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 A B S T R A C T

In this review, we present an overview of numerical methods to solve the binary Allen–Cahn 
(AC) equation, which is extensively used to model phase separation processes in materials 
science. It describes the time-dependent evolution of interfaces between two phases and 
accounts for both local reaction kinetics and diffusion effects. This equation plays a critical 
role in understanding the behavior of interfaces. The AC equation has various applications 
across fields such as materials science, physics, and biology, where it helps to analyze and 
predict phenomena such as phase transitions, grain boundary motion, and pattern formation 
in complex systems. Its importance lies in its ability to model the dynamics of interfaces and 
help the study of pattern formation and phase transitions in diverse environments. We discuss 
various computational methodologies developed for this important mathematical model and 
describe their strengths, limitations, and applications in diverse scientific domains.

Contents

1. Introduction .............................................................................................................................................................................. 2
2. Computational solution algorithms .............................................................................................................................................. 4

2.1. Finite difference method ................................................................................................................................................. 5
2.2. Finite element method .................................................................................................................................................... 5
2.3. Finite volume method..................................................................................................................................................... 6
2.4. Fourier spectral method .................................................................................................................................................. 6
2.5. Invariant energy quadratization method ........................................................................................................................... 8
2.6. Scalar auxiliary variable method...................................................................................................................................... 9
2.7. Hybrid methods and alternative approaches ..................................................................................................................... 11
2.8. Adaptive numerical methods ........................................................................................................................................... 13

∗ Corresponding author.
E-mail address: cfdkim@korea.ac.kr (J. Kim).
URL: https://mathematicians.korea.ac.kr/cfdkim (J. Kim).
https://doi.org/10.1016/j.physa.2025.130625
Received 23 December 2024; Received in revised form 3 March 2025
vailable online 13 May 2025 
378-4371/© 2025 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies. 

https://www.elsevier.com/locate/physa
https://www.elsevier.com/locate/physa
https://orcid.org/0000-0002-0484-9189
mailto:cfdkim@korea.ac.kr
https://mathematicians.korea.ac.kr/cfdkim
https://doi.org/10.1016/j.physa.2025.130625
https://doi.org/10.1016/j.physa.2025.130625
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physa.2025.130625&domain=pdf


H.G. Lee et al.

 

Physica A: Statistical Mechanics and its Applications 670 (2025) 130625 
2.8.1. Temporally adaptive method ............................................................................................................................. 13
2.8.2. Spatially adaptive method................................................................................................................................. 14
2.8.3. Temporally and spatially adaptive method ......................................................................................................... 14

2.9. Other methods ............................................................................................................................................................... 14
2.10. Benchmark problems ...................................................................................................................................................... 15

2.10.1. Maximum principle-preserving property ............................................................................................................. 15
2.10.2. Energy decrease ............................................................................................................................................... 16
2.10.3. Traveling wave solution.................................................................................................................................... 16
2.10.4. Manufactured solution ...................................................................................................................................... 16
2.10.5. Motion by mean curvature ................................................................................................................................ 17

3. Conclusions ............................................................................................................................................................................... 18
 CRediT authorship contribution statement ................................................................................................................................... 19
 Use of AI tools declaration ......................................................................................................................................................... 19
 Declaration of competing interest ................................................................................................................................................ 19
 Acknowledgments ...................................................................................................................................................................... 19

Appendix A. ............................................................................................................................................................................. 19
 Data availability ........................................................................................................................................................................ 21
 References................................................................................................................................................................................. 21

1. Introduction

The Allen–Cahn (AC) equation (1), named after John W. Cahn and Sam Allen, models phase separation processes in binary alloy 
systems. It governs the dynamics of order–disorder transitions, where different phases within a material develop and separate over 
time. This equation models the evolution of the state of the components as a result of the combined effects of diffusion and local 
reactions. The AC equation is commonly used in the study of materials science, particularly in understanding how microstructures 
evolve during phase transitions, such as in alloys or polymers [1]. The Ginzburg–Landau free energy functional has been used 
to solve a broad spectrum of problems, including phase separations [2], fluid flows [3], energy minimizers, crystal growth [4], 
dendritic growth without artificial curvature effects [5], vector-valued AC equation, and fluid topology optimization [6,7], shell-infill 
structures [8], and optimization without curvature effects [9]. Furthermore, the many modified forms of the AC equation have been 
used to image analysis [10,11], motion by mean curvature [12–14], topology optimization [15], and shape transformation [16,17]. 
Shape transformation has been applied to remote sensing, medicine, computer graphics, and special effects creation. Shape 
transformation can be performed between objects of two- and three-dimensional shapes and it can be modeled by the AC equation 
with the difference between the source and target shapes [16,17]. 

In this review, we present a comprehensive overview of numerical methodologies used to solve the binary AC equation [1], 
which models the dynamics of interfaces between two distinct phases, e.g., solid–liquid separation in alloys: 

𝜕𝜙(𝐱, 𝑡)
𝜕𝑡

= −
𝐹 ′(𝜙(𝐱, 𝑡))

𝜖2
+ 𝛥𝜙(𝐱, 𝑡), (1)

where 𝜙(𝐱, 𝑡) is the difference between the concentrations of the two mixture components (the value of 𝜙 typically varies between 
−1 and 1, where 𝜙 = −1 corresponds to one phase and 𝜙 = 1 corresponds to the other phase), 𝜖 is a parameter associated with the 
interface thickness between phases, and 𝐹 (𝜙) = 0.25(𝜙2 − 1)2, see Fig.  1(a). This quartic polynomial can be regarded as a Taylor 
series approximation of the following logarithmic potential [18]: 

𝐹 (𝜙) = 𝜃
[

1 + 𝜙
2

ln
(

1 + 𝜙
2

)

+
1 − 𝜙
2

ln
(

1 − 𝜙
2

)]

+
𝜃𝑐
2
(1 − 𝜙2), (2)

where 𝜃 and 𝜃𝑐 are positive parameters, see Fig.  1(b). For the derivation of the Helmholtz free energy density 𝐹 (𝜙) for a homogeneous 
system based on fundamental thermodynamic principles, refer to the review paper [19]. 

As illustrated in Fig.  2(a), when the value of 𝜙 ranges between −1 and 1, the region where −0.9 ≤ 𝜙 ≤ 0.9 is approximately 
considered the interface thickness, although this definition is not absolute. If the desired interface thickness is 𝑚ℎ, where ℎ is the 
spatial step, then 𝜖 can be defined as 𝜖𝑚 = 𝑚ℎ∕(2

√

2 tanh−1(0.9)) [22]. We note that the concentration value is also restricted between 
0 and 1. When we define 𝑢 = (𝜙 + 1)∕2, the 𝑢 value represents different phases when it is between 0 and 1. Thus, the free energy 
takes the shape shown in Fig.  1(c), and the interface thickness, as shown in Fig.  2(b), is determined by locating the region where 
0.05 ≤ 𝑢 ≤ 0.95, and is represented as 𝜖𝑚 = 𝑚ℎ∕(4

√

2 tanh−1(0.9)).
Typically, the homogeneous Neumann boundary condition is used: 

𝐧 ⋅ ∇𝜙 = 0 on 𝜕𝛺, (3)

where 𝐧 denotes the normal vector on 𝜕𝛺. Physically, this boundary condition imposes an orthogonal contact interface to the domain 
boundary. We can also use periodic boundary condition.

By applying the 𝐿2-gradient flow to the total free energy functional the AC equation can be obtained as shown below: 

(𝜙) = ∫

(

𝐹 (𝜙)
2

+ 1
2
|∇𝜙|2

)

𝑑𝐱. (4)

𝛺 𝜖
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Fig. 1. (a) 𝐹 (𝜙) = 0.25(𝜙2 − 1)2, (b) logarithmic potential, and (c) 𝐹 (𝑢) = 4𝑢2(𝑢 − 1)2 [20,21].

Differentiating the energy (𝜙) with respect to 𝑡 gives
𝑑
𝑑𝑡

(𝜙) = ∫𝛺

(

𝐹 ′(𝜙)
𝜖2

𝜙𝑡 + ∇𝜙 ⋅ ∇𝜙𝑡

)

𝑑𝐱 = ∫𝛺

(

𝐹 ′(𝜙)
𝜖2

− 𝛥𝜙
)

𝜙𝑡𝑑𝐱

= −∫𝛺
(𝜙𝑡)2𝑑𝐱 ≤ 0. (5)

This follows from the application of integration by parts and the zero Neumann boundary condition (3), which guarantees a decrease 
in total energy over time.

Many numerical methods are used to solve the AC equation. Lee [23] developed a numerical scheme for the AC equation with a 
fixed boundary to consider the area-minimizing surface. In [24], Wei and Yang studied and proved the existence of phase transition 
layer solutions for anisotropic AC equations.  Ntsokongo [25] investigated the asymptotic dynamics of the AC type equation with 
Dirichlet boundary conditions and temperature. Alsayed et al. [26] considered the optimal control problem for tumor growth models 
by coupling the AC equation and a reaction diffusion equation that describes tumor evolution in the presence of a nutrient supply. 
Nara [27] considered the initial value problem of the AC equation and investigates the large time dynamics for solutions with 
spreading fronts. Li et al. [28] proved the fractional energy dissipation laws for time-practical phase field equations including the 
AC and Cahn–Hilliard (CH) equations. Batangouna [29] investigated the relationship with AC equations by considering the time 
semi-discretization of the Ginzburg–Landau equation using the backward Euler method.

