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Abstract

In this study, we present a fast and efficient finite difference method (FDM) for solving the Allen–Cahn (AC) equation
n the cubic surface. The proposed method applies appropriate boundary conditions in the two-dimensional (2D) space to
alculate numerical solutions on cubic surfaces, which is relatively simpler than a direct computation in the three-dimensional
3D) space. To numerically solve the AC equation on the cubic surface, we first unfold the cubic surface domain in the 3D
pace into the 2D space, and then apply the FDM on the six planar sub-domains with appropriate boundary conditions. The
roposed method solves the AC equation using an operator splitting method that splits the AC equation into the linear and
onlinear terms. To demonstrate that the proposed algorithm satisfies the properties of the AC equation on the cubic surface,
e perform the numerical experiments such as convergence test, total energy decrease, and maximum principle.
2023 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights

eserved.
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1. Introduction

In this paper, we present the fast and efficient numerical algorithm which solves the Allen–Cahn (AC) equation [1]
n the cubic surface. To simply and efficiently solve the AC equation, we consider the unfolded cubic surface
omain with appropriate boundary conditions in two-dimensional (2D) space and propose a fast and efficient finite
ifference method (FDM). The spherical surface can be locally approximated by plane. Using this property, solving
he partial difference equation (PDE) on the cubic surface is an approximation for solving various PDEs on the
pherical surface domain.

Over the past decades, many researchers have made efforts to solve the phase-field equations on curved surfaces,
ncluding spherical surfaces [6,29]. In [15], Lee and Kim presented a numerical method to solve the phase-field
rystal equation on curved surfaces by using the closest point method and the pseudo-Neumann boundary condition.
ang and Kim [26] proposed an efficient and practical computational method to simulate the square phase field
rystal dynamics on arbitrary surfaces. Sun et al. [22] rigorously verified the stability of first-order numerical
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schemes using the surface finite element method and the scalar auxiliary variable method for numerical simulation
of the binary fluid–surfactant phase field model coupled with geometric curvature on a curved surface. There are
also researches to numerically solve the AC equation on a planar or curved surface [24,30].

A cubic surface simplifies problems on the spherical surface in 3D space, because we can consider each face
s a plane with zero curvature. Researchers have used cubic surfaces to solve problems on spherical surfaces. The
ubed-sphere transform was originally introduced by Sadourny in 1971 [21] and is derived from the projection of
cube onto a sphere. A cube-sphere grid is a grid created by a cube-sphere transformation that maps a quasi-

niform grid of spheres onto a regular polyhedron by choosing a central projection. In addition, it has been further
eveloped by [13,17,19,20,23,31]. In [17], McGregor demonstrated that the semi-Lagrangian advection technique
ay be efficiently applied to a cubic gnomonic grid of a sphere. Taylor et al. [23] used a gnomonic projection

o evaluate the suitability of the spectral element method for climate modeling. Ronchi et al. [20] developed a
umerical method to solve a PDE on the grid obtained by decomposing a sphere into six identical regions using
entroid projection from a circumscribed cube onto a spherical surface. In [19], advection tests were performed
sing the finite-volume transport method on various cubed-sphere grids to evaluate various cubic projections and
rid modifications. Ivan et al. [13] presented the fourth-order accurate finite volume method for conservation laws
n the 3D cubed-sphere grids, based on the central essentially non-oscillatory finite volume method which they
ntroduced in 2D space. Zhang et al. [31] developed a prolate-element method on a spherical surface grid based on
cubed-sphere transform to solve a PDE for a sphere. To the best of the authors’ knowledge, the properties of the
C equation on the cubic surface, such as motion by mean curvature using the AC equation on the cubic surface
omain, have not been considered in depth before. Therefore, we conduct numerical experiments and evaluate the
roperties of the AC equation and highlight the different dynamics of the AC equation on the cubic surface domain.

The AC equation is a phase field model that includes the diffusion and nonlinear terms. The AC equation was
riginally introduced as a mathematical model for anti-phase domain coarsening in a binary alloy. Because the AC
quation has the properties as total energy decreasing and motion by mean curvature flow, it has been widely used
o model various physical and applied problems, such as phase separation of binary alloys at a fixed temperature,
rystal growth [3], vesicle membranes, image segmentation [2,14], the nucleation of solids, and the mixture of
wo incompressible fluids [9], phase transitions [8], and interfacial dynamics in materials science [7,10,12,25].
iao and Feng [25] presented the highly efficient spatial–temporal operator splitting finite element method to solve

he AC equation. The main advantage of the presented method is to reduce the complexity of high-dimensional
omputation by splitting the high-dimensional problem into a series of one-dimensional subproblems. Deng and
hao [7] developed two new energy-dissipation-preserving alternating direction implicit (ADI) methods for the 2D
C equation in combination with the invariant energy quadratization methods proposed by Xiaofeng Yang [28]
nd the ADI method. In [11], the authors devised second-order accurate, unconditionally uniquely solvable, and
nconditionally energy stable methods for the nonlocal Cahn–Hilliard (CH) and nonlocal AC equations with periodic
oundary conditions. For the time-dependent AC equation on surfaces with no boundary, Mohammadi et al. [18]
resented the numerical simulation and error estimation based on radial basis functions. Choi et al. [4] proposed
n accurate and fast numerical scheme for motion by mean curvature using the AC equation on curved surfaces in
D space. In addition, Choi et al. proposed the hybrid numerical method for the motion by mean curvature of the
C equation on curved surfaces in 3D space in [5].

