾𝑝𝑞𝑢𝑝(1 − 𝑢)𝑞 of
𝑝 = 𝑞 = 10 will tend to be larger than 𝑝 = 𝑞 = 1, causing an overtake in total mass. This phenomenon can also be observed through
isosurfaces. We can see that the difference between Fig. 9(d) and (e) at 𝑡 = 0.4 is much larger than the difference between Fig. 9(f)
9 



S. Kang et al. Journal of Computational and Applied Mathematics 457 (2025) 116273 
Fig. 7. Effect of 𝐷 demonstrated by isosurfaces of level 0.6. Evolution of initial condition (a) at different conditions (c) 𝐷 = 0.001, (d) 𝐷 = 0.01 and (e) 𝐷 = 0.1
at 𝑡 = 0.02, 0.04, 0.06. (b) illustrates the evolution of total mass.

Fig. 8. Variations of 𝐾𝑝𝑞𝑢𝑝(1 − 𝑢)𝑞 when 𝑝 = 𝑞 = 1, 2, 5, and 10.
10 
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and (g) at 𝑡 = 0.4. Moreover, we can observe that the isosurfaces are small, which indicates that 𝑢𝑖𝑗𝑘 in the computational domain
is mostly large. Therefore, the isosurface results agree well with the overtake illustrated in Fig. 9(c).

Fig. 10 illustrates the subtraction 𝑝 = 10 from 𝑝 = 1 at 𝑧 = 0.5 when 𝑡 = 0.1, 0.2, and 0.4. The numerical result indicates that the
small concentration of mass when 𝑝 = 𝑞 = 1 increases faster than in case of 𝑝 = 𝑞 = 10.

5.5.2. Nonlinear term with different order
We move on to the case when 𝑝 and 𝑞 have different values. Orders (𝑝, 𝑞) = (1, 9) and (9, 1) are applied until final time 𝑇 = 0.6.

Fig. 11 illustrates isosurfaces of the numerical results. Fig. 11(a) is the isosurface of initial condition at level 0.5 and Fig. 11(b) is
the isosurface of initial condition at level 0.7. Fig. 11(c) shows the evolution of the total mass for (𝑝, 𝑞) = (1, 9), (9, 1), where the
total mass for (𝑝, 𝑞) = (1, 9) becomes dominant than (𝑝, 𝑞) = (1, 9). Fig. 11(d) and (e) are the isosurfaces of (𝑝, 𝑞) = (1, 9) at levels
0.5 and 0.7, respectively. Fig. 11(f) and (g) are the isosurfaces when (𝑝, 𝑞) = (9, 1) at level 0.5 and 0.7, respectively. Evolutionary
snapshots are listed in the order of 𝑡 = 0.2, 𝑡 = 0.4 and 𝑡 = 0.6. The discussion of the total mass when 𝑝 ≠ 𝑞 starts with considering the
nonlinear term, since the diffusion equation has the mass conservation property. The nonlinear term is 𝑢9(1−𝑢) when (𝑝, 𝑞) = (9, 1),
and 𝑢(1−𝑢)9 when (𝑝, 𝑞) = (1, 9). All other conditions are the same, including the coefficient 𝐾. Therefore we subtract two nonlinear
terms:

𝑢9(1 − 𝑢) − 𝑢(1 − 𝑢)9 = 𝑢(1 − 𝑢)[𝑢8 − (1 − 𝑢)7]. (22)