Furthermore, data-driven methods have gained considerable attention in recent years to solve the AC equation. Neural networks 
and deep learning-based methods are employed by [30] to solve both classical and conservative AC equations. To capture the fully 
discrete operators between consecutive time steps, two specialized convolutional neural network models are developed, one for each 
equation. These methods autonomously generate relevant samples throughout the time evolution, aiding in the training process. Xia 
et al. [31] proposed a simple algorithm for implementing the data assimilation method using the AC equation. A higher-dimensional 
AC equation with higher-order polynomial potential functions was solved by [32] using backward stochastic differential equations 
and deep neural networks. Mattey and Ghosh [33] proposed a backward compatible PINN (bc-PINN) scheme, which sequentially 
solves PDEs over successive time segments using a single neural network and retrains it while ensuring compatibility with previous 
solutions, and demonstrated superior accuracy and efficiency through applications on the CH and AC equations. An adaptive deep 
learning approach was developed to solve the AC equation, leveraging PINNs integrated with an adaptive collocation strategy [34]. 
This method improves the robustness of the model by using a multi-step discrete time modeling approach, which improves the 
3 
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Fig. 2. Schematic illustration of interface thickness.

selection of initial training data for training. The authors demonstrate through computational experiments that this approach not 
only maintains the accuracy of short-time predictions but also shows promising results in the long-term behavior prediction of 
solutions, thereby solving one of the key challenges in using neural networks for dynamic systems modeled by partial differential 
equations. Wang et al. [35] introduced an innovative classification algorithm that combines a vector-valued AC equation with a deep 
neural network. Cheng et al. [36] considered the phase field sintering model, which consists of a CH type equation and multiple 
AC type equations. Kim et al. [37] proposed a model architecture using padding, convolution operations, and GPU acceleration to 
optimize the simulation speed of the AC equation. They demonstrated that this approach significantly improves computation speed 
while maintaining accuracy and validated its effectiveness through computational experiments in both two- and three-dimensional 
spaces.

In addition, the conservative AC equation has been extensively studied. Teng et al. [38] presented a numerical method that 
satisfies the maximum principle and mass conservation based on the Runge–Kutta-type integrators that are free of time delay for 
solving the conservative nonlocal AC equation. Tan et al. [39] developed a time-dependent auxiliary variable method for modeling 
ternary conservative AC fluids. Wang et al. [40] investigated the fractal properties of phase value time series in the conservative AC 
equation. Choi and Kim [41] developed a numerical method for the conservative AC equation that preserves the maximum principle 
and unconditional stability.

In this review, the content is organized as follows. Section 2 presents a range of numerical methods for solving the binary AC 
equation, while Section 3 provides concluding remarks.

2. Computational solution algorithms

We now consider various computational solution algorithms for the AC equation, such as the finite difference, finite element, 
finite volume, Fourier spectral, invariant energy quadratization, and scalar auxiliary variable methods, among others.
4 
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Fig. 3. Discrete computational domain.

2.1. Finite difference method

The finite difference method (FDM) is a computational methodology applied to approximate solutions to differential equations by 
partitioning the domain into a discrete grid and estimating derivatives through finite difference approximations. It is widely applied 
in various fields such as physics, engineering, and finance, for solving differential equations computationally. Zhang et al. [42] 
analyzed the maximum principle characteristic of the integrating factor Runge–Kutta (IFRK) scheme, which is fully explicit and 
temporally fourth order accurate. In [43], the authors presented the analysis of the stability of an explicit FDM for the AC equation. 
Yang et al. [44] developed a fast evolution computational algorithm for solving the AC equation. They developed a time rescaling 
scheme for the nonlinear portion of the AC equation to overcome the problem of rapid interface transition layers caused by the 
dominance of the nonlinear part in the operator splitting method with large time steps. Hwang et al. [45] developed an efficient 
and fast FDM for solving the AC equation on the cubic surface while taking into account the properties of the cubic surface.

To provide a concrete example of the FDM, we consider a computational method for the AC equation on a domain 𝛺 =
(𝐿𝑥, 𝑅𝑥) × (𝐿𝑦, 𝑅𝑦) in two-dimensional space. Let 𝛺ℎ = {(𝑥𝑖, 𝑦𝑗 )|𝑥𝑖 = 𝐿𝑥 + (𝑖 − 0.5)ℎ, 𝑦𝑗 = 𝐿𝑦 + (𝑗 − 0.5)ℎ, 1 ≤ 𝑖 ≤ 𝑁𝑥, 1 ≤ 𝑗 ≤ 𝑁𝑦} be 
the discrete domain, where 𝑁𝑥 and 𝑁𝑦 are integers and ℎ = (𝑅𝑥 − 𝐿𝑥)∕𝑁𝑥 represents the spatial step size, and see Fig.  3.

Let 𝜙𝑛𝑖𝑗 = 𝜙(𝑥𝑖, 𝑦𝑗 , 𝑛𝛥𝑡) be defined on the discrete computational domain, where 𝛥𝑡 is the time step. The AC equation (1) can then 
be discretized explicitly using the FDM as follows: 

𝜙𝑛+1𝑖𝑗 − 𝜙𝑛𝑖𝑗
𝛥𝑡

= −
𝐹 ′(𝜙𝑛𝑖𝑗 )

𝜖2
+
𝜙𝑛𝑖+1,𝑗 + 𝜙

𝑛
𝑖−1,𝑗 − 4𝜙𝑛𝑖𝑗 + 𝜙

𝑛
𝑖,𝑗+1 + 𝜙

𝑛
𝑖,𝑗−1

ℎ2
, (6)

which can be rewritten explicitly as 

𝜙𝑛+1𝑖𝑗 = 𝜙𝑛𝑖𝑗 + 𝛥𝑡

(

−
𝐹 ′(𝜙𝑛𝑖𝑗 )

𝜖2
+
𝜙𝑛𝑖+1,𝑗 + 𝜙

𝑛
𝑖−1,𝑗 − 4𝜙𝑛𝑖𝑗 + 𝜙

𝑛
𝑖,𝑗+1 + 𝜙

𝑛
𝑖,𝑗−1

ℎ2

)

. (7)

The boundary condition (3) at the ghost points (see Fig.  3) is defined as follows:
𝜙𝑛𝑖0 = 𝜙𝑛𝑖1  and 𝜙𝑛𝑖,𝑁𝑦+1 = 𝜙𝑛𝑖𝑁𝑦 ,  for 𝑖 = 1, 2, … , 𝑁𝑥, (8)

𝜙𝑛0𝑗 = 𝜙𝑛1𝑗  and 𝜙𝑛𝑁𝑥+1,𝑗 = 𝜙𝑛𝑁𝑥𝑗 ,  for 𝑗 = 1, 2, … , 𝑁𝑦. (9)

2.2. Finite element method

The finite element method (FEM) is a numerical methodology used for solving engineering and mathematical problems [46]. It 
discretizes a continuous domain into smaller elements to approximate complex systems and allows for efficient analysis of structures, 
heat transfer, fluid flow, and other phenomena in various fields of science and engineering. When sufficient elements and appropriate 
mesh density are used, FEM can produce accurate numerical results. Additionally, higher accuracy can be achieved when FEM is used 
in conjunction with high-order numerical schemes [47]. FEM can handle problems with complex geometry structures and irregular 
boundary conditions more effectively than FDM, as it allows for non-uniform mesh refinement and adaptive meshing [48]. FEM 
5 
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typically provides higher accuracy than FDM, especially for problems with curved boundaries or strong spatial variations [49,50]. 
FEM is less sensitive to grid spacing compared to FDM, as it allows for local refinement in regions of interest. However, FEM 
implementation can be more complex than FDM, particularly for problems involving non-linearities or transient dynamics. In terms 
of computational cost, FEM solutions may require more computational resources compared to FDM, especially for problems with 
large numbers of elements or degrees of freedom. While both FDM and FEM are powerful numerical techniques for solving partial 
differential equations, the choice between them depends on the specific conditions and structures of the problem at hand. FDM may 
be more suitable for problems with simple geometries and regular boundaries, where computational efficiency is crucial. On the 
other hand, FEM provides greater flexibility and accuracy, which makes it preferable for problems with complex geometries and 
irregular boundaries, despite its higher implementation and computational costs.

To illustrate the finite element method with a concrete example, let us consider an unconditionally stable hybrid method to solve 
the AC equation using FEM [51]. We formally divide the AC equation (1) into the following two separate equations:

𝜕𝜙(𝐱, 𝑡)
𝜕𝑡

= 𝛥𝜙(𝐱, 𝑡), (10)

𝜕𝜙(𝐱, 𝑡)
𝜕𝑡

= −
𝐹 ′(𝜙(𝐱, 𝑡))

𝜖2
. (11)

Eqs. (10) and (11) are solved using a fully implicit FEM and a closed-form analytical solution, respectively. We divide the 
domain 𝛺 into a collection ℎ, which is composed of triangular elements denoted by 𝜎. We define the finite element space as 
𝛷ℎ = {𝜓 ∈ 𝐶(𝛺̄) ∶ 𝜓|𝜎 is a linear function ∀𝜎 ∈ ℎ}. Let {𝐱𝑖}𝑁𝑖=1 represent the nodes of ℎ, and let {𝜂𝑖}𝑁𝑖=1 denote the linear basis 
functions, where 𝜂𝑖 ∈ 𝛷ℎ, 𝜂𝑖(𝐱𝑗 ) = 𝛿𝑖𝑗 , for 𝑖, 𝑗 = 1,… , 𝑁 . The finite element solution 𝜙∗

ℎ to Eq. (10) is derived by solving the following 
equation: 

(𝜙∗
ℎ − 𝜙

𝑛
ℎ

𝛥𝑡
, 𝜓ℎ

)

+ (∇𝜙∗
ℎ,∇𝜓ℎ) = 0,  for all 𝜓ℎ ∈ 𝛷ℎ. (12)

Next, Eq. (11) is solved analytically using the initial condition 𝜙∗
ℎ. 

𝜙𝑛+1ℎ =
𝜙∗
ℎ

√

𝜖−
2𝛥𝑡
𝜖2 +

(

𝜙∗
ℎ
)2

(

1 − 𝑒−
2𝛥𝑡
𝜖2

)

. (13)

Fig.  4 displays a triangular mesh used in the finite element analysis.
The FEM is widely regarded as a highly effective approach for solving problems within complex domains, particularly those 

involving irregular geometries and boundary conditions. Its ability to discretize the domain into smaller, flexible elements allows 
for accurate approximations. We note that FEM can also be applied to the CH equation [52].

