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A B S T R A C T

In this study, we present a practical volume-merging method for generating multiple-sized
porous structures that exhibit geometries with triply periodic minimal surface (TPMS) lattice
structures. The proposed method consists of three stages: (1) designing the physical models
with a signed distance field, (2) performing a merging operation for the porous scaffolds, and
(3) assembling different units into a composite structure. The significant advantages of the
proposed algorithm can be summarized as follows: Our method is independent of the model
shape; the designed structures maintain a smooth surface with a constant mean curvature,
and the mathematical computational complexity is low. We can join two different-sized triply
periodic minimal surface lattices in the radial direction, where the transition region is obtained
by smooth interpolation between the two lattice structures with different cell sizes or types.
However, constructing large-sized models is only conceptually possible due to computational
cost and memory storage constraints. To overcome these limitations, we present a practical
method that can efficiently assemble large-scaled models at a low computational cost. The
proposed method is based on a Boolean union operation of basic units of TPMS. Thus, it is simple
to generate large-scale three-dimensional multiple-sized porous volumes based on our proposed
method, which can be applied to many applications in mechanical and electrical engineering.
The produced multi-scale compound scaffolds have smooth surfaces without fractures, making
them suitable for straightforward application in additive manufacturing. Several numerical tests
are conducted to validate the efficiency of the proposed algorithm.

1. Introduction

The exploration of porous scaffolds has garnered extensive attention in both science and industry due to its significance in a wide
range of engineering applications. It plays a key role in tissue engineering [16,54,63], heat transfer using metal foams [3,39,48], flow
in porous media [26,50], high permeability structures [4,34], and structure optimization in membrane distillation [14,40,52]. The
cellular architectures designed by triply periodic minimal surfaces (TPMS) demonstrate a significant and consistent association with
the target digital model [9,12]. Callens et al. [7] reviewed the response of cells and tissues to substrate curvature, providing a clear
framework to describe cell and tissue-level curvature guidance. Three-dimensional porous scaffolds based on TPMS structures for
bone tissue regeneration can be optimized to satisfy biological [47], mechanical, and mass transfer characteristics [5]. Zhianmanesh
et al. [62] designed TPMS-based scaffolds for fluid permeability analysis. Qureshi et al. [36] demonstrated the excellent potential of
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TPMS-based phase change materials in latent thermal energy storage systems. Their results indicated a significant increase in thermal
conductivity when TPMS-type cell structures were used, with the dominant impactors being the cell lattice type, their architectures,
and porosity. While existing studies have successfully demonstrated the universality of TPMS lattice architectures, they have certain
limitations concerning the following advantages: (i) the automatic control of physical indicators, such as volume fraction [10,42],
structure and bulk pore size [55], and surface curvature [44]; (ii) the grading technique of cell size [2] and lattice type [58]; (iii)
maximizing the transmission flux, such as energy absorption [41] and heat transfer [37]; and (iv) maintaining good fluid dynamic
contexts, such as tortuosity [17,51], constant mean curvature [21,32], and permeability [8], while improving the lattice structure’s
strength.

TPMS lattices exhibit various features with controlled size and shape of the pores by varying manufacturing process parame-
ers [49,61]. However, designing appropriate TPMS-based scaffolds remains challenging due to specific practical requirements [18].
eanwhile, voxel-based [1] porous scaffolds should be combined with numerical algorithms [11], relaxing the freedom of choosing
PMS structures without losing adaptability. This technique of incorporating TPMS-based structural design into numerical algorithms