Eq. (22) is positive when 𝑢 > 0.5 and negative when 𝑢 < 0.5. Therefore, we can assume that the total mass for (𝑝, 𝑞) = (9, 1)
will increase faster than the total mass of (𝑝, 𝑞) = (1, 9) when the majority of 𝑢 is over 0.5. The total mass difference between
(𝑝, 𝑞) = (9, 1) and (𝑝, 𝑞) = (1, 9) will become larger overtime because the total mass increases and more 𝑢𝑖𝑗𝑘 will be over 0.5. This
describes the dominant total mass for (𝑝, 𝑞) = (9, 1) compared to (𝑝, 𝑞) = (1, 9) shown in Fig. 11(c). The total mass can also be
demonstrated through isosurfaces. First, isosurfaces of level 0.5 (Fig. 11(d) and (f)) are not considerably small nor large. However,
when (𝑝, 𝑞) = (1, 9), the isosurface of level 0.7 (Fig. 11(e)) is considerably large, which indicates that on the computational domain,
there are less 𝑢𝑖𝑗𝑘 that is over the value of 0.7. On the other hand, when (𝑝, 𝑞) = (9, 1), the isosurface of level 0.7 (Fig. 11(e)) is
similar to the isosurface of level 0.5. This indicates that there are more 𝑢𝑖𝑗𝑘 that is over the value of 0.7. We can conclude that when
(𝑝, 𝑞) = (1, 9), value of 𝑢𝑖𝑗𝑘 is mostly between 0.5 and 0.7, whereas when (𝑝, 𝑞) = (9, 1), many 𝑢𝑖𝑗𝑘 are over 0.7. Therefore, the total
mass is larger when (𝑝, 𝑞) = (9, 1), which agrees well with the result in Fig. 11(c).

5.6. Evolution of step functions

The practicability of the proposed numerical method is demonstrated through numerical simulations. We start with a series of
step functions defined in 𝛺 = (−1.2, 1.2) × (−1.2, 1.2) × (−1.2, 1.2) with space steps 𝑁𝑥 = 𝑁𝑦 = 𝑁𝑧 = 120 that have the same total
mass at the initial state. We set the following initial conditions:

𝑢(𝑥, 𝑦, 𝑧, 0) =

{

0.2, if − 0.57 ≤ 𝑥 ≤ 0.61,
0, otherwise.

(23)

𝑢(𝑥, 𝑦, 𝑧, 0) =

{

0.2, if − 0.97 + 0.8𝑘 ≤ 𝑥 ≤ −0.59 + 0.8𝑘 for 𝑘 = 0, 1, 2,
0, otherwise.

(24)

𝑢(𝑥, 𝑦, 𝑧, 0) =

{

0.2, if − 1.07 + 0.4𝑘 ≤ 𝑥 ≤ −0.89 + 0.4𝑘 for 𝑘 = 0,… , 5,
0, otherwise.

(25)

Diffusion coefficient is set as 𝐷 = 0.05 and identical 𝑝 and 𝑞 values are selected: 𝑝 = 𝑞 = 5. Fig. 12 illustrates the numerical
simulations of step functions until final time 𝑇 = 1.2 using time step 𝛥𝑡 = 0.01. Evolutionary snapshots at 𝑡 = 0, 40𝛥𝑡, 80𝛥𝑡 and
120𝛥𝑡 of Eqs. (23)–(25) are illustrated in Fig. 12(a)–(c), respectively. Temporal evolution of the total mass for each case is given in
Fig. 12(d). We can find the overtake of the total mass between the first case and the second case, whereas the third case remained
smaller than the others. Albeit having the same total mass, evolution can vary among different step functions.

5.7. Traveling wave solution

Traveling waves are widely studied form for reaction–diffusion equation. due to important applications to biology and chemistry.
The Fisher–KPP equation is the first to study the solution of the traveling waves. We perform simulations with traveling wave for
different values of 𝑝 and 𝑞. The computational domain is given as 𝛺 = (−20, 80)× (−2, 2)× (−2, 2) with 𝑁𝑥 = 500, 𝑁𝑦 = 20, 𝑁𝑧 = 20.

he diffusion coefficient and time step is given as 𝛥𝑡 = 0.01 and 𝐷 = 1, respectively. We apply the following initial condition with
𝑝, 𝑞) = (1, 1), (1.1, 1.1), (2, 2):