2.3. Finite volume method

The finite volume method (FVM) is a powerful numerical approach that approximates differential equations by transforming 
them into a conservative form. This method divides the computational domain into a finite number of control volumes 𝐶𝑉  and 
applies conservation laws to each volume. FVM preserves physical conservation properties and can be flexibly applied to problems 
with complex boundaries. To apply the FVM, the computational domain 𝛺 is divided into a finite number of control volumes 𝐶𝑉 , 
and the AC equation is integrated over each control volume as follows. By dividing the numerical domain 𝛺 into a finite number 
of control volumes 𝐶𝑉  and integrating the AC equation over each control volume 𝐶𝑉 , we obtain: 

∫𝐶𝑉
𝜕𝜙
𝜕𝑡
𝑑𝐱 = ∫𝐶𝑉

𝛥𝜙𝑑𝐱 − ∫𝐶𝑉
𝐹 ′(𝜙)
𝜖2

𝑑𝐱. (14)

Applying Gauss’s divergence theorem to the Laplacian term 𝛥𝜙, we obtain:

∫𝐶𝑉
𝛥𝜙𝑑𝐱 = ∫𝜕𝐶𝑉

∇𝜙 ⋅ 𝐧𝑑𝑆.

Using the above equation, the conservation form of the Eq. (14) is expressed as: 

∫𝐶𝑉
𝜕𝜙
𝜕𝑡
𝑑𝐱 −

∑

𝜎∈𝜕𝐶𝑉
∫𝜎

∇𝜙 ⋅ 𝐧𝑑𝑆 = − 1
𝜖2 ∫𝐶𝑉

𝐹 ′(𝜙)𝑑𝐱. (15)

Here, 𝐧 represents the outward normal vector on the boundary 𝜕𝐶𝑉  of control volume 𝐶𝑉 . Eq. (15) can be solved by computing the 
flux using various numerical methods. The flux term ∫𝜎 ∇𝜙 ⋅𝐧𝑑𝑆 is typically approximated using finite difference schemes. Strachota 
and Beneš [53] derived an error estimate for the numerical solution of the FVM applied to the isotropic AC equation and analyzed 
its numerical convergence by conducting 2D and 3D simulations.
2.4. Fourier spectral method

The Fourier spectral method is a numerical technique used in mathematics and engineering to approximate solutions to 
differential equations by representing functions as combinations of sinusoidal waves via Fourier series and enables efficient 
computation of complex phenomena with high accuracy. To improve the efficiency of the Fourier spectral method, numerous 
researchers have adopted stabilized semi-implicit schemes [54–57] for the temporal variable. These schemes treat the main elliptic 
6 



H.G. Lee et al. Physica A: Statistical Mechanics and its Applications 670 (2025) 130625 
Fig. 4. (a) A triangular mesh and (b) a magnified view of the triangular mesh for FEM.

operator implicitly and the nonlinear term explicitly to avoid the costly task of solving nonlinear equations at every time step. In 
addition, a stabilizing term is incorporated to improve stability and maintain simplicity. Stabilized semi-implicit schemes reduce the 
time step restrictions inherent in explicit schemes, and allow for significantly larger time steps. However, it has been observed that 
when a large time step is employed, the effective time step becomes smaller than the one prescribed in the stabilized semi-implicit 
method [54,58]. As a result, the stabilized semi-implicit method suffers from inaccuracy, and produces incorrect morphologies in 
phase separation processes. Lee and Lee [58] proposed the semi-analytical Fourier spectral method for solving the AC equation, 
which allows the use of a sufficiently large time step without sacrificing accuracy or introducing technical challenges. The key idea 
of the proposed methodology involves decomposing the AC equation into linear and nonlinear equations, which possess closed-form 
solutions in the Fourier and physical spaces, respectively.

We briefly review the semi-analytical Fourier spectral method and consider the AC equation (1) in 𝛺 = (𝐿𝑥, 𝑅𝑥) × (𝐿𝑦, 𝑅𝑦). Let 
the ‘‘linear operator ’’ 𝛥𝑡 be defined as follows:

𝛥𝑡(𝜙(𝑡𝑛)) ∶= 𝜙(𝑡𝑛 + 𝛥𝑡),

where 𝜙(𝑡𝑛 + 𝛥𝑡) represents the solution of the following linear diffusion equation:
𝜕𝜙
𝜕𝑡

= 𝛥𝜙,

where we use 𝜙(𝑡𝑛) as an initial condition. We use the discrete cosine transform to solve Eq. (1) with a zero Neumann boundary 
condition 𝐧 ⋅ ∇𝜙 = 0 on 𝜕𝛺: for 𝑘𝑥 = 0, 1,… , 𝑁𝑥 − 1 and 𝑘𝑦 = 0, 1,… , 𝑁𝑦 − 1,

𝜙𝑘𝑥𝑘𝑦 = 𝛼𝑘𝑥𝛽𝑘𝑦

𝑁𝑥−1
∑

𝑁𝑦−1
∑

𝜙𝑙𝑥𝑙𝑦 cos
[

𝜋
𝑁

(

𝐿𝑥 + 𝑙𝑥 +
1
2

)

𝑘𝑥

]

cos
[

𝜋
𝑁

(

𝐿𝑦 + 𝑙𝑦 +
1
2

)

𝑘𝑦

]

,

𝑙𝑥=0 𝑙𝑦=0 𝑥 𝑦

7 
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where 𝛼0 =
√

1∕𝑁𝑥, 𝛽0 =
√

1∕𝑁𝑦, 𝛼𝑘𝑥 =
√

2∕𝑁𝑥, 𝛽𝑘𝑦 =
√

2∕𝑁𝑦 for 𝑘𝑥, 𝑘𝑦 ≥ 1, and 𝜙𝑙𝑥𝑙𝑦 = 𝜙
(

𝑅𝑥−𝐿𝑥
𝑁𝑥

(

𝐿𝑥 + 𝑙𝑥 +
1
2

)

, 𝑅𝑦−𝐿𝑦
𝑁𝑦

(

𝐿𝑦 + 𝑙𝑦 +
1
2

))

. 
Then, we have an analytical formula for 𝛥𝑡 in the discrete cosine space

𝛥𝑡(𝜙) = −1
[

𝑒𝐴𝑘𝑥𝑘𝑦𝛥𝑡[𝜙]
]

,

where 𝐴𝑘𝑥𝑘𝑦 = 𝜋2
[

(

𝑘𝑥
𝑅𝑥−𝐿𝑥

)2
+
(

𝑘𝑦
𝑅𝑦−𝐿𝑦

)2
]

 and  is the discrete cosine transform and −1 is its inverse transform. We also define 

the ‘‘nonlinear operator ’’  𝛥𝑡 as follows:
 𝛥𝑡(𝜙(𝑡𝑛)) ∶= 𝜙(𝑡𝑛 + 𝛥𝑡),

where 𝜙(𝑡𝑛 + 𝛥𝑡) represents the solution of the following nonlinear equation
𝜕𝜙
𝜕𝑡

= −
𝐹 ′(𝜙)
𝜖2

,

where we use 𝜙(𝑡𝑛) as an initial condition. A closed-form solution for  𝛥𝑡 is as follows:

 𝛥𝑡(𝜙) =
𝜙

√

𝑒−
2𝛥𝑡
𝜖2 + 𝜙2(1 − 𝑒−

2𝛥𝑡
𝜖2 )

.

Then, the first- and second-order semi-analytical Fourier spectral methods for the AC equation can be expressed as follows:
𝜙𝑛+1 =

(

𝛥𝑡◦ 𝛥𝑡)𝜙𝑛

and

𝜙𝑛+1 =
(

𝛥𝑡∕2◦ 𝛥𝑡◦𝛥𝑡∕2
)

𝜙𝑛,

respectively. Here, 𝜙𝑛 and 𝜙𝑛+1 are approximations of 𝜙(𝑡𝑛) and 𝜙(𝑡𝑛 + 𝛥𝑡), respectively. In the Appendix, we provide MATLAB code 
for a Fourier spectral method.

2.5. Invariant energy quadratization method

The invariant energy quadratization (IEQ) scheme was originally proposed by Yang [59] to efficiently construct an energy-stable 
time-marching method for gradient flows. The basic idea of the IEQ method is to introduce an auxiliary variable 

𝜓(𝐱, 𝑡) =
√

𝐹 (𝜙)
𝜖2

+ 𝐶, (16)

where 𝐶 is a constant such that 𝐹 (𝜙)
𝜖2

+ 𝐶 > 0. Then, one can redefine the energy (𝜙) as 

𝐼𝐸𝑄(𝜙,𝜓) = ∫𝛺

(

𝜓2 + 1
2
|∇𝜙|2

)

𝑑𝐱 − 𝐶|𝛺| (17)

and reformulate the AC equation as 
𝜕𝜙
𝜕𝑡

= −𝐺(𝜙)𝜓 + 𝛥𝜙,

𝜕𝜓
𝜕𝑡

= 1
2
𝐺(𝜙)

𝜕𝜙
𝜕𝑡
,

(18)

where

𝐺(𝜙) =
𝑓 (𝜙)

𝜖2
√

𝐹 (𝜙)
𝜖2

+ 𝐶
.

The new system (18) still satisfies the energy dissipation property:
𝑑𝐼𝐸𝑄
𝑑𝑡

= ∫𝛺

(

2𝜓
𝜕𝜓
𝜕𝑡

− 𝛥𝜙
𝜕𝜙
𝜕𝑡

)

𝑑𝐱 = −∫𝛺

(

𝜕𝜙
𝜕𝑡

)2
𝑑𝐱 ≤ 0.