s heuristic, attracting extensive attention to distinctive categories of integrated optimization algorithms. Fractal geometry plays
ey roles in biological and climatical modeling, representing complex geometric shapes that exhibit self-similarity across different
cales. Saw and Chew [38] formulated the helicaliser using self-similar circular fractals, deriving the Hausdorff dimension for
elicalised straight lines and circles. Perinelli et al. [33] studied the Takens estimator to characterize fractal geometry on a sphere,
roviding analysis regarding fractal geometries in seismology. Multi-scale topology optimization involves considering and optimizing
tructures at various resolutions or scales within a single design framework, aiming to achieve an optimal balance between global
erformance and local details. Garner et al. [15] presented a multiscale method for topology optimization of microstructures,
ncluding functionally graded materials and multiscale structures. Their method has been extended to comprehensively consider
haracteristics such as length gradient and isotropy, performing compound formulations for various physical problems such as
onductivity and maximizing bulk modulus in a series of extensive studies [45,46]. Yu et al. [56] proposed a multiscale topology
ptimization method under the phase field framework, adopting a multi-regional microstructure composite design algorithm to
alance the objective and various constraints. During their design process, the final distribution of TPMS-based microstructures
aintained excellent physical properties for the macrostructure. A porous scaffold refers to a three-dimensional structure with voids

r pores distributed throughout its volume, intentionally designed to allow the infiltration of fluids, cells, or other substances. Li
t al. [25] proposed an approach that combines the TPMS-based algorithm and a random strategy to control the average pore size in
he hexahedral mesh. By mapping the TPMS pores into the hexahedral mesh through a shape function, the porous scaffolds have more
reedom and flexibility, making them useful for fabrication using additive manufacturing technologies. To combine computational
eatures with the structure size of the unit TPMS structure and reduce the design complexity of porous scaffolds in the design process,
e construct an efficient numerical approach that addresses the limitations of the theoretical design space.

Digital models in physical scenarios are composed of a large amount of data, typically consisting of triangles connected at the
ertices [60]. For complex operating conditions, files with uniform specifications should be used. The challenge of combining multi-
evel design of digital models with limited storage space and simple computational operations has garnered particular attention in
ecent decades. Navangul et al. [30] developed an algorithm for selectively modifying stereolithography (STL) files to achieve the
equired tolerances specified on part features. In their design process, defective parts were eliminated to reduce material expenditure
ithin the additive manufacturing framework. Zha and Anand [57] presented a numerical approach for densifying STL facets to
irtually build the product with new patterns of facet formation. Their method can adaptively modify the corresponding triangles
n an STL model without unnecessarily increasing storage requirements. To overcome the drawbacks of existing STL modifying
trategies [35,53,59], our aim is to create an integrated approach based on a common type. This approach merges directly from a
oint cloud without additional overhead to complete the final block of our system.

In this paper, we present a practical volume-merging method for generating porous structures using triply periodic minimal
urface (TPMS) lattice structures. This method is employed to determine the actual admissible design spaces with respect to
daptive interpolation. The proposed algorithm consists of three steps. The first step involves the design of the physical model
sing partial differential equation constraints. The second step is the merging operation with target structures, which can have
ifferent structure sizes, pore sizes, volume fractions, and lattice types. The third step involves combining the surface-only digital
odel with the designed porous scaffolds, achieved by the simple juxtaposition of vertices and oriented triangular meshes of the

ranslated basic units. Boolean operations are applied before constructing the stereolithography format, obtained by creating total
ertices and oriented triangular meshes in the stereolithography file format. This work aims to establish an integrated system, a
ractical extension of the work of Li et al. [24], where they proposed a TPMS-based volume-merging method. Our proposed method
ligns with the logic of digital model by CAD design. This study addresses several issues: a designed procedure for arbitrary digital
odels has been developed to construct porous scaffolds with TPMS structures as the basic lattice. Our method is independent of the

omplex shapes of the target model. The compound structure obtained by the proposed method does not lose the characteristics of
he TPMS. The proposed method has low computational complexity with less memory for storing the reconstruction of the surface
esh. Thus, it is simple to generate large-scale 3D porous volumes based on our method. The produced multiscale compound

caffolds have smooth surfaces with constant mean curvature, making them suitable for additive manufacturing. Compared to our
revious studies [21,24], the novelties of the proposed model in this study can be summarized as follows: (i) This paper provides a
olution for adaptive sizing design in lightweight porous scaffold for large-scale models. From the division of physical fields to the
ptimization of porous structures, and finally culminating in the establishment of the modified model, it constitutes a comprehensive
nd integrated process. (ii) The proposed method operates within a universal framework, not limited by physical properties such as
482

PMS structure types, sizes, and porosities. (iii) The formulation of the proposed method facilitates the maximization of structural
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connectivity within the multi-scale framework while simultaneously ensuring consistent curvature. Various numerical simulations
were presented to investigate the robustness of the proposed method.