𝑢(𝑥, 𝑦, 𝑧, 0) =

[

1
2
− 1

2
tanh

(

𝑥

2
√

6

)]2

.

esults at 𝑡 = 8 are illustrated in Fig. 13. There are two discussions. First is that the initial condition traveled a short distance when
arge 𝑝 and 𝑞 are applied. Second, the thickness of the transition layer decreases for larger 𝑝 and 𝑞 values. The thickness can be
xplained from Fig. 8, where the overall profile of the nonlinear reaction term becomes narrower for larger 𝑝 and 𝑞 values.
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Fig. 9. Demonstration of evolution dynamics when 𝑝 = 𝑞 with snapshots at 𝑡 = 0.1, 0.2, 0.4. (a) Initial solution, (d) 𝑝 = 𝑞 = 1 and (f) 𝑝 = 𝑞 = 10 illustrated in
isosurface level 0.5. (b) Initial solution, (e) 𝑝 = 𝑞 = 1 and (g) 𝑝 = 𝑞 = 10 illustrated in isosurface level 0.7. (c) illustrates the evolution of total mass.
12 
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Fig. 10. Subtraction 𝑝 = 10 from 𝑝 = 1 at 𝑧 = 0.5 when 𝑡 = 0.1, 0.2, and 0.4.

6. Conclusions

The main result of the present work is the novel numerical method for solving the three-dimensional modified Fisher–KPP
equation in 3D. After splitting the modified Fisher–KPP equation, the diffusion term and nonlinear term are solved using the OSM
and interpolation method, respectively. Analytic studies showed that the numerical solution is bounded by the discrete maximum
principle and positivity preserving. Numerical simulations demonstrated the unconditional stability by applying various time step
sizes and the numerical algorithm did not blow up. Following numerical tests showed that the proposed method is first-order
convergence in time and second-order convergence in space. The effects of the diffusion coefficient and orders of the nonlinear
term is studied using the total mass. Evolution of benchmark problems such as step functions and traveling wave demonstrated the
practicability of the proposed method.
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Appendix A. Algorithm OSM

We express Eqs. (7)–(9) in an implicit form as following:

𝛼𝑢∗𝑖−1,𝑗,𝑘 + 𝛽𝑢∗𝑖𝑗𝑘 + 𝛾𝑢∗𝑖+1,𝑗,𝑘 = 𝑓 𝑛
𝑖𝑗𝑘, (26)

𝛼𝑢∗∗𝑖,𝑗−1,𝑘 + 𝛽𝑢∗∗𝑖𝑗𝑘 + 𝛾𝑢∗∗𝑖,𝑗+1,𝑘 = 𝑔∗𝑖𝑗𝑘, (27)

𝛼𝑢∗∗∗𝑖,𝑗,𝑘−1 + 𝛽𝑢∗∗∗𝑖𝑗𝑘 + 𝛾𝑢∗∗∗𝑖,𝑗,𝑘+1 = ℎ∗∗𝑖𝑗𝑘, (28)

where

𝛼 = − 𝐷
ℎ2

, 𝛽 = 1
𝛥𝑡

+ 2𝐷
ℎ2

, 𝛾 = − 𝐷
ℎ2

, 𝑓 𝑛
𝑖𝑗𝑘 =

𝑢𝑛𝑖𝑗𝑘
𝛥𝑡

, 𝑔∗𝑖𝑗𝑘 =
𝑢∗𝑖𝑗𝑘
𝛥𝑡

, ℎ∗∗𝑖𝑗𝑘 =
𝑢∗∗𝑖𝑗𝑘
𝛥𝑡

.