Let 𝜙𝑛(𝐱) = 𝜙(𝐱, 𝑡) at 𝑡 = 𝑛𝛥𝑡. Here, 𝛥𝑡 = 𝑇 ∕𝑁𝑇  is the uniform temporal step, 𝑇  is the total computational time, and 𝑁𝑇  is the 
number of time iterations. The temporally first-order accurate method based on backward Euler scheme is as follows: 

𝜙𝑛+1 − 𝜙𝑛

𝛥𝑡
= −𝐺(𝜙𝑛)𝜓𝑛+1 + 𝛥𝜙𝑛+1, (19)

𝜓𝑛+1 − 𝜓𝑛

𝛥𝑡
= 1

2
𝐺(𝜙𝑛)

𝜙𝑛+1 − 𝜙𝑛

𝛥𝑡
. (20)

The periodic or zero Neumann boundary condition (i.e., 𝐧 ⋅ ∇𝜙𝑛+1|𝜕𝛺 = 0) is used on the domain boundary 𝜕𝛺. For two functions 
𝑓  and 𝑓 , their 𝐿2-inner product is defined as (𝑓 , 𝑓 ) = ∫ 𝑓 𝑓 𝑑𝐱. The associated 𝐿2-norm is defined as (𝑓 , 𝑓 ) = ‖𝑓 ‖

2.
𝑎 𝑏 𝑎 𝑏 𝛺 𝑎 𝑏 𝑎 𝑎 𝑎

8 
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Theorem 1.  Eqs. (19) and (20) lead to a time-discretized energy dissipation law with respect to the following modified energy 

𝐸𝑛+11 = ‖𝜓𝑛+1‖2 + 1
2
‖∇𝜙𝑛+1‖2 − 𝐶|𝛺|. (21)

Proof.  Taking the 𝐿2-inner product of Eq. (19) with −(𝜙𝑛+1 − 𝜙𝑛), we get

− 1
𝛥𝑡

‖𝜙𝑛+1 − 𝜙𝑛‖2 = ∫𝛺
𝐺(𝜙𝑛)𝜓𝑛+1(𝜙𝑛+1 − 𝜙𝑛) 𝑑𝐱 + 1

2
‖∇𝜙𝑛+1‖2 − 1

2
‖∇𝜙𝑛‖2

+ 1
2
‖∇(𝜙𝑛+1 − 𝜙𝑛)‖2. (22)

Multiplying Eq. (20) with 2𝜓𝑛+1, we get 

‖𝜓𝑛+1‖2 − ‖𝜓𝑛‖2 + ‖𝜓𝑛+1 − 𝜓𝑛‖2 = ∫𝛺
𝐺(𝜙𝑛)𝜓𝑛+1(𝜙𝑛+1 − 𝜙𝑛) 𝑑𝐱. (23)

Combining Eqs. (22) and (23), we obtain

‖𝜓𝑛+1‖2 − ‖𝜓𝑛‖2 + 1
2
‖∇𝜙𝑛+1‖2 − 1

2
‖∇𝜙𝑛‖2

= − 1
𝛥𝑡

‖𝜙𝑛+1 − 𝜙𝑛‖2 − 1
2
‖∇(𝜙𝑛+1 − 𝜙𝑛)‖2 − ‖𝜓𝑛+1 − 𝜓𝑛‖2 ≤ 0. (24)

The proof of time-discretized energy dissipation law is completed. □

Similarly, the second order IEQ method can be developed using the second order backward difference formula. Please refer 
to [59] and references therein for more details.

2.6. Scalar auxiliary variable method

The scalar auxiliary variable (SAV) method was originally proposed by Shen et al. [60] to efficiently construct energy-stable 
time-marching schemes for gradient flows. The fundamental concept of the SAV method is to introduce a time-dependent auxiliary 
variable that theoretically corresponds to the square root of the sum of a nonlinear energy term and a constant. Here, the nonlinear 
energy contributes to the total free energy functional of a gradient flow system. Based on the evolution equation of the auxiliary 
variable and the equivalent governing equations of phase-field function, energy-stable first- or second-order schemes can be easily 
developed. Consider the AC equation, the time-dependent auxiliary variable is defined as 

𝑟 = 𝑟(𝑡) =

√

∫𝛺
𝐹 (𝜙(𝐱, 𝑡))

𝜖2
𝑑𝐱 + 𝐶. (25)

Here, 𝐶 is a constant. The evolution equation for 𝑟 reads as 

𝑑𝑟
𝑑𝑡

= 1
2 ∫𝛺

⎛

⎜

⎜

⎜

⎝

𝐹 ′(𝜙(𝐱, 𝑡))

𝜖2
√

∫𝛺
𝐹 (𝜙(𝐱,𝑡))

𝜖2
𝑑𝐱 + 𝐶

⎞

⎟

⎟

⎟

⎠

𝜕𝜙(𝐱, 𝑡)
𝜕𝑡

𝑑𝐱. (26)

It is easy to find that 𝑟
√

∫𝛺
𝐹 (𝜙(𝐱,𝑡))

𝜖2
𝑑𝐱+𝐶

≡ 1, the AC equation can be modified to be 

𝜕𝜙(𝐱, 𝑡)
𝜕𝑡

= −𝑟
√

∫𝛺
𝐹 (𝜙(𝐱,𝑡))

𝜖2
𝑑𝐱 + 𝐶

𝐹 ′(𝜙(𝐱, 𝑡))
𝜖2

+ 𝛥𝜙(𝐱, 𝑡), 𝐱 ∈ 𝛺, 𝑡 > 0. (27)

Combining Eqs. (26) and (27), the equivalent AC model reads as
𝜕𝜙(𝐱, 𝑡)
𝜕𝑡

= −𝑟
√

∫𝛺
𝐹 (𝜙(𝐱,𝑡))

𝜖2
𝑑𝐱 + 𝐶

𝐹 ′(𝜙(𝐱, 𝑡))
𝜖2

+ 𝛥𝜙(𝐱, 𝑡), 𝐱 ∈ 𝛺, 𝑡 > 0, (28)

𝑑𝑟
𝑑𝑡

= 1
2 ∫𝛺

⎛

⎜

⎜

⎜

⎝

𝐹 ′(𝜙(𝐱, 𝑡))

𝜖2
√

∫𝛺
𝐹 (𝜙(𝐱,𝑡))

𝜖2
𝑑𝐱 + 𝐶

⎞

⎟

⎟

⎟

⎠

𝜕𝜙(𝐱, 𝑡)
𝜕𝑡

𝑑𝐱. (29)

To simplify the expression, we use 𝜙 to replace 𝜙(𝐱) in this subsection. The temporally first-order accurate scheme based on the 
backward Euler method is as follows:

𝜙𝑛+1 − 𝜙𝑛

𝛥𝑡
= −𝑟𝑛+1

√

∫𝛺
𝐹 (𝜙𝑛)
𝜖2

𝑑𝐱 + 𝐶

𝐹 ′(𝜙𝑛)
𝜖2

+ 𝛥𝜙𝑛+1 − 𝑆
𝜖2

(𝜙𝑛+1 − 𝜙𝑛), (30)

𝑟𝑛+1 − 𝑟𝑛
𝛥𝑡

= 1
2 ∫𝛺

⎛

⎜

⎜

⎜

𝐹 ′(𝜙𝑛)

𝜖2
√

∫ 𝐹 (𝜙𝑛) 𝑑𝐱 + 𝐶

⎞

⎟

⎟

⎟

𝜙𝑛+1 − 𝜙𝑛

𝛥𝑡
𝑑𝐱. (31)
⎝
𝛺 𝜖2 ⎠

9 
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Here, 𝑆 > 0 is a stabilization parameter. For two functions 𝑓𝑎 and 𝑓𝑏, their 𝐿2-inner product is defined as (𝑓𝑎, 𝑓𝑏) = ∫𝛺 𝑓𝑎𝑓𝑏 𝑑𝐱. The 
associated 𝐿2-norm is defined as (𝑓𝑎, 𝑓𝑎) = ‖𝑓𝑎‖2. 

Theorem 2.  Eqs. (30) and (31) lead to a time-discretized energy dissipation law with respect to the following modified energy 

𝐸𝑛+11 = 1
2
‖∇𝜙𝑛+1‖2 + (𝑟𝑛+1)2 − 𝐶. (32)

Proof.  Taking the 𝐿2-inner product of Eq. (30) with −(𝜙𝑛+1 − 𝜙𝑛), we get

− 1
𝛥𝑡

‖𝜙𝑛+1 − 𝜙𝑛‖2 = ∫𝛺

⎛

⎜

⎜

⎜

⎝

𝐹 ′(𝜙𝑛)

𝜖2
√

∫𝛺
𝑟𝑛+1𝐹 (𝜙𝑛)

𝜖2
𝑑𝐱 + 𝐶

⎞

⎟

⎟

⎟

⎠

(𝜙𝑛+1 − 𝜙𝑛)𝑑𝐱

+ 1
2
‖∇𝜙𝑛+1‖2 − 1

2
‖∇𝜙𝑛‖2 + 1

2
‖∇𝜙𝑛+1 − ∇𝜙𝑛‖2 + 𝑆

𝜖2
‖𝜙𝑛+1 − 𝜙𝑛‖2. (33)

Multiplying Eq. (31) with 2𝑟𝑛+1, we get 

(𝑟𝑛+1)2 − (𝑟𝑛)2 + (𝑟𝑛+1 − 𝑟𝑛)2 = ∫𝛺

⎛

⎜

⎜

⎜

⎝

𝐹 ′(𝜙𝑛)

𝜖2
√

∫𝛺
𝑟𝑛+1𝐹 (𝜙𝑛)

𝜖2
𝑑𝐱 + 𝐶

⎞

⎟

⎟

⎟

⎠

(𝜙𝑛+1 − 𝜙𝑛)𝑑𝐱. (34)

Combining Eqs. (33) and (34), we obtain 
1
2
‖∇𝜙𝑛+1‖2 − 1

2
‖∇𝜙𝑛‖2 + (𝑟𝑛+1)2 − (𝑟𝑛)2 = −1

2
‖∇𝜙𝑛+1 − ∇𝜙𝑛‖2

−
(

1
𝛥𝑡

+ 𝑆
𝜖2

)

‖𝜙𝑛+1 − 𝜙𝑛‖2 − (𝑟𝑛+1 − 𝑟𝑛)2 ≤ 0. (35)

 The proof of the time-discretized energy dissipation law is completed. □

Using the second-order backward difference formula (BDF2), the temporally second-order accurate method is as follows:
3𝜙𝑛+1 − 4𝜙𝑛 + 𝜙𝑛−1

2𝛥𝑡
= −𝑟𝑛+1

√

∫𝛺
𝐹 (𝜙∗)
𝜖2

𝑑𝐱 + 𝐶

𝐹 ′(𝜙∗)
𝜖2

+ 𝛥𝜙𝑛+1

− 𝑆
𝜖2

(𝜙𝑛+1 − 𝜙∗), (36)

3𝑟𝑛+1 − 4𝑟𝑛 − 𝑟𝑛−1
2𝛥𝑡

= ∫𝛺

⎛

⎜

⎜

⎜

⎝

𝐹 ′(𝜙∗)

𝜖2
√

∫𝛺
𝐹 (𝜙∗)
𝜖2

𝑑𝐱 + 𝐶

⎞

⎟

⎟

⎟

⎠

3𝜙𝑛+1 − 4𝜙𝑛 + 𝜙𝑛−1

4𝛥𝑡
𝑑𝐱. (37)

Here, (⋅)∗ = 2(⋅)𝑛 − (⋅)𝑛−1 is a linear extrapolation.