This article is composed as follows. Section 2 introduces the signed distance field, triply periodic constant mean curvature surface
tructures and the combination strategy. Section 3 presents the numerical solution procedure of the porous scaffold design. In
ection 4, we provide the numerical results at different stages of the total procedure to validate the efficiency of our algorithm.
inally, the concluding remarks and summaries of the proposed algorithm are given in Section 5.

. Proposed algorithm

In this section, we expound upon the proposed approach by sequentially introducing the definition of signed distance fields, the
ethods for preserving constant curvature with different scales of unit structures, and the integration schemes between internal
orous structures and shells. By using the physical field (symbolic distance field in this case), our solution enables adaptive
artitioning of specified regions and filling them with porous structures of corresponding sizes and types. This process optimizes the
urvature of composite structures, ensuring constant curvature characteristics while preserving structural connectivity. Furthermore,
ur method integrates shells and porous support structures, providing a comprehensive preparation for the direct implementation
f additive manufacturing.

.1. Signed distance field

Distance fields are widely used in industrial design and additional material manufacturing. A signed distance field contains
nternal characteristics of the model, through which we can control the manufacturing and designing accuracy, structural character-
stics, and material properties at different distance levels. As shown in Fig. 1(b), we divide the whole domain into four sub-domains
epresented as white, cyan, green, and yellow. Let 𝐱 ∈ 𝛺 and denote the closest point to 𝐱 by 𝐗̄ on 𝜕𝛺. Here 𝛺 denotes the target

three-dimensional model for which sign distance partitioning is to be performed. Let 𝜙(𝐱) ∶= 𝑠(𝐱)𝑑(𝐱) be a distance field, where
̄(𝐱) ∶= ‖𝐱 − 𝐗̄‖ and 𝑠(𝐱) ∶= sign

(

(𝐱 − 𝐗̄) ⋅ 𝐍(𝐗̄)
)

, with an outward normal vector 𝐍(𝐗̄) at the boundary point 𝐗̄. We define the
nterior area as a positive value and the exterior zone is a negative value. (𝐱 − 𝐗̄) ⋅ 𝐍(𝐗̄) is the signed distance of 𝐱 to the tangent
lane of 𝐗̄ as shown in Fig. 1(a). If (𝐱 − 𝐗̄) ⋅ 𝐍(𝐗̄) ≈ 0, or 𝐍(𝐗̄) has noise, then 𝑠(𝐱) will also have noise. Therefore, we apply the
ollowing 𝑙0 gradient regularization:

min
𝑠

∑

𝐱∈𝛺
𝑔(𝐱)‖∇𝑠‖0, (1)

here 𝑔(𝐱) = tanh
(

𝑑(𝐱)∕(
√

2𝜉)
)

and 𝜉 is a positive parameter. We need to elucidate the limitations of employing this approach
for the segmentation of signed distance fields. This method exhibits constraints in its universal applicability when used on 2D and
3D objects characterized by continuous boundaries, particularly in scenarios where the objective is to partition such objects into
distinct non-intersecting entities [23,43]. Challenges arise for complex closed surfaces with intricate geometries, primarily due to the
potential existence of multiple intersections and the complexity of determining consistent signed distances. However, it is essential
to note that the discontinuous symbolic distance field does not impede the application of our method to the lightweight scaffold
design problem. In other words, even when employing symbolic distance-based segmentation to decompose a three-dimensional
model into intersecting objects, our method remains capable of discerning and subsequently populating distinct unit structures of
varying sizes [22].