The primary purpose of this study is to present a fast and efficient finite difference method for solving the AC
quation on the cubic surface.

The layout of this paper is structured as follows. The governing equations are discussed in Section 2. In Section 3,
e proposes a numerical solution algorithm for solving the AC equation on the cubic surface. In Section 5, we
resent numerical simulations for the AC equations using the proposed method on cubic surfaces. Finally, we
resents the conclusion of this paper in Section 6.

. Governing equation

In this section, we consider the AC equation on the unit cubic surface. We define the unit cubic surface domain
s follows:

Ω̃ = {(x, y, z)|(x, y, 0), (x, y, 1), (x, 0, z), (x, 1, z), (0, y, z), (1, y, z),

0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1}. (1)
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Fig. 1. (a) Cubic surface domain Ω̃ in 3D and (b) unfolded cubic surface domain Ω in 2D.

e decompose cubic surface domain Ω̃ into six sub-domain Ω̃k , k = 1, 2, . . . , 6 as:

Ω̃1 = {(x, y, 0) | 0 < x < 1, 0 < y < 1}, Ω̃2 = {(x, 0, z) | 0 < x < 1, 0 < z < 1},

Ω̃3 = {(1, y, z) | 0 < y < 1, 0 < z < 1}, Ω̃4 = {(x, 1, z) | 0 < x < 1, 0 < z < 1},

Ω̃5 = {(0, y, z) | 0 < y < 1, 0 < z < 1}, Ω̃6 = {(x, y, 1) | 0 < x < 1, 0 < y < 1},

Ω̃ = ∪
6
k=1Ω̃ k,

where Ω̃ k is the closure set of Ω̃k , k = 1, . . . , 6 and schematically shown in Fig. 1(a). For an unfolded cubic surface
in 2D space, we also define sub-domain Ωk , k = 1, 2, . . . , 6 and global domain Ω as follows:

Ω1 = {(x, −y) | (x, y, z) ∈ Ω̃1}, Ω2 = {(x, z + 1) | (x, y, z) ∈ Ω̃2},

Ω3 = {(y + 1, z + 1) | (x, y, z) ∈ Ω̃3}, Ω4 = {(3 − x, z + 1) | (x, y, z) ∈ Ω̃4},

Ω5 = {(4 − y, z + 1) | (x, y, z) ∈ Ω̃5}, Ω6 = {(x, y + 2) | (x, y, z) ∈ Ω̃6},

Ω = ∪
6
k=1Ω k,

which is schematically shown in Fig. 1(b). We note that we can straightforwardly extend the proposed numerical
scheme to surfaces of the arbitrary-sized cuboid. Unless otherwise noted, the unit cube is considered. The boundary
condition for each Ωk , where k = 1, . . . , 6, is based on the cubic surface domain Ω̃ . Among the methods of
unfolding the unit cube in Fig. 1(a), we chose to unfold it as in Fig. 1(b). Thus, the boundary condition for Ω3 ⊂ Ω
as an example is shown in Fig. 2 and the boundary conditions for other Ωk ⊂ Ω , k = 1, 2, 4, 5, 6 are applied based
on the cubic surface domain Ω̃ , similar to Ω3. Therefore, we obtain the boundary condition for domain Ω in 2D
pace. Detailed boundary conditions are described in Section 3. The AC equation is given as

∂u(x, t)
∂t

= −
F ′(u(x, t))

ϵ2 + ∆u(x, t), x ∈ Ω , t > 0, (2)

here Ω is a domain, u is the non-conserved order parameter as the phase-field, ∆ is the Laplace operator, and ϵ

s the small positive parameter related to interfacial transition thickness. The function F(u) = 0.25(u2
− 1)2 is the

elmholtz free-energy functional which has the double well potential. In Fig. 3, we illustrate profile of Helmholtz
ree energy F(u). The AC equation is L2 gradient flow of the following Ginzburg–Landau energy functional:

E AC (t) =

6∑
k=1

∫
Ωk

(
F(u(x, t))

ϵ2 +
|∇u(x, t)|2

2

)
dx.