Theorem 3.  Eqs. (36) and (37) lead to a time-discretized energy dissipation law with respect to the following modified energy

𝐸𝑛+1,𝑛2 = 1
4
(

‖∇𝜙𝑛+1‖2 + ‖2∇𝜙𝑛+1 − ∇𝜙𝑛‖2
)

+ 1
4
(𝑟𝑛+1)2 + 1

4
(

2𝑟𝑛+1 − 𝑟𝑛
)2

+ 𝑆
𝜖2

‖𝜙𝑛+1 − 𝜙𝑛‖2 − 𝐶. (38)

Proof.  Taking the 𝐿2-inner product of Eq. (36) with − (

3𝜙𝑛+1 − 4𝜙𝑛 + 𝜙𝑛−1
)

, we get

− 1
2𝛥𝑡

‖3𝜙𝑛+1 − 4𝜙𝑛 + 𝜙𝑛−1‖2 = ∫𝛺

⎛

⎜

⎜

⎜

⎝

𝑟𝑛+1
𝐹 ′(𝜙∗)

𝜖2
√

∫𝛺
𝐹 (𝜙∗)
𝜖2

𝑑𝐱 + 𝐶

⎞

⎟

⎟

⎟

⎠

(

3𝜙𝑛+1 − 4𝜙𝑛 + 𝜙𝑛−1
)

𝑑𝐱

+ 1
4
(

‖∇𝜙𝑛+1‖2 − ‖∇𝜙𝑛‖2 + ‖2∇𝜙𝑛+1 − ∇𝜙𝑛‖2 − ‖2∇𝜙𝑛 − ∇𝜙𝑛−1‖2
)

+ 𝑆
𝜖2

‖𝜙𝑛+1 − 𝜙𝑛‖2

− 𝑆
𝜖2

‖𝜙𝑛 − 𝜙𝑛−1‖2 + 2𝑆
𝜖2

‖𝜙𝑛+1 − 2𝜙𝑛 + 𝜙𝑛−1‖2 + 1
4
‖∇𝜙𝑛+1 − 2∇𝜙𝑛 + ∇𝜙𝑛−1‖2. (39)

Multiplying Eq. (37) with 2𝑟𝑛+1, we get
1
4
(

(𝑟𝑛+1)2 − (𝑟𝑛)2 + (2𝑟𝑛+1 − 𝑟𝑛)2 − (2𝑟𝑛 − 𝑟𝑛−1)2 + (𝑟𝑛+1 − 2𝑟𝑛 + 𝑟𝑛−1)2
)

= ∫𝛺

⎛

⎜

⎜

⎜

𝑟𝑛+1
𝐹 ′(𝜙∗)

𝜖2
√

∫ 𝐹 (𝜙∗) 𝑑𝐱 + 𝐶

⎞

⎟

⎟

⎟

(

3𝜙𝑛+1 − 4𝜙𝑛 + 𝜙𝑛−1
)

𝑑𝐱. (40)
⎝
𝛺 𝜖2 ⎠

10 
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Fig. 5. (a) A graphical representation of 𝑆, 𝛺𝛿 , and 𝜕𝛺𝛿 . (b) Depiction of the closest points, cp(𝐱1) and cp(𝐱2), corresponding to the points 𝐱1 and 𝐱2, respectively.

Combining Eqs. (39) and (40), we obtain
1
4
(

‖∇𝜙𝑛+1‖2 − ‖∇𝜙𝑛‖2 + ‖2∇𝜙𝑛+1 − ∇𝜙𝑛‖2 − ‖2∇𝜙𝑛 − ∇𝜙𝑛−1‖2
)

+ 𝑆
𝜖2

‖𝜙𝑛+1 − 𝜙𝑛‖2

− 𝑆
𝜖2

‖𝜙𝑛 − 𝜙𝑛−1‖2 + 1
4
(

(𝑟𝑛+1)2 + (2𝑟𝑛+1 − 𝑟𝑛)2
)

− 1
4
(

(𝑟𝑛)2 + (2𝑟𝑛 − 𝑟𝑛−1)2
)

+ −

= − 1
2𝛥𝑡

‖3𝜙𝑛+1 − 4𝜙𝑛 + 𝜙𝑛−1‖2 − 1
4
‖∇𝜙𝑛+1 − 2∇𝜙𝑛 + ∇𝜙𝑛−1‖2 − 1

4
(𝑟𝑛+1 − 2𝑟𝑛 + 𝑟𝑛−1)2

− 2𝑆
𝜖2

‖𝜙𝑛+1 − 2𝜙𝑛 + 𝜙𝑛−1‖2 ≤ 0. (41)

The proof of the time-discretized energy dissipation law is completed. □

Recently, many variants of the SAV scheme have been developed to treat gradient flow systems, hydrodynamics-coupled phase-
field models, and incompressible fluid problems [61,62], nematic crystal flows [63] etc. Please refer to [64,65] and references 
therein for more details.

2.7. Hybrid methods and alternative approaches

A hybrid numerical method refers to a computational approach that combines two or more distinct numerical techniques to 
solve complex mathematical problems. These methods are often employed when a single numerical technique is inadequate for 
handling all aspects of a given problem, especially in cases where different techniques excel in specific domains. For instance, 
hybrid methods can merge closed-form solutions with finite difference methods. The motivation behind hybrid methods lies in 
optimizing accuracy, stability, and computational efficiency. By using the strengths of different methods, hybrid techniques can more 
effectively solve problems involving partial differential equations, nonlinear dynamics, or multi-physics phenomena. For example, 
one part of a domain may be treated with an efficient but less accurate method, while another critical part may use a more precise 
technique. These methods are widely applied in fields such as fluid dynamics, structural analysis, and electromagnetics, where 
diverse mathematical properties must be resolved. Overall, hybrid numerical methods provide a flexible and powerful means of 
solving intricate problems that may be difficult to handle using a single approach.

In [66], the authors presented an unconditionally stable Monte Carlo simulation (MCS) for solving the AC equation. This method 
is based on the Monte Carlo method with Brownian motion. Hwang et al. [67] developed an explicit computational scheme for 
the AC equation on effective symmetric triangular meshes, where the Laplace operator is defined based on the characteristics of 
the given triangular mesh. A broad spectrum of phenomena in applied and natural sciences can be represented through partial 
differential equations (PDEs) formulated on surfaces. There have been many applications in physics, fluid dynamics, and image 
processing. In particular, several studies have focused on various numerical methods for solving the AC equation on surfaces. Xiao 
et al. [49] proposed an unconditionally maximum principle preserving surface FEM for solving the AC equation. To solve PDEs on a 
triangulated curved surface, the Laplace–Beltrami operator is used. In [68], numerical simulations and error estimation for the AC 
equation on surfaces were presented using radial basis functions and a time-splitting scheme. Choi et al. [69] developed a fast and 
accurate FDM using a closest point method for the AC equation. Fig.  5 shows, in (a), a graphical representation of 𝑆, along with 
𝛺𝛿 , and 𝜕𝛺𝛿 , and in (b), cp(𝐱1) and cp(𝐱2) are shown, corresponding to the points 𝐱1 and 𝐱2, respectively.

Fig.  6 provides the temporal evolution of the interface on a spherical surface. The motion is driven by mean curvature, and the 
figure captures the progression of this interface over time as it moves from left to right. This visual representation highlights the 
dynamic changes occurring on the surface as the curvature-driven flow influences the shape and position of the interface.
11 
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Fig. 6. From left to right and top to bottom: The temporal evolution of the interface on spherical surface driven by mean curvature motion.

Fig. 7. Schematic diagrams.

Choi et al. [70] presented an explicit hybrid numerical method for the AC equation on curved surfaces. By applying the operator 
splitting technique, the heat equation is solved using a discrete Laplace–Beltrami operator, while the nonlinear equation is solved 
analytically.

The solution algorithm is as follows: Let 𝑀 represent a triangular mesh of , and let {𝐱𝑖}𝑁𝑖=1 denote the vertices. Define 
𝑁1(𝑖) = {𝑖1, 𝑖2,… , 𝑖𝑛} as the set of indices corresponding to 𝐱𝑖, where 𝑖1 = 𝑖𝑛 (refer to Fig.  7(b)). Let 𝜙𝑖 = 𝜙(𝐱𝑖), and let 𝑇𝑗 denote a 
triangle as illustrated in Fig.  7(c). The discrete gradient at 𝐱𝑖 is expressed as follows: 

∇𝑀𝜙𝑖 =
1

(𝐱𝑖)
∑

𝑗∈𝑁1(𝑖)
𝐴𝑗∇𝑇𝑗𝜙, (42)

where (𝐱𝑖) =
∑

𝑗∈𝑁1(𝑖) 𝐴𝑗 , see Fig.  7(b). Here, 𝐴𝑗 is the area of 𝑇𝑗 (Fig.  7(c)) and 𝛾(𝐱𝑖, 𝐱𝑗 , 𝐱𝑘) =
⟨

𝐱𝑖 − 𝐱𝑗 , 𝐱𝑗 − 𝐱𝑘
⟩

(𝐱𝑘 − 𝐱𝑖). Hence, a 
discrete Laplacian is as follows: 

𝛥𝑀𝜙𝑖 =
1

2(𝐱𝑖)
∑

𝑗∈𝑁1(𝑖)
𝐧𝑇𝑗 [∇𝑀𝜙𝑗 + ∇𝑀𝜙𝑗+] ‖𝐱𝑗 − 𝐱𝑗+‖, (43)

where 𝐧𝑗 is normal to 𝐱𝑗𝐱𝑗+, see Fig.  7(d). Define 𝜙𝑛𝑖 = 𝜙(𝐱𝑖, 𝑛𝛥𝑡). Then, first, we solve the discrete diffusion equation: 
𝜙∗
𝑖 − 𝜙

𝑛
𝑖 = 𝛥 𝜙𝑛, for 1 ≤ 𝑖 ≤ 𝑁. (44)
𝛥𝑡 𝑀 𝑖

12 
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After that, we proceed to solve the next equation: 

𝜙𝑛+1𝑖 =
𝜙∗
𝑖

√

𝑒
−2𝛥𝑡
𝜖2 + (𝜙∗

𝑖 )2
(

1 − 𝑒
−2𝛥𝑡
𝜖2

)

, for 1 ≤ 𝑖 ≤ 𝑁. (45)

For further details on the numerical methods for the AC equation on curved surfaces, as well as computational simulation results, 
please refer to [69].