Consider Eqs. (26), (27) and (28) in the system of index 𝑖, 𝑗 and 𝑘, respectively and we obtain the following tridiagonal systems:

𝐴𝑢∗1∶𝑁𝑥 ,𝑗,𝑘
= 𝑓 𝑛

1∶𝑁𝑥 ,𝑗,𝑘
, (29)

𝐴𝑢∗∗𝑖,1∶𝑁𝑦 ,𝑘
= 𝑔∗𝑖,1∶𝑁𝑦 ,𝑘

, (30)

𝐴𝑢∗∗∗𝑖,𝑗,1∶𝑁𝑧
= ℎ∗∗𝑖,𝑗,1∶𝑁𝑧

. (31)

Here, 𝑢∗1∶𝑁𝑥 ,𝑗,𝑘
, 𝑢∗∗𝑖,1∶𝑁𝑦 ,𝑘

and 𝑢∗∗∗𝑖,𝑗,1∶𝑁𝑧
is the solution vector and the coefficient matrix is given as

𝐴 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

𝛽 + 𝛼 𝛾 0 … 0 0
𝛼 𝛽 𝛾 … 0 0
0 𝛼 𝛽 … 0 0
⋮ ⋮ ⋱ ⋱ ⋱ ⋮
0 0 0 … 𝛽 𝛾

⎞

⎟

⎟

⎟

⎟

⎟

⎟

. (32)
⎝ 0 0 0 … 𝛼 𝛽 + 𝛾⎠
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Fig. 11. Demonstration of evolution dynamics when 𝑝 = 𝑞 with snapshots at 𝑡 = 0.2, 0.4, 0.6. (a) Initial solution, (d) (𝑝, 𝑞) = (1, 9) and (f) (𝑝, 𝑞) = (9, 1) illustrated
in isosurface level 0.5. (b) Initial solution, (e) (𝑝, 𝑞) = (1, 9) and (g) (𝑝, 𝑞) = (9, 1) illustrated in isosurface level 0.7. (c) illustrates the evolution of total mass.
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Fig. 12. Evolution of step functions at 𝑡 = 0, 40𝛥𝑡, 80𝛥𝑡 and 120𝛥𝑡 for (a) Eq. (23), (b) Eq. (24) and (c) Eq. (25). The total mass for each case is drawn at (d).

Fig. 13. Numerical solutions of the traveling wave at 𝑡 = 8 for (𝑝, 𝑞) = (1, 1), (1.1, 1.1), (2, 2).

Each tridiagonal systems are solved using the Thomas algorithm. The following equation illustrates the solution for Eq. (26). The
other equations can be derived similarly.

for 𝑗 = 1 ∶ 𝑁𝑦

for 𝑘 = 1 ∶ 𝑁𝑧

for 𝑖 = 1 ∶ 𝑁𝑥

Set 𝑓 𝑛
𝑖𝑗𝑘 by Eq. (29)

end

Solve 𝐴𝑢∗1∶𝑁𝑥 ,𝑗,𝑘
= 𝑓 𝑛

1∶𝑁𝑥 ,𝑗,𝑘

end

end
15 
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Appendix B. Pseudo code

Algorithm 1 Numerical scheme for the 3D Fisher–KPP equation

Input: endpoints 𝐿𝑥, 𝑅𝑥, 𝐿𝑦, 𝑅𝑦, 𝐿𝑧, 𝑅𝑧; number of grids 𝑁𝑥, 𝑁𝑦, 𝑁𝑧; initial condition 𝑢0; final time 𝑇 ; time step size 𝛥𝑡;
parameters 𝑝, 𝑞, 𝐷, 𝐾; number of pre-computing grids 𝑀