2.2. The merging strategy for the triply periodic surface structures

TPMS is one of the significant structures that has been widely applied as lightweight scaffolds. TPMSs with constant mean
curvature get extensive attention in materials, physics, mathematics, and biologies, as the geometry of TPMSs significantly affects
the physical properties of the material [13,19,20,28,31]. Let us consider an example with the Schwarz P surface, which can be
approximately generated from the following phase-field function:

𝜙(𝑥, 𝑦, 𝑧) = cos(2𝜋𝑥) + cos(2𝜋𝑦) + cos(2𝜋𝑧), (𝑥, 𝑦, 𝑧) ∈ 𝛺 = [0, 1] × [0, 1] × [0, 1]. (2)

The Schwarz P surface is obtained as an isosurface of 𝜙(𝑥, 𝑦, 𝑧) = 𝑐, where 𝑐 is a constant. Let us discretize the unit cubic domain 𝛺
as

𝛺ℎ = {(𝑥𝑖, 𝑦𝑗 , 𝑧𝑘)|𝑥𝑖 = ℎ𝑥𝑖, 𝑦𝑗 = ℎ𝑦𝑗, 𝑧𝑘 = ℎ𝑧𝑘, 𝑖 ∈ {0, 1,… , 𝑁𝑥}, 𝑗 ∈ {0, 1,… , 𝑁𝑦}, 𝑘 ∈ {0, 1,… , 𝑁𝑧}},

where ℎ𝑥 = 1∕𝑁𝑥, ℎ𝑦 = 1∕𝑁𝑦, and ℎ𝑧 = 1∕𝑁𝑧 denote the grid sizes along distinct axis directions. We will use 𝜙𝑖𝑗𝑘 = 𝜙(𝑥𝑖, 𝑦𝑗 , 𝑧𝑘) for
simplicity. As can be seen in Fig. 2(a), (b), and (c), the results are the isosurfaces of 𝜙 for 𝑐 = −0.5, 0, and 0.5, respectively.

Let us consider the interpolating method for connecting two kinds of TPMS structures with different cell sizes [24], which will
be illustrated using two Schwarz P surfaces as examples. We consider a larger P surface within the range [0, 2] × [0, 2] × [1, 3], as
shown in the top of Fig. 3(a) and four smaller P surfaces within the range [0, 1] × [0, 1] × [0, 1], [0, 1] × [1, 2] × [0, 1], [1, 2] × [0, 1] ×
[0, 1], and [1, 2] × [1, 2] × [0, 1], as shown in the bottom of Fig. 3(a). We extract the 0-level isosurface, which is computed from the
483

volume data 𝜙 at the isosurface value 0, for the above five structures with different cell sizes. To smoothly merge these four small
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Fig. 1. Graphical explanation of signed distance field. (a) is the method to distinguish the external points and internal points of the model in the whole space.
(b) is the contour figure. cyan, green and yellow represents the domain with signed distance [0.5 1], [0.25 0.5] and [0 0.25], respectively. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. (a), (b), and (c) are the isosurfaces of 𝜙(𝑥, 𝑦, 𝑧) for 𝑐 = −0.5, 0, and 0.5, respectively.

Fig. 3. Merging P surfaces of different size: (a) before merging, (b) after interpolation, and (c) merged structure.

bottom P surfaces with the larger top P surface, we modify a pyramid-shaped part of the larger P surface, as shown in Fig. 3(b).
The merged structure is shown in Fig. 3(c).

To clearly explain the merging process of two differently sized P surfaces, we first consider the two-dimensional (2D) structures
as counterparts of the three-dimensional procedure, as shown in Fig. 4. We uniformly discretize the domain, as shown in Fig. 4(a).

By using linear interpolation between a point value of the large P surface (represented by a circle ◦) and a point value of the
smaller P surface (represented by a bullet ∙), we can obtain the interpolated value on the bottom quarter part of the large P surface
(represented by ×), as shown in Fig. 4(b). The shaded area in the figure is the filled contours of the phase-field function. We use
the 2D schematic to illustrate the interpolation method, which can be directly extend to 3D space. A similar process is applied
to the P surfaces in three-dimensional domain, as shown in Fig. 5. In Fig. 5(a), we illustrate the schematic discretization of the
domain, where red circles represent the larger P surface area and blue dots represent the bottom smaller P surfaces. Fig. 5(b) shows
484
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Fig. 4. Schematic illustration of merging two differently sized P surfaces: (a) before merging and (b) interpolation represented by × from two points indicated
by ◦ and ∙ after merging process.