Next, Hwang et al. [45] presented and analyzed the FDM for solving the AC equation on a cubic surface. Furthermore, the 
authors proved that the numerical solution satisfies the maximum principle property. We describe the numerical scheme for solving 
the AC equation on a cubic surface. Let 𝑁 be a positive integer. We define the discrete sub-domains for the unfolded cubic surface 
as follows:

𝛺1
ℎ = {(𝑥𝑖, 𝑦𝑗 )|𝑖 = 1, 2,… , 𝑁, 𝑗 = 1, 2,… , 𝑁},

𝛺2
ℎ = {(𝑥𝑖, 𝑦𝑗 )|𝑖 = 1, 2,… , 𝑁, 𝑗 = 𝑁 + 1, 𝑁 + 2,… , 2𝑁},

𝛺3
ℎ = {(𝑥𝑖, 𝑦𝑗 )|𝑖 = 𝑁 + 1, 𝑁 + 2,… , 2𝑁, 𝑗 = 𝑁 + 1, 𝑁 + 2,… , 2𝑁},

𝛺4
ℎ = {(𝑥𝑖, 𝑦𝑗 )|𝑖 = 2𝑁 + 1, 2𝑁 + 2,… , 3𝑁, 𝑗 = 𝑁 + 1, 𝑁 + 2,… , 2𝑁},

𝛺5
ℎ = {(𝑥𝑖, 𝑦𝑗 )|𝑖 = 3𝑁 + 1, 3𝑁 + 2,… , 4𝑁, 𝑗 = 𝑁 + 1, 𝑁 + 2,… , 2𝑁},

𝛺6
ℎ = {(𝑥𝑖, 𝑦𝑗 )|𝑖 = 1, 2,… , 𝑁, 𝑗 = 2𝑁 + 1, 2𝑁 + 2,… , 3𝑁},

where (𝑥𝑖, 𝑦𝑗 ) = ((𝑖−0.5)ℎ, (𝑗−0.5)ℎ) and ℎ = 1∕𝑁 . Then, the discrete global domain is defined by 𝛺ℎ = ∪6
𝑘=1𝛺

𝑘
ℎ. Let 𝜙𝑛𝑖𝑗 = 𝜙(𝑥𝑖, 𝑦𝑗 , 𝑛𝛥𝑡). 

For the folded cubic surface, the appropriate boundary conditions of the discrete sub-domain 𝛺𝑘
ℎ for 𝑘 = 1, 2,… , 6 are given as 

follows. For 𝑠 = 1, 2,… , 𝑁 :

𝜙𝑛𝑠,0 = 𝜙𝑛3𝑁+1−𝑠,𝑁+1, 𝜙
𝑛
0,𝑠 = 𝜙𝑛3𝑁+𝑠,𝑁+1, 𝜙

𝑛
𝑁+1,𝑠 = 𝜙𝑛2𝑁+1−𝑠,𝑁+1 on 𝛺

1
ℎ,

𝜙𝑛0,𝑁+𝑠 = 𝜙𝑛4𝑁,𝑁+𝑠 on 𝛺
2
ℎ,

𝜙𝑛𝑁+𝑠,𝑁 = 𝜙𝑛𝑁,𝑁+1−𝑠, 𝜙
𝑛
𝑁+𝑠,2𝑁+1 = 𝜙𝑛𝑁,2𝑁+𝑠 on 𝛺

3
ℎ,

𝜙𝑛2𝑁+𝑠,𝑁 = 𝜙𝑛𝑁+1−𝑠,1, 𝜙
𝑛
2𝑁+𝑠,2𝑁+1 = 𝜙𝑛𝑁+1−𝑠,3𝑁 on 𝛺4

ℎ,

𝜙𝑛3𝑁+𝑠,𝑁 = 𝜙𝑛1,𝑠, 𝜙
𝑛
3𝑁+𝑠,2𝑁+1 = 𝜙𝑛1,3𝑁+1,𝑠, 𝜙

𝑛
4𝑁+1,𝑁+𝑠 = 𝜙𝑛1,𝑁+𝑠 on 𝛺

5
ℎ,

𝜙𝑛0,2𝑁+𝑠 = 𝜙𝑛4𝑁+1−𝑠,2𝑁 , 𝜙
𝑛
𝑠,3𝑁+1 = 𝜙𝑛3𝑁+1−𝑠,2𝑁 , 𝜙

𝑛
𝑁+1,2𝑁+𝑠 = 𝜙𝑛𝑁+𝑠,2𝑁 on 𝛺6

ℎ.

The numerical solution algorithm is based on the operator splitting scheme. First, we solve the diffusion term on 𝛺ℎ.
𝜙∗
𝑖𝑗 − 𝜙

𝑛
𝑖𝑗

𝛥𝑡
=
𝜙𝑛𝑖−1,𝑗 + 𝜙

𝑛
𝑖+1,𝑗 − 4𝜙𝑛𝑖𝑗 + 𝜙

𝑛
𝑖,𝑗−1 + 𝜙

𝑛
𝑖,𝑗+1

ℎ2
,

which can be rewritten as

𝜙∗
𝑖𝑗 = 𝜙𝑛𝑖𝑗 + 𝛥𝑡

𝜙𝑛𝑖−1,𝑗 + 𝜙
𝑛
𝑖+1,𝑗 − 4𝜙𝑛𝑖𝑗 + 𝜙

𝑛
𝑖,𝑗−1 + 𝜙

𝑛
𝑖,𝑗+1

ℎ2
.

Next, we calculate the nonlinear term. The computational solution 𝜙𝑛+1𝑖𝑗  on 𝛺ℎ is calculated as follows:

𝜙𝑛+1𝑖𝑗 =
𝜙∗
𝑖𝑗

√

𝑒
−2𝛥𝑡
𝜖2 + (𝜙∗

𝑖𝑗 )2
(

1 − 𝑒
−2𝛥𝑡
𝜖2

)

.

Fig.  8 illustrates the time evolution of the computational solutions with random initial conditions on a cubic surface domain. 
The left and right columns are computational solutions for the AC equation on the unfolded and folded cubic surfaces, respectively.

2.8. Adaptive numerical methods

Adaptive numerical methods dynamically adjust parameters, such as step size or grid resolution, during computations to increase 
accuracy and efficiency. These methods allocate more computational resources in regions requiring finer resolution, such as areas 
with steep gradients, while reducing resources where the solution is smoother.

2.8.1. Temporally adaptive method
A temporally adaptive method adjusts the time step size dynamically during the numerical solution process based on the solution’s 

behavior. By using error estimators or other criteria, this approach refines the time step in regions of rapid change and coarsens it 
where the solution varies slowly, which improves the efficiency and accuracy of the numerical schemes. Li et al. [71] proposed a 
polygonal mesh adaptation method for solving the AC equation, which uses a fully implicit method that combines the discontinuous 
Galerkin FEM for spatial discretization with the backward Euler scheme for temporal integration. Feng and Wu [72] developed a 
residual-based a posteriori error estimator for the FEM of the AC equation to compute its sharp interface limit, and the mean 
curvature flow. Willoughby [73] introduced a high-order time-adaptive algorithm to solve the AC equation, and demonstrated 
13 
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Fig. 8. The temporal evolution of the numerical solution for the AC equations on the cubic surface from top to bottom.

computational advantages over traditional techniques. Shah et al. [74] tackled a precise and efficient time-stepping method for 
numerically solving the AC equation, and highlighted the benefits of adaptive grids compared to uniform grids. The authors used 
the P1-conforming FEM and the diagonal implicit fractional-step 𝜃 method for spatial and temporal discretizations, respectively. 
Chen et al. [75] developed an SCR-based a posteriori error estimator to guide mesh refinement and coarsening, and proposed a 
time-space adaptive method for the AC equation.

2.8.2. Spatially adaptive method
A spatially adaptive method is a computational technique that adjusts the resolution of the computational grid or mesh based 

on the solution’s local features. Regions requiring higher accuracy are refined with finer grids, and coarser grids are used in less 
critical areas, which improves efficiency without compromising the accuracy of the numerical methods. Jeong et al. [76] proposed 
an adaptive explicit hybrid scheme. They applied a time-adaptive method to the existing explicit hybrid finite difference scheme, 
see Fig.  9.

2.8.3. Temporally and spatially adaptive method
A temporally and spatially adaptive method is a numerical technique that adjusts the time step and mesh resolution dynamically 

during the simulation. The main purpose of this approach is to optimize accuracy and computational efficiency by refining the time 
and space discretization in regions where the solution changes rapidly and coarsening it where changes are slower.