Output: approximation of 𝑢(𝑥, 𝑦, 𝑧, 𝑇 )
Step 1: Initialization
𝑁𝑡 = 𝑇 ∕𝛥𝑡, ℎ = (𝑅𝑥 − 𝐿𝑥)∕𝑁𝑥 and 𝑛 = 0
for 𝑖 = 1,⋯ , 𝑁𝑥, 𝑗 = 1,⋯ , 𝑁𝑦, 𝑘 = 1,⋯ , 𝑁𝑧 do
𝑥𝑖 = 𝐿𝑥 + (𝑖 − 0.5)ℎ
𝑦𝑗 = 𝐿𝑦 + (𝑗 − 0.5)ℎ
𝑧𝑘 = 𝐿𝑧 + (𝑘 − 0.5)ℎ
𝑢0𝑖𝑗𝑘 = 𝑢0𝑖𝑗𝑘

end for
tep 2: Pre-computing
𝛼 = −𝐷∕ℎ2, 𝛽 = 1∕𝛥𝑡 + 2𝐷 ℎ2, 𝛾 = −𝐷∕ℎ2

Calculate 𝐴 (Eq. (32))
for 𝑠 = 1,⋯ ,𝑀 do
𝐼𝑠 = (𝑠 − 1)∕(𝑀 − 1)
Calculate 𝑁𝜏 (Eq. (12))
Calculate 𝛷 ([36])

end for
tep 3: Main algorithm
for 𝑛 = 0,⋯𝑁𝑡 − 1 do Steps 4-7
Step 4: Equation (7)

Apply zero Neumann boundary condition
for 𝑗 = 1,⋯ , 𝑁𝑦, 𝑘 = 1,⋯ , 𝑁𝑧 do
for 𝑖 = 1,⋯ , 𝑁𝑥 do
𝑓𝑖𝑗𝑘 = 𝑢𝑛𝑖𝑗𝑘∕𝛥𝑡

end for
Solve 𝐴𝑢∗1∶𝑁𝑥 ,𝑗,𝑘

= 𝑓 𝑛
1∶𝑁𝑥 ,𝑗,𝑘

(Thomas algorithm)
end for

Step 5: Solve equation (8)
Apply zero Neumann boundary condition
for 𝑖 = 1,⋯ , 𝑁𝑥, 𝑘 = 1,⋯ , 𝑁𝑧 do
for 𝑗 = 1,⋯ , 𝑁𝑦 do
𝑔∗𝑖𝑗𝑘 = 𝑢∗𝑖𝑗𝑘∕𝛥𝑡

end for
Solve 𝐴𝑢∗∗𝑖,1∶𝑁𝑦 ,𝑘

= 𝑔∗𝑖,1∶𝑁𝑦 ,𝑘
(Thomas algorithm)

end for
Step 6: Solve equation (9)

Apply zero Neumann boundary condition
for 𝑖 = 1,⋯ , 𝑁𝑥, 𝑗 = 1,⋯ , 𝑁𝑦 do
for 𝑘𝑠 = 1,⋯ , 𝑁𝑧 do
ℎ∗∗𝑖𝑗𝑘 = 𝑢∗∗𝑖𝑗𝑘∕𝛥𝑡

end for
Solve 𝐴𝑢∗∗∗𝑖,𝑗,1∶𝑁𝑧

= ℎ∗∗𝑖,𝑗,1∶𝑁𝑧
(Thomas algorithm)

end for
Step 7: Solve equation (11)
for 𝑖 = 1,⋯ , 𝑁𝑥, 𝑗 = 1,⋯ , 𝑁𝑦, 𝑘 = 1,⋯ , 𝑁𝑧 do

Set 𝑠 such that 𝐼𝑠 ≤ 𝑢∗∗∗𝑖𝑗𝑘 ≤ 𝐼𝑠+1
𝑢𝑛+1𝑖𝑗𝑘 = (𝐼𝑠+1 − 𝑢∗∗∗𝑖𝑗𝑘 )∕(𝐼𝑠+1 − 𝐼𝑠)𝛷𝑠 + (𝑢∗∗∗𝑖𝑗𝑘 − 𝐼𝑠)∕(𝐼𝑠+1 − 𝐼𝑠)𝛷𝑠+1

end for
end for
eturn 𝑢(𝑥𝑖, 𝑦𝑗 , 𝑧𝑘, 𝑁𝑡𝛥𝑡)
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