The AC equation is a reaction–diffusion equation, therefore we obtain the diffusion equation by excluding the
nonlinear term from the AC equation. The diffusion equation is a parabolic partial differential equation as

∂u(x, t)
= ∆u(x, t), x ∈ Ω , t > 0, (3)
∂t
340
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Fig. 2. Schematic diagram of the boundary condition for Ω3.

Fig. 3. Helmholtz free energy F(u) = 0.25(u2
− 1)2.

which is used primarily in mathematics and physics and is a special case of the convection–diffusion equation when
bulk velocity is zero. The diffusion equation is derived from the following energy functional:

ED(u(x, t)) =

6∑
k=1

∫
Ωk

|∇u(x, t)|2

2
dx.

. Numerical solution algorithm

We describe the proposed numerical solution algorithm to solve the AC equation (2) on the unfolded unit cubic
urface domain. We unfold the unit cubic surface domain into a planar surface and discretize it as shown in Fig. 4.

We define index sets for discretization as

I d
1 = {(i, j) | i = 1, 2, . . . , N , j = 1, 2 . . . , N },

I d
2 = {(i, j) | i = 1, 2 . . . , N , j = N + 1, N + 2, . . . , 2N },

I d
3 = {(i, j) | i = N + 1, N + 2, . . . , 2N , j = N + 1, N + 2, . . . , 2N },

I d
4 = {(i, j) | i = 2N + 1, 2N + 2, . . . , 3N , j = N + 1, N + 2, . . . , 2N },

I d
5 = {(i, j) | i = 3N + 1, 3N + 2, . . . , 4N , j = N + 1, N + 2, . . . , 2N },

I d
6 = {(i, j) | i = 1, 2, . . . , N , j = 2N + 1, 2N + 2, . . . , 3N },

d 6 d
I = ∪k=1 Ik .
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Fig. 4. Schematic of unfolded computational discrete domain Ωd .

Additionally, for each Ωk , k = 1, . . . , 6, we discretize it as follows:

Ωd
k = {(xi , y j ) | (i, j) ∈ Ik}, for k = 1, 2, . . . , 6, (4)

here xi = (i − 0.5)h, y j = ( j − 0.5)h, h = 1/N is the uniform space step size, and N is a positive integer.
et un

i j be the numerical approximation of u(xi , y j , n∆t), where ∆t is the time step, Ωd
= ∪

6
k=1Ω

d
k is the discrete

nfolded computational domain, and Γi j is denoted as the interface between the domains Ωi and Ω j .
The method is based on an operator splitting method, which is to split the original problem into a sequence of

impler problems. We first denote by L the exact solution operator associated with the linear equation

L : ut = ∆u. (5)

hen, we denote by N the exact solution operator associated with the nonlinear equation

N : ut = −
u3

− u
ϵ2 . (6)

herefore, the solution of AC equation (2) from t to t + ∆t can be evolved in time in two sub-steps:

u(x, t + ∆t) = (N (∆t) ◦ L(∆t)) (u(x, t)) + O((∆t)2).

e use a method that solves linear terms with the explicit Euler’s method and analytically solves the nonlinear
erms. We solve the AC equation on Ωd in two steps. Here, we use the discrete Laplace operator defined by

hun
i j = (un

i+1, j + un
i−1, j + un

i, j+1 + un
i, j−1 − 4un

i j )/h2, and the exact solution operators L and N are replaced by
heir numerical approximations Lh and Nh , respectively. As a first step, we solve Eq. (5) by applying the explicit
uler’s method. That is, for (i, j) ∈ I d ,

u∗

i j − un
i j

∆t
= ∆hun

i j =
un

i+1, j + un
i−1, j + un

i, j+1 + un
i, j−1 − 4un

i j

h2 . (7)

f we rewrite Eq. (7), then we have

Lh : u∗
= un

+
∆t (

un
+ un

+ un
+ un

− 4un ) . (8)
i j i j h2 i+1, j i−1, j i, j+1 i, j−1 i j
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Fig. 5. Schematic diagram of hypothetical domains for domain Ωd
3 .

For the purpose of clarity, we consider only one sub-domain Ωd
3 . The appropriate boundary condition, which is

the main focus of the proposed method, assume that Ω6 and Ω1, rotated 270 and 90 degrees counterclockwise,
are above and below Ω3, respectively, as shown in Fig. 5. The left and right boundary conditions are well defined
by the discrete unfolded computational domain Ωd . Therefore, only the upper and lower boundary conditions are
onsidered. Then, by assumption, the boundary condition of the discrete domain Ωd

3 is as follows.

un
N+i,N = un

N ,N+1−m, un
N+m,2N+1 = un

N ,2N+m, m = 1, . . . , N ,

Similarly, appropriate boundary conditions are applied for all discrete domains Ωd
k , k = 1, 2, 4, 5, 6 as follows:

For Ωd
1 , for m = 1, . . . , N ,

u0,m = u3N+m,N+1, um,0 = u3N+1−m,N+1, uN+1,m = u2N+1−m,N+1,

For Ωd
2 , for m = 1, . . . , N ,

u0,N+m = u4N ,N+m,

For Ωd
4 , for m = 1, . . . , N ,

u2N+m,N = uN+1−m,1, u2N+m,2N+1 = uN+1−m,3N ,

For Ωd
5 , for m = 1, . . . , N ,

u3N+m,N = u1,m, u3N+m,2N+1 = u1,3N+1−m, u4N+1,N+m = u1,N+m,

For Ωd
6 , for m = 1, . . . , N ,

u0,2N+m = u4N+1−m,2N , um,3N+1 = u3N+1−m,2N , uN+1,2N+m = uN+m,2N .