2.9. Other methods

The finite volume element method (FVEM) is similar to FVM but is based on a finite element mesh for the computational domain 
and improves accuracy and stability by using finite element basis functions for flux approximation. In contrast to traditional FVM, 
the phase-field function 𝜙 is approximated using finite element basis functions as follows:

𝜙ℎ =
∑

𝜙𝑖𝜓𝑖,

𝑖

14 
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Fig. 9. Schematic illustrations of (a) 𝜙 and (b) 𝛺̃𝑛
ℎ.

where 𝜓𝑖 are piecewise polynomial basis functions, and 𝜙𝑖 are the corresponding nodal values. Li and Wang [77] developed a 
modified finite volume element (MFVE) method for the AC model with a small perturbation parameter. The authors derived the 
optimal error estimations for the MFVE solutions and validated their results with numerical tests, which show that the MFVE 
algorithm is more efficient than the traditional FVE method.

An explicit numerical scheme, commonly employed in numerical simulations, is an algorithm that determines the future state of 
a system directly from its current state. It is simple and efficient for predicting system behavior over time. Since the explicit scheme 
uses the system’s present conditions to extrapolate its state into the future state, it is well suited for a wide range of applications such 
as image processing [78] and fluid dynamics [79,80]. The explicit scheme is straightforward to implement; however, it imposes a 
time step restriction. In [43], the stability condition of the time-step size for the explicit FDM is analyzed for the AC equation with 
polynomial and logarithmic potential energy. Li and Zhang [81] proposed a high-efficiency explicit Runge–Kutta approach with 
energy dissipation for the AC equation. Poochinapan and Wongsaijai [82] presented a fourth-order compact difference scheme, 
which preserves the structure, for solving the AC equation with a stabilization term. Koohy et al. [32] solved the AC equations 
using stochastic differential equations and neural networks with the explicit Euler method. In the Appendix, we provide examples 
of fully explicit FDM MATLAB codes.

Wavelet analysis is a mathematical field that has found extensive applications in signal processing [83,84], image analy-
sis [85,86], and numerical computation, among other areas. The term wavelets refers to small, rapidly decaying oscillations, 
in contrast to the larger sinusoidal waves used in Fourier analysis. Wavelets have been applied to solving partial differential 
equations. The examined data highlights the advantages of this method in capturing singularities, irregular structures, and transient 
phenomena. PDE wavelet solution algorithms are primarily based on Galerkin’s method or the collocation approach. Angadi [87] 
presented numerical solutions of AC equation by using wavelet-based lifting schemes, introducing different wavelet filter coefficients. 
Wavelet-based numerical simulations of two-phase flows using the phase-field model are presented in [88,89].

2.10. Benchmark problems

Benchmark problems are standardized test cases used to evaluate and compare the performance of algorithms, methods, or 
models in a specific field. They serve as reference points for assessing accuracy, efficiency, and robustness, which allow researchers 
to validate and benchmark their solutions against widely accepted criteria or results.

2.10.1. Maximum principle-preserving property
The continuous AC equation satisfies the maximum bound principle, and this property was proved in [13]. If the initial values 

are bounded by 1, then the solutions of the AC equation remain bounded by 1. In [13], Evans et al. verified the preservation of the 
maximum boundary principle. Let us assume ℎ(𝝓𝑛) ≤ ℎ(𝝓𝑛−1), then for any 1 ≤ 𝑖 ≤ 𝑁 we have 

ℎ
4𝜖2

((𝜙𝑛𝑖 )
2 − 1)2 ≤ ℎ(𝝓𝑛) ≤ ℎ(𝝓0). (46)

Hence, we have 

‖𝝓𝑛‖∞ ≤

√

1 + 2𝜖
√

ℎ(𝝓0)∕ℎ. (47)

More details can be found in [90]. For instance, additional proofs regarding the maximum preserving principle for the AC equation 
can be found in [42,47,91,92].
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Fig. 10. (a) and (b) are the time evolutions of the dimensionless discrete total energy ℎ(𝝓𝑛)∕ℎ(𝝓0) in two- and three-dimensional spaces, respectively.

2.10.2. Energy decrease
We now examine the progression of discrete total energy over time. The initial condition is 𝜙(𝑥, 𝑦, 0) = 0.1rand(𝑥, 𝑦) on 

𝛺 = (−1, 1)×(−1, 1) with 128 × 128 grid points. The parameters 𝜖4 and 𝛥𝑡 = 0.99𝛥𝑡max are used, where 𝛥𝑡max = 𝜖2ℎ2∕(2ℎ2+4𝜖2) is the 
maximum stable time step size in two-dimensional space [43]. In Fig.  10(a), the time progression of the non-dimensional discrete 
total energy ℎ(𝝓𝑛)∕ℎ(𝝓0) is shown until 𝑡 = 0.5. We also consider a three-dimensional initial condition: 𝜙(𝑥, 𝑦, 𝑧, 0) = 0.1rand(𝑥, 𝑦, 𝑧)
on 𝛺 = (0.5, 0.5) × (−0.5, 0.5) × (−0.5, 0.5) with 64 × 64 × 64 grid points. The parameters used are the same as in the 2D test, and in 
the 3D space, 𝛥𝑡max = 𝜖2ℎ2∕(2ℎ2 + 6𝜖2). Fig.  10(b) is the temporal evolution of the discrete total energy until 𝑡 = 0.2.

Wang et al. [91] presented a novel linear, energy-stable, and maximum principle-preserving computational scheme for approx-
imating the AC equation using an innovative stabilization approach combined with energy factorization, and demonstrated its 
superior performance over conventional methods through numerical experiments. Further studies on the energy decreasing property 
of the AC equation can be found in [81,82].

2.10.3. Traveling wave solution
One exact solution of the AC equation is the traveling wave solution: 𝜙(𝑥, 𝑡) = 0.5 − 0.5 tanh[(𝑥 − 𝑠𝑡)∕(2

√

2𝜖8)], where 𝑠 =
3∕(

√

2𝜖8) [92]. Fig.  11 displays snapshots of the computational and exact solutions. Here, the initial condition and exact traveling 
wave solution at 𝑡 = 0.06 are shown by  the dashed and solid lines, respectively. Here, we used 𝛥𝑡 = 5 × 10−6 and ℎ = 0.02.

2.10.4. Manufactured solution
A manufactured solution for testing numerical methods involves creating an exact solution to a partial differential equation by 

first assuming a solution and then deriving the corresponding source terms. This approach allows for controlled testing of numerical 
methods and ensures accuracy and stability by comparing the numerical solution to the known exact solution. It is widely used to 
verify the correctness and performance of computational algorithms. In [93], the authors assumed a two-dimensional benchmark 
problem with the following two-dimensional AC model:

𝜕𝜙(𝑥, 𝑦, 𝑡)
𝜕𝑡

= −
𝐹 ′(𝜙(𝑥, 𝑦, 𝑡))

𝜖2
+ 𝛥𝜙(𝑥, 𝑦, 𝑡)

= −
𝜙3(𝑥, 𝑦, 𝑡) − 𝜙(𝑥, 𝑦, 𝑡)

+
𝜕2𝜙(𝑥, 𝑦, 𝑡)

+
𝜕2𝜙(𝑥, 𝑦, 𝑡)

, (48)

𝜖2 𝜕𝑥2 𝜕𝑦2
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Fig. 11. Snapshots of the numerical results for the traveling wave solutions and the exact solution at the final time 𝑡 = 0.06.

for (𝑥, 𝑦) ∈ 𝛺 = (2, 2𝜋) × (2, 2𝜋), 𝑡 > 0.

To determine appropriate benchmark problems for the two-dimensional AC equation, we first linearize the nonlinear term 
𝐹 ′(𝜙(𝑥, 𝑦, 𝑡)) through a Taylor expansion, which yields the approximation 𝐹 ′(𝜙(𝑥, 𝑦, 𝑡)) ≈ −𝜙(𝑥, 𝑦, 𝑡). This results in the following 
linearized AC equation: 

𝜕𝜙(𝑥, 𝑦, 𝑡)
𝜕𝑡

=
𝜙(𝑥, 𝑦, 𝑡)
𝜖2

+
𝜕2𝜙(𝑥, 𝑦, 𝑡)

𝜕𝑥2
+
𝜕2𝜙(𝑥, 𝑦, 𝑡)

𝜕𝑦2
. (49)

For natural numbers 𝑐𝑥 and 𝑐𝑦, let us consider the following benchmark solution for the 2D AC equation (49): 

𝜙(𝑥, 𝑦, 𝑡) = 𝑘(𝑡) cos(𝑐𝑥𝑥) cos(𝑐𝑦𝑦), (50)

where 𝑘(𝑡) is an amplitude. Substituting (50) into (49), we get:
𝜕𝜙(𝑥, 𝑦, 𝑡)

𝜕𝑡
= 𝑘′(𝑡) cos(𝑐𝑥𝑥) cos(𝑐𝑦𝑦)

=
𝑘(𝑡) cos(𝑐𝑥𝑥) cos(𝑐𝑦𝑦)

𝜖2
−
(

𝑐2𝑥 + 𝑐
2
𝑦

)

𝑘(𝑡) cos(𝑐𝑥𝑥) cos(𝑐𝑦𝑦). (51)

Dividing both sides of (51) by cos(𝑐𝑥𝑥) cos(𝑐𝑦𝑦), we obtain

𝑘′(𝑡) = 𝑘(𝑡)
(

1
𝜖2

−
(

𝑐2𝑥 + 𝑐
2
𝑦

)

)

.

Then, the solution of Eq. (51) is as follows: 

𝑘(𝑡) = 𝑘(0) exp
[(

1
𝜖2

−
(

𝑐2𝑥 + 𝑐
2
𝑦

)

)

𝑡
]

. (52)

Let Eq. (50) serve as a benchmark solution for the two-dimensional modified AC equation, where 𝑘(𝑡) is defined by (52). The 
initial condition is expressed as 𝜙(𝑥, 𝑦, 0) = 𝑘(0) cos(𝑐𝑥𝑥) cos(𝑐𝑦𝑦). Finally, the modified AC equation with a source term is considered 
as follows:

𝜕𝜙(𝑥, 𝑦, 𝑡)
𝜕𝑡

= −
𝐹 ′(𝜙(𝑥, 𝑦, 𝑡))

𝜖2
+ 𝛥𝜙(𝑥, 𝑦, 𝑡) + 𝑓 (𝑥, 𝑦, 𝑡), (53)

for (𝑥, 𝑦) ∈ 𝛺, 𝑡 > 0,

where

𝑓 (𝑥, 𝑦, 𝑡) =
𝜕𝜙(𝑥, 𝑦, 𝑡)

𝜕𝑡
+
𝐹 ′(𝜙(𝑥, 𝑦, 𝑡))

𝜖2
− 𝛥𝜙(𝑥, 𝑦, 𝑡)

=
(

𝑘′(𝑡) + 1
𝜖2

(

𝑘3(𝑡) cos2(𝑐𝑥𝑥) cos2(𝑐𝑦𝑦) − 𝑘(𝑡)
)

+ 𝑘(𝑡)
(

𝑐2𝑥 + 𝑐
2
𝑦

)

)

cos(𝑐𝑥𝑥) cos(𝑐𝑦𝑦).