Fig. 5. Schematic of merging differently sized P surfaces in 3D domain: (a) discretization of a pyramid part of the larger P surface in 3D domain, (b) a
magnified view of the interpolation region, (c) the interpolated result; (d) and (e) the results after modifying other one and two directional parts, respectively.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

a magnified view of the interpolation process, which is represented by the green (×) symbol, and the interpolated result is shown
in Fig. 5(c).

Fig. 5(d) and (e) show the results after modifying other one and two directional parts, respectively. It is worth emphasizing that
our merging strategy is an interpolation-based method, which directly targets the point cloud and cannot guarantee the characteristic
of constant mean curvature during the combination with different cell size TPMSs. The merged structure should be polished under
certain restrictive constraints to keep a constant mean curvature. To obtain a smooth surface, we used a modified Allen–Cahn
485
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Fig. 6. Triply period minimal surfaces. (a) The Schwarz Primitive (P), (b) the Schwarz Diamond (D), (c) the Schwarz Gyroid (G), (d) the Schwarz I-WP (I)
surface.

equation [21] as

𝜙𝑡 = −
𝐹 ′(𝜙)
𝜖2

+ 𝛥𝜙 + 𝜆
𝜙(𝜙 − 1)
√

2𝜖
, (3)

where 𝜙 denotes the implicit surface 𝛤 = {𝑥 ∶ 𝜙(𝑥) = 0.5} in a 3D domain, 𝐹 (𝜙) = 0.25𝜙2(1 − 𝜙)2 is the double-well potential and
𝜆 =

√

2 ∫𝛺 𝐹 ′(𝜙) d𝐱∕[𝜖 ∫𝛺 𝜙(𝜙 − 1) d𝐱]. We should emphasize that the porous structure obtained thought this interpolation method
is the initial solution of the Allen–Cahn equation. It is necessary to provide corresponding explanations for certain notations:
𝜖 is a positive parameter relates to the diffuse interface of small thickness, 𝛥 is denoted as the Laplace–Beltrami operator and
𝛥𝜙 is used to delineate the diffusive impact of 𝜙. To construct the triply periodic constant mean curvature surfaces, let the
initial condition 𝜙0 as 𝜙0 = 𝛼 + 𝛽𝑃 by taking an example for P surface. For a given volume 𝑉 = ∫𝛺 𝜙0 d𝐱, by taking integral
of 𝜙0, we can get 𝛼 = (𝑉 − 𝛽 ∫𝛺 𝑃 d𝐱)∕ ∫𝛺 d𝐱. Because 𝜙0 ∈ [0, 1], we have 𝛼 + 𝛽max(𝑃 ) ≤ 1 and 𝛼 + 𝛽min(𝑃 ) ≥ 0. Thus,
𝛽 = min ((1 − 𝛼)∕max(𝑃 ),−𝛼∕min(𝑃 )). There are also three other types of triply periodic minimal surfaces: the Schwarz Diamond (D),
the Schwarz Gyroid (G), and the Schwarz I-WP (I) surfaces. These surfaces can also be the candidates for our merging strategy. It can
be observed that we have generated the merged structures with constant mean curvature and smooth variation between different
sized structures, which has a significant influence on the construction of multi-precision structure system. When considering the
continuity properties of the modified model, it is necessary to note the following clarification: The merged composite structure after
interpolation, as illustrated in Fig. 3, is only 𝐶0 continuous. This implies that the structures involved share an identical position
at the connection point. We achieve the property of curvature conservation for the composite structure by computing Eq. (3). The
resulting modified structure, obtained through calculations with the interpolated composite structure as the initial values, exhibits
𝐶2 continuity. As shown in the bottom row of Fig. 6, the continuous connections between structures with different sizes ensure the
stability of our model. Furthermore, this method can adaptively change the porosity of the structure according to the actual demand
to design the graded porous TPMS scaffolds.