As a next step, for (i, j) ∈ I d , Eq. (6) is solved analytically with the initial condition u∗

i j and the solution un+1
i j

is given by

Nh : un+1
i j =

u∗

i j√
e

−2∆t
ϵ2 + (u∗

i j )2

(
1 − e

−2∆t
ϵ2

) . (9)

n summary, an explicit operator splitting method for the AC equation (2) is proposed as follows.⎧⎪⎪⎪⎨⎪⎪⎪⎩
u∗

i j = un
i j +

∆t
h2

(
un

i+1, j + un
i−1, j + un

i, j+1 + un
i, j−1 − 4un

i j

)
,

un+1
i j =

u∗
i j√e

−2∆t
ϵ2

+(u∗
i j )2

(
1−e

−2∆t
ϵ2

) .
343



Y. Hwang, J. Yang, G. Lee et al. Mathematics and Computers in Simulation 215 (2024) 338–356

t

s

C

4. Numerical analysis

4.1. The discrete maximum principle

In this section, we will show that the proposed method preserves the discrete maximum principle. We consider
he discrete maximum principle for the proposed method and the maximum norm ∥ · ∥∞ is defined as

∥un
∥∞ = max

(i, j)∈I d
|un

i j |.

Theorem 1. The proposed method satisfies the maximum principle in the sense that for all ∆t > 0 and h > 0
that satisfy ∆t/h2

≤ 1/4, that is, it holds

∥un+1
∥∞ ≤ 1

with a condition ∥un
∥∞ ≤ 1.

Proof. Let α = ∆t/h2. If α ≤ 1/4, then we obtain the following inequality for all (i, j) ∈ I d by Eq. (8).

|u∗

i j | = |un
i j + α

(
un

i+1, j + un
i−1, j + un

i, j+1 + un
i, j−1 − 4un

i j

)
|

≤ α|un
i+1, j | + α|un

i−1, j | + α|un
i, j+1| + α|un

i, j−1| + (1 − 4α)|un
i j |

≤ ∥un
∥∞, (10)

where we have used the following fact: For (i + 1, j) /∈ I d , there exists (l, m) ∈ I d such that un
lm = un

i+1, j from the
boundary condition. Therefore, |un

i+1, j | = |un
lm | ≤ ∥un

∥∞. The other cases (i − 1, j), (i, j + 1), (i, j − 1) /∈ I d are
imilarly defined. From Eq. (10), we have

∥u∗
∥∞ ≤ ∥un

∥∞ ≤ 1. (11)

onsidering the initial condition, the following inequality is satisfied for all (i, j) ∈ I d .

e
−2∆t

ϵ2 + (u∗

i j )
2
(

1 − e
−2∆t

ϵ2

)
=

(
1 −

(
u∗

i j

)2
)

e
−2∆t

ϵ2 +
(
u∗

i j

)2
≥
(
u∗

i j

)2
.

Consequently, we obtain√
e

−2∆t
ϵ2 + (u∗

i j )2

(
1 − e

−2∆t
ϵ2

)
≥ |u∗

i j |,

and thus it follows that

|un+1
i j | =

|u∗

i j |√
e

−2∆t
ϵ2 + (u∗

i j )2

(
1 − e

−2∆t
ϵ2

) ≤ 1.

That is, it means that the following inequality is satisfied.

∥un+1
∥∞ ≤ 1.

Therefore, for all ∆t and h that satisfies α ≤ 1/4, the following inequality is satisfied.

∥un+1
∥∞ ≤ 1.

This means that the numerical method satisfies the discrete maximum principle property and is stable. □

4.2. Error estimate

Let C be a generic constant independent ∆t and h. We define the discrete L2-norm on Ωd as follows:

∥u∥2 =

√ 1
6N

∑
(i, j)∈I d

u2
i j .
344
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Theorem 2. If α ≤ 1/4, then for all n = 1, 2, . . . ,

∥ũn+1
i j − un+1

i j ∥2 ≤ C
(
∆t + h2) .