2.10.5. Motion by mean curvature
Motion by mean curvature is one of the most popular benchmark problems [94]. The two-dimensional radius at time 𝑡 is given 

as 𝑅(𝑡) =
√

𝑅2
0 − 2𝑡. In Fig.  12(a), the initial condition is defined as 

𝜙(𝑥, 𝑦, 0) = tanh

(

𝑅0 −
√

𝑥2 + 𝑦2
√

)

(54)

2𝜖
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Fig. 12. Change of radius 𝑅(𝑡) of (a) a two-dimensional circle and (b) a three-dimensional sphere over time.

on 𝛺 = (−1, 1)× (−1, 1) with a 128 × 128 mesh. Here, 𝑅0 = 0.7, ℎ = 1∕64, 𝜖 = 𝜖8, and 𝛥𝑡 = 0.99𝛥𝑡max are used, where 𝛥𝑡max =
𝜖2ℎ2

2ℎ2+2𝑑𝜖2
and 𝑑 is the number of dimensions [43]. The numerical radius is calculated as the average of the distances from the coordinates 
of the zero-level contour to the center of the circle. We also observe motion by mean curvature in 3D spaces. The computational 
domain is 𝛺 = (−1, 1) × (−1, 1) × (−1, 1) and

𝜙(𝑥, 𝑦, 𝑧, 0) = tanh

(

𝑅0 −
√

𝑥2 + 𝑦2 + 𝑧2
√

2𝜖

)

.

The parameters used are the same as those in the two-dimensional simulation. The radius of the sphere at time 𝑡 is given by 
𝑅(𝑡) =

√

𝑅2
0 − 4𝑡.

Fig.  12(a) displays 𝑅(𝑡) until 𝑡 = 0.245. Fig.  12(b) shows the temporal evolution of 𝑅(𝑡), the radius of the sphere, until 𝑡 = 0.1225. 
The spheres inside the small boxes represent the isosurface of the zero-level of 𝜙(𝑥, 𝑦, 𝑧, 𝑡).

Church et al. [94] presented four benchmark problems for the AC and CH equations, and validated numerical results using 
various computational methods and discretizations, with the objective of providing a reference for evaluating the accuracy and 
reliability of future software for phase field models in materials science.

3. Conclusions

In this review, we have provided various numerical methodologies used to solve the binary AC equation, which is central to 
modeling phase separation processes in materials science and beyond. By examining a range of methodologies, including the finite 
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difference, finite element, finite volume, Fourier spectral, invariant energy quadratization, and scalar auxiliary variable methods, we 
highlighted their respective advantages, limitations, and applicability across different scientific domains. The AC equation’s capacity 
to model the dynamic evolution of interfaces makes it an essential tool for studying phase transitions, grain boundary motion, and 
pattern formation in complex systems. The advancement of numerical approaches is crucial for improving our ability to simulate 
and predict these phenomena accurately, and our review contributes to ongoing efforts to refine computational techniques for this 
important equation. In summary, the finite difference method is widely used due to its simplicity. Explicit schemes, such as the 
integrating factor Runge–Kutta method, provide high-order accuracy but have strict stability constraints. Implicit schemes improve 
stability but require higher computational costs. Finite element method is effective for complex geometries and adaptive mesh 
refinement. Discontinuous Galerkin methods improve accuracy, while residual-based error estimators improve precision. However, 
FEM is computationally more expensive than FDM. Fourier spectral methods achieve high accuracy for periodic domains. Semi-
analytical Fourier spectral approaches allow large time steps but face challenges with general boundary conditions. Invariant 
energy quadratization and scalar auxiliary variable methods reformulate the AC equation to ensure energy stability and efficiently 
handle nonlinearities. SAV-based methods are energy stable but introduce additional computational overhead. Hybrid methods 
combine numerical techniques to improve efficiency. Monte Carlo simulations provide alternative approaches for high-dimensional 
problems. Adaptive methods dynamically adjust computational parameters. Temporally adaptive methods modify time-step sizes 
to optimize efficiency. Spatially adaptive methods refine grids where high resolution is needed. Each method’s suitability depends 
on the complexity of problem, computational cost, and accuracy requirements. Through a better understanding of the available 
methods, future research can be directed toward improving accuracy, stability, and computational efficiency in simulating binary 
systems governed by the AC equation. In this review, we focused on the binary AC equation. In future research, we will extend our 
review to high-dimensional systems, such as vector-valued AC equations [95], multiphase CH equations [96–98].
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Appendix A

Listing 1 Fully explicit FDM code
c l ea r a l l ;
x = 128; Ny = 128; Lx=1; Ly=1; h=Lx/Nx ;
xx=l in space (0.5∗h , Lx−0.5∗h ,Nx ) ;
yy=l in space (0.5∗h , Ly−0.5∗h ,Ny ) ;
u = rand (Nx+2,Ny+2)−0.5; np=u ;
dt = 0.1∗h ^ 2 ; T=10; eps2=h ^ 2 ; Maxiter=200;
fo r i t e r = 1: Maxiter
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u (1 , : )=u ( 2 , : ) ; u (Nx+2 ,:)=u(Nx+1 , : ) ;
u ( : ,1 )=u ( : , 2 ) ; u ( : , Ny+2)=u ( : ,Ny+1);
fo r i i =2:Nx+1

fo r j j =2:Ny+1
np( i i , j j )=u( i i , j j )+dt ∗(u ( i i , j j )−u( i i , j j ) ^ 3 ) / eps2 . . .

+dt ∗(u ( i i −1, j j )+u( i i +1, j j )−4.0∗u( i i , j j ) . . .
+u( i i , j j −1)+u( i i , j j +1))/h ^ 2 ;

end
end
u=np ;
i f (mod( i t e r ,10)==0)

mesh( xx , yy , u (2 :Nx+1 ,2:Ny+1))
ax i s ([0 Lx 0 Ly −1 1 ] ) ; view(−47,39)
pause (0 .01)

end
end

Listing 2 Hybrid explicit code
c l ea r a l l ;
x = 128; Ny = 128; Lx=1; Ly=1; h=Lx/Nx ;
xx=l in space (0.5∗h , Lx−0.5∗h ,Nx ) ;
yy=l in space (0.5∗h , Ly−0.5∗h ,Ny ) ;
u = rand (Nx+2,Ny+2)−0.5; np=u ; np2=u ;
dt = 0.1∗h ^ 2 ; T=10; eps2=h ^ 2 ; Maxiter=200;
fo r i t e r = 1: Maxiter
u (1 , : )=u ( 2 , : ) ; u (Nx+2 ,:)=u(Nx+1 , : ) ;
u ( : ,1 )=u ( : , 2 ) ; u ( : , Ny+2)=u ( : ,Ny+1);
fo r i i =2:Nx+1

fo r j j =2:Ny+1
np( i i , j j )=u( i i , j j )+dt ∗(u ( i i −1, j j )+u( i i +1, j j ) . . .

−4.0∗u( i i , j j )+u( i i , j j −1)+u( i i , j j +1))/h ^ 2 ;
np2 ( i i , j j )=np( i i , j j )/ s q r t ((1−np( i i , j j ) ^ 2 ) . . .

∗exp(−2∗dt /eps2)+np( i i , j j ) ^ 2 ) ;
end

end
u=np2 ;
i f (mod( i t e r ,10)==0)

mesh( xx , yy , u (2 :Nx+1 ,2:Ny+1))
ax i s ([0 Lx 0 Ly −1 1 ] ) ; view(−47 ,39); pause (0 .01)

end
end

Listing 3 DCT code
c l ea r ; Nx=128; Ny=128; Lx=1; Ly=1; hx=Lx/Nx ; hy=Ly/Ny ;
xx=l in space (0.5∗hx , Lx−0.5∗hx ,Nx ) ;
yy=l in space (0.5∗hy , Ly−0.5∗hy ,Ny ) ;
[X ,Y]=ndgrid ( xx , yy ) ; h=xx(2)−xx ( 1 ) ; eps i lon=h ; Cahn=eps i lon ^ 2 ;
u=tanh ((0.25− s q r t ( (X−0.5).^2+(Y−0 .5 ) . ^2 ) ) / ( s q r t (2)∗ eps i lon ) ) ;
p=pi ∗ (0 :Nx−1)/Lx ; q=pi ∗ (0 :Ny−1)/Ly ;
p2=p . ^ 2 ; q2=q . ^ 2 ; [pp2 , qq2]=meshgrid (p2 , q2 ) ;
dt =0.0001; T=0.03; Nt=round (T/dt ) ; ns=Nt/20;
f i gu r e ( 1 ) ; c l f ; mesh( xx , yy , u ’ ) ;
ax i s ( [ xx (1) xx (Nx) yy (1) yy (Ny) −1 1 ] ) ; pause (0 .01)
fo r i t e r =1:Nt

u=u . / sq r t ( exp(−2∗dt /Cahn)+u.^2∗(1−exp(−2∗dt /Cahn ) ) ) ;
u_hat=dct2 (u ) ;
u=idc t2 ( exp(−dt ∗(pp2+qq2 ) ) .∗ u_hat ) ;
i f (mod( i t e r , ns )==0)
mesh( xx , yy , u ’ ) ; ax i s ( [ xx (1) xx (Nx) yy (1) yy (Ny) −1 1 ] ) ;
pause (0 .01)
end

end
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