Proof. For n ≥ 0, we obtain by Eq. (8)

L(un
i j ) = Lh(un

i j ) + O
(
∆t + h2)

= u∗

i j + O
(
∆t + h2) . (12)

Then, by Eq. (9), we have

(Nh(u∗

i j ))
2

=
(u∗

i j )
2

e
−2∆t

ϵ2 + (u∗

i j )2

(
1 − e

−2∆t
ϵ2

) ≤
(u∗

i j )
2

e
−2∆t

ϵ2
= e

2∆t
ϵ2 (u∗

i j )
2. (13)

e obtain the following inequality:

∥ũn+1
i j − un+1

i j ∥2 = ∥ (N ◦ L) (un
i j ) − (Nh ◦ Lh) (un

i j )∥2

≤ ∥ (N ◦ L) (un
i j ) − (Nh ◦ L) (un

i j )∥2 + ∥ (Nh ◦ L) (un
i j ) − (Nh ◦ Lh) (un

i j )∥2

= ∥ (Nh ◦ L) (un
i j ) − (Nh ◦ Lh) (un

i j )∥2.

The last step is due to the fact that Nh is solved analytically, resulting in Nh = N . Using Eq. (13), we obtain

∥ũn+1
i j − un+1

i j ∥2 ≤ e
∆t
ϵ2 ∥L(un

i j ) − Lh(un
i j )∥2.

By Eq. (12), the following inequality is satisfied.

∥ũn+1
i j − un+1

i j ∥2 ≤ e
∆t
ϵ2 O(∆t + h2) ≤ e

T
ϵ2 O(∆t + h2).

hat is, the following inequality holds.

∥ũn+1
i j − un+1

i j ∥2 ≤ C
(
∆t + h2) . □

heorem 3. Suppose that the exact solution ûn+1 is smooth and the initial value is smooth and bounded by 1. If
≤ 1/4, then for all n = 1, 2, . . . ,

∥ûn+1
i j − un+1

i j ∥2 ≤ C
(
∆t + h2) .

roof. For n ≥ 0, we have

∥ûn+1
i j − un+1

i j ∥2 ≤ ∥ûn+1
i j − ũn+1

i j ∥2 + ∥ũn+1
i j − un+1

i j ∥2. (14)

he first term on the right-hand side of the above inequality is bounded by

∥ûn+1
i j − ũn+1

i j ∥2 ≤ C1∆t.

hen, by Theorem 2, we obtain the following inequality for the second term

∥ũn+1
i j − un+1

i j ∥2 ≤ C2
(
∆t + h2) .

herefore, inequality (14) satisfies

∥ûn+1
i j − un+1

i j ∥2 ≤ C
(
∆t + h2) ,

where C = max{C1, C2} is a generic constant independent of ∆t and h. □

5. Numerical experiments

In this section, various numerical tests are performed to validate our proposed method. The proposed method is

based on the operator splitting method. Thus, we consider each step for Eqs. (5) and (6). We define the discrete
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W
t

5

c

total energy for the diffusion equation, the discrete maximum value, and the discrete minimum value as

ED
h (un) =

h2

4

⎡⎣ 3N∑
j=1

((un
1, j − un

0, j

h

)2

+ 2
N−1∑
i=1

(un
i+1, j − un

i j

h

)2

+

(un
N+1, j − un

N , j

h

)2)

+

N∑
i=1

((
un

i,1 − un
i,0

h

)2

+ 2
3N−1∑

j=1

(un
i, j+1 − un

i j

h

)2

+

(
un

i,3N+1 − un
i,3N

h

)2)

+

2N∑
j=N+1

((un
N+1, j − un

N , j

h

)2

+ 2
4N−1∑

i=N+1

(un
i+1, j − un

i j

h

)2

+

(un
4N+1, j − un

4N , j

h

)2)

+

4N∑
i=N+1

((
un

i,N+1 − un
i,N

h

)2

+ 2
2N−1∑
j=N+1

(un
i, j+1 − un

i j

h

)2

+

(
un

i,2N+1 − un
i,2N

h

)2)⎤⎦ ,

Max(un) = max
(i, j)∈I d

un
i j , Min(un) = min

(i, j)∈I d
un

i j .

The discrete total energy for the diffusion equation by boundary conditions is then rewritten as:

ED
h (un) =

1
2

⎡⎣ 3N∑
j=1

N−1∑
i=1

(
un

i+1, j − un
i j

)2
+

2N∑
j=N+1

4N∑
i=N

(
un

i+1, j − un
i j

)2

+

3N−1∑
j=1

N∑
i=1

(
un

i, j+1 − un
i j

)2
+

2N∑
j=N

4N∑
i=N+1

(
un

i, j+1 − un
i j

)2

⎤⎦ .

In addition, normalized discrete total energy is defined as Eh(un)/Eh(u0). Then, we define the discrete total energy
of the nonlinear term of the AC equation as follows:

EN
h (un) =

h2

4ϵ2

∑
(i, j)∈I d

[
(un

i j )
2
− 1

]2
. (15)

Therefore, we obtain the discrete total energy of AC equation.

E AC
h (un) = EN

h (un) + ED
h (un). (16)

In Section 5.1, we consider the diffusion equation (3) as the linear term of the AC equation. Furthermore, we
consider the AC equation (2) in Section 5.2.

5.1. Diffusion equation

The discretization of the diffusion equation (5) using the explicit Euler’s method is Eq. (7) with un+1
i j = u∗

i j on
Ωd .

un+1
i j − un

i j

∆t
=

un
i+1, j + un

i−1, j + un
i, j+1 + un

i, j−1 − 4un
i j

h2 . (17)

e perform numerical experiments to observe the appropriate boundary conditions, which is an important point of
he proposed method.

.1.1. Convergence test
We verify the consistency between the numerical and exact solutions by considering the following initial

ondition in the domain Ω :

u(x, y, 0) = β cos(2πx) cos(2πy). (18)
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Table 1
L2-norms of numerical error for different space steps and the corresponding rate of convergence.

h 1/32 1/64 1/128 1/256 1/512 1/1024

L2-norm 4.908e−5 1.217e−5 2.901e−6 7.333e−7 1.830e−7 4.579e−8
Rate 2.01 2.07 1.98 2.00 2.00

Fig. 6. The initial condition with h = 1/64 and a snapshot of numerical solutions. (a) Initial condition on the unfolded cubic surface, (b)
Initial condition on the cubic surface, (c) t = 50∆t , (d) t = 150∆t , (e) t = 300∆t .

The exact solution is given as

uexact (x, y, t) = β cos(2πx) cos(2πy)e−8βπ2t .

ere, different space steps h = 1/32, 1/64, 1/128, 1/256, 1/512, 1/1024, time step ∆t = 0.25h2, and amplitude
= 0.2 are used. We define the numerical error with a space step h on Ωd as eh

i j = uNt
i j − u(xi , y j , T ), where T

s the final time and Nt = T/∆t . The L2-norm of the numerical error is then given by

∥eh
∥2 =

√ 1
6N 2

∑
(i, j)∈I d

(eh
i j )2,

he rate of convergence is calculated as log2(∥eh
∥2/∥eh/2

∥2). Table 1 lists the discrete L2-norms of numerical error
nd rate of convergence at T = 0.001. We observe that the numerical solutions solved by the proposed method
or different space steps are second-order accurate. This implies that the scheme is first-order accurate in time and
econd-order accurate in space.

Fig. 6(a) shows the initial condition given by Eq. (18) with space step h = 1/64. Figs. 6(b)–6(e) show snapshots
f the numerical solutions on the cubic surface at t = 0, 50∆t , 150∆t , 300∆t , respectively. By calculating the
iscrete diffusion equation for the initial condition, it can be observed that the properties of the diffusion equation
re satisfied.

.1.2. Numerical solutions for various initial conditions
We perform numerical simulations to verify that the proposed algorithm is an appropriate boundary condition.

e consider three cases for the initial condition. In the first and second tests, we consider a simple initial conditions
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Fig. 7. The initial condition and a snapshot of numerical solutions. (a) Initial condition on the unfolded cubic surface, (b) Initial condition
on the cubic surface, (c) t = 100∆t , (d) t = 200∆t , (e) t = 300∆t .

and use the same parameters h = 1/64, ∆t = 0.25h2, and T = 300∆t . Fig. 7 shows the results of the numerical
simulation when the initial condition u(xi , y j , 0) = 0.1k in the square region on each domain Ωd

k , k = 1, 2, . . . , 6.
igs. 7(c)–7(e) show the results at time t = 100∆t , t = 200∆t , t = 300∆t . We observe that the numerical solution
n each domain Ωd

k , k = 1, 2, . . . , 6 diffuses faster or slower depending on k, while simultaneously affecting the
umerical solutions in other Ωd

l where l ̸= k.
The second simulation considers the case where a connected phase field exists on two or more Ωk , k =

, 2, . . . , 6, and this is an initial condition to verify whether the boundary conditions of the proposed method are
ppropriate. Figs. 8(a) and 8(b) show the initial condition on the unfolded cubic surface and the initial condition on
he cubic surface, respectively. Figs. 8(c)–8(e) show the snapshot of the numerical solution on the cubic surface at
imes t = 50∆t , 150∆t , and 300∆t , respectively. The results demonstrate that the proposed algorithm accurately
erforms calculations near each edge through the implementation of appropriate boundary conditions.

The third initial condition is a random perturbation as u(x, y, 0) = rand(x, y). Here, rand (x, y) is a random value
etween −1 and 1. The parameters used for this simulation are N = 64, h = 1/N , ∆t = 0.01h2, and T = 120∆t .
or the diffusion equation, both the total free energy function and the maximum value of the solution decrease.

In Fig. 9, the left column and right column show the numerical solution for the unfolded cubic surface and 10
ontours of the numerical solution on the cubic surface, respectively. Figs. 9(a)–9(d) show the numerical solution
n the unfolded and the cubic surface at times t = 0, 40∆t, 80∆t , and 120∆t , respectively. Here, we demonstrate
hat the numerical solution gradually diffuses and becomes uniform. Therefore, we can observe that the boundary
onditions in each domain Ωd

k , k = 1, . . . , 6 are satisfied and the numerical solutions of the interface between
ifferent domains appeared naturally. In Fig. 10, we solve for Eq. (3) using the proposed method and observe that
he total energy decreases and the discrete maximum principle is satisfied.

.2. The Allen–Cahn equation

In this section, we confirm that the proposed method accurately solves the AC equation for a cubic surface
omain and investigate the dynamics and properties of the AC equation.
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Fig. 8. The initial condition and the numerical solutions with t = 0, 50∆t, 150∆t, 300∆t .

.2.1. Properties of the AC equation
The AC equation satisfies the total energy decreasing property and the maximum principle [16]. We perform

umerical experiments to verify that the total energy decreasing property and the maximum principle of the
C equation are satisfied for the random initial condition u(x, y, 0) =rand(x, y) with the following parameters:

N = 128, h = 1/N , ∆t = 0.2h2, T = 500∆t , and ϵ = ϵ8. Here, we consider the interface parameter
m = mh/(2

√
2 tanh−1(0.9)), which means setting m grid points behavior on the interface. Fig. 11(a) shows the

initial condition on the unfolded cubic surface and the cubic surface. In Fig. 11, each row from top to bottom
represents the numerical solution for Eq. (2). Figs. 11(b)–11(d) show the results at the times 100∆t , 150∆t , and

00∆t , respectively. In Fig. 12, we observe that the discrete AC equation solved by the proposed method satisfies
he discrete total energy decreasing property and maximum principle.

.2.2. Motion by mean curvature
In 2D space, the normal velocity of circular interface satisfies the following geometric law [27].

V = −κ = −
1
R

,

here V is the velocity, κ is the curvature, and R is the radius. If R0 is the initial radius, the analytic solution can
e expressed as R(t) =

√
R2

0 − 2t . To verify the proposed method, we consider the following initial condition on
Ωd .

u1(xi , y j , 0) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
tanh

(
r1−

√
x2

i +(y j −2)2
√

2ϵ

)
, (xi , y j ) ∈ Ωd

2 ∪ Ωd
6 ,

tanh
(

r1−

√
(xi −4)2+(y j −2)2

√
2ϵ

)
, (xi , y j ) ∈ Ωd

5 ,

u2(xi , y j , 0) =

{
tanh

(
r2−

√
(xi −0.5)2+(y j −2.5)2

√
2ϵ

)
, (xi , y j ) ∈ Ωd

6 ,

u3(xi , y j , 0) =

{
tanh

(
r3−

√
(xi −0.5)2+(y j −2)2

√

)
, (xi , y j ) ∈ Ωd

6
2ϵ
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Fig. 9. The initial condition and numerical solutions at the time t = 40∆t, 80∆t, 120∆t . Each row (a)–(d) is the result at time
t = 0, 40∆t, 80∆t, 120∆t , respectively.

where r1, r2, and r3 are the initial radii. We used the parameters r1 = 0.5, r2 = 0.45, r3 = 0.4, N = 128, h = 1/N ,
∆t = 0.2h2, T = 10000∆t , and ϵ = ϵ8. The initial conditions are depicted in Fig. 13(a). Fig. 13(b) shows snapshots

of the zero-contour levels of the numerical solutions for the initial conditions u1, u2, and u3, displayed from left to
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Fig. 10. The normalized discrete total energy, maximum, and minimum values.

right, respectively. Fig. 13(c) shows the temporal evolution of the analytic and numerical radii over time t . From
he results shown in Fig. 13, we observed that the numerical solutions for the AC equation, obtained using the
roposed method, satisfy the motion by mean curvature.

To confirm the flow of AC equation (2) on the global cubic surface, we set the initial condition as follows:

u(xi , y j , 0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tanh
(

r−

√
(xi −0.5)2+(y j −2.5)2

√
2ϵ

)
, (xi , y j ) ∈ Ωd

2 ∪ Ωd
6 ,

tanh
(

r−

√
(xi −1.5)2+(y j −2.5)2

√
2ϵ

)
, (xi , y j ) ∈ Ωd

3 ,

tanh
(

r−

√
(xi −2.5)2+(y j −2.5)2

√
2ϵ

)
, (xi , y j ) ∈ Ωd

4 ,

tanh
(

r−

√
(xi −3.5)2+(y j −2.5)2

√
2ϵ

)
, (xi , y j ) ∈ Ωd

5 .

We used the parameters N = 128, h = 1/N , ∆t = 0.2h2, T = 17000∆t , and ϵ = ϵ8. In Fig. 14, we consider
two different initial conditions with radii r = 0.65 and r = 1. The initial conditions are depicted in Fig. 14(a).
Fig. 14(b) shows snapshots or zero-contour levels of the numerical solutions for r = 0.65 and r = 1 from left
to right. On the cubic surface, the solution of the AC equation locally follows the mean curve flow but exhibits a
distinct dynamic globally.

5.2.3. Numerical solution for initial conditions
The initial condition to be considered first is given by:

u(xi , y j , 0) =

{
1 if y j > 0.3 sin(2πxi ) + 1.5
−1 otherwise,

(xi , y j ) ∈ Ωd ,

which is shown in Fig. 15(a). We use the parameters N = 128, h = 1/N , ϵ = ϵ8, ∆t = 0.2h2, and T = 10000∆t .
igs. 13(b), 13(c), and 13(d) show the numerical solutions on the cubic surface at t = 1000∆t , 2000∆t , and
0000∆t , respectively. We observed that the numerical solution at t = 10000∆t approximates the equilibrium
olution.

Next, we consider the following two initial conditions to investigate the behavior of a traveling wave.

u4(xi , y j , 0) =

{
1 if

√
(xi − 0.4)2 + (y j − 2.2)2 < 0.2

0 otherwise,
(xi , y j ) ∈ Ωd ,

u5(xi , y j , 0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if
√

(xi − 0.4)2 + (y j − 2.3)2 < 0.1
1 if

√
(xi − 0.6)2 + (y j − 1.7)2 < 0.05

1 if
√

(xi − 2.6)2 + (y j − 1.3)2 < 0.2
1 if

√
(xi − 3.2)2 + (y j − 1.7)2 < 0.05

1 if
√

(xi − 0.7)2 + (y j − 0.5)2 < 0.05

(xi , y j ) ∈ Ωd ,
0 otherwise,
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Fig. 11. The initial condition and numerical solutions at the time t = 100∆t, 150∆t, 500∆t .

Figs. 16(a) and 16(b) show the numerical solutions for the initial conditions u4 and u5, respectively. For the
numerical experiment, we used the parameters N = 128, h = 1/N , ϵ = ϵ8, ∆t = 0.2h2, and T = 800∆t .

ig. 16 shows the temporal evolution of the dynamics for the AC equation. From left to right, we show the results
t the times t = 200∆t, 500∆t, 800∆t . In order to observe the traveling wave, the AC equation is solved using
he proposed method with the given initial conditions. We observed the motion of the transition layer in the results
f the numerical experiments.
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Fig. 12. The normalized discrete total energy and maximum norm of numerical solution for the AC equation.

Fig. 13. Motion by mean curvature with AC equation. (a) The initial conditions u1, u2, and u3 on the cubic surface domain. (b) Snapshot
of the zero-level contour of numerical solutions at the time t = 0, 1000∆t , . . . , and 10000∆t . (c) Temporal evolution of the radii.

6. Conclusions

We presented FDM for solving the AC equation on cubic surfaces. In order to solving the AC equation on the
cubic surface, firstly, the cubic surface in 3D space was expanded into six planar sub-domains with appropriate
boundary conditions in 2D space. Next, FDM was applied to the planar sub-domain. We solved the AC equation
by splitting it into a linear term and a nonlinear term using the operator splitting method. We verified that the
boundary condition of the proposed method is an appropriate boundary condition on the cubic surface through
numerical experiments on the diffusion equation, which is the linear term of the AC equation. Through numerical

experiments on the proposed method, we observed the properties of the AC equation on the cubic surface domain in
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Fig. 14. Dynamics of AC equation on the cubic surface. (a) The initial conditions with r = 0.65 and r = 1 on the cubic surface domain.
(b) Snapshot of the zero-level contour of numerical solutions at the time t = 0, 1000∆t , . . . , and 17000∆t .

Fig. 15. Temporal evolution of the dynamics of the AC equation.

Fig. 16. The initial condition and numerical solutions for the two initial conditions (a) u1. (b) u2 at the time t = 200∆t, 500∆t, 800∆t
from left to right.
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3D. The AC equation on the cubic surface domain solved by the proposed method showed different characteristics
than on the planar domain in 2D space. We conducted a theoretical analysis on the discrete maximum principle and
error of the proposed method and verified it through numerical experiments. Additionally, the discrete energy decay
was verified through numerical experiments. The energy dissipation analysis for the operator splitting method is a
non-trivial problem. As future work, we plan to analyze the energy decreasing properties of the operator splitting
method. In this paper, we focused on validating a numerical method and considering appropriate boundaries to
solve cubic surfaces in 2D space. In future studies, the proposed method will be combined with various numerical
methods such as the implicit Euler method, Crank–Nicolson method, and multigrid method to efficiently solve the
AC equation and the reaction–diffusion equation on the cubic surfaces.
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