2.3. Combination of two structure formats

When modeling TPMS structures in matlab, each surface data is saved in a structure format with two elements: vertices and
faces, which represent the coordinates and oriented triangulation, respectively. Therefore, when combining two surface structures,
we need to combine two structures into a single structure. Let 𝑉1 and 1 be the coordinate matrix and triangulation matrix of the
first surface structure, and 𝑉2 and 2 be the coordinate matrix and triangulation matrix of the second surface. Assume each matrix
is given as follows:

𝑉1 = [𝑣1,1, 𝑣1,2,… , 𝑣1,𝑝1 ], 1 = [▵1,1,▵1,2,… ,▵1,𝑞1 ], (4)

𝑉2 = [𝑣2,1, 𝑣2,2,… , 𝑣2,𝑝2 ], 2 = [▵2,1,▵2,2,… ,▵1,𝑞2 ], (5)

where 𝑣𝑖,𝑗 is a 3 × 1 vector representing a point’s coordinate and ▵𝑖,𝑗 is a 3 × 1 vector representing a triangulation face. The combined
coordinate matrix 𝑉 is obtained by simply augmenting 𝑉2 after 𝑉1.

𝑉 = [𝑣1, 𝑣2,… , 𝑣𝑝1 , 𝑣𝑝1+1,… , 𝑣𝑝1+𝑝2 ], where 𝑣𝑖 =

{

𝑣1,𝑖, for 1 ≤ 𝑖 ≤ 𝑝1, (6)
486

𝑣2,𝑖−𝑝1 , for 𝑝1 + 1 ≤ 𝑖 ≤ 𝑝1 + 𝑝2.
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Fig. 7. (a) Before merging, (b) after merging, and (c) 3D printed model.

The combined triangulation matrix  is obtained in a similar way using ▵′= {𝑝1, 𝑝1, 𝑝1}𝑇 , where 𝑝1 is the number of points on
the first surface. Adding ▵′ to all elements of 2 and augmenting it after 1 results in

 = [▵1,▵2,… ,▵𝑞1 ,▵𝑞1+1,… ,▵𝑞1+𝑞2 ], where ▵𝑖=

{

▵1,𝑖, for 1 ≤ 𝑖 ≤ 𝑞1,
▵2,𝑖−𝑞1 + ▵′, for 𝑞1 + 1 ≤ 𝑖 ≤ 𝑞1 + 𝑞2.

(7)

The following matlab function code is the core part of the combining algorithm, where input data consists of two surface structures,
and the output data is the combined surface structure.

function ISO = sum_iso(iso1, iso2)
ISO.vertices = [iso1.vertices; iso2.vertices];
ISO.faces = [iso1.faces; iso2.faces+size(iso1.vertices,1)];
end

Let us consider a simple concrete example of merging two tetrahedrons. Assume we have a base surface with the coordinate
matrix 𝑉1 and an oriented triangulation matrix 1 as follows:

𝑉1 =
⎡

⎢

⎢

⎣

−1.5 1.5 0 0
−1 −1 2 0
0 0 0 3

⎤

⎥

⎥

⎦

, 1 =
⎡

⎢

⎢

⎣

1 1 2 3
2 2 3 1
3 4 4 4

⎤

⎥

⎥

⎦

. (8)

The other base surface with the coordinate matrix 𝑉2 and oriented triangulation matrix 2 are given as follows:

𝑉2 =
⎡

⎢

⎢

⎣

0 6 3 3
0 0 5 2
0 0 0 5

⎤

⎥

⎥

⎦

, 2 =
⎡

⎢

⎢

⎣

1 1 2 3
2 2 3 1
3 4 4 4

⎤

⎥

⎥

⎦

. (9)

Fig. 7(a) illustrates the two base tetrahedron structures. Applying the previously described merging algorithm, we get the
combined coordinate matrix 𝑉 and  as

𝑉 =
⎡

⎢

⎢

⎣

−1.5 1.5 0 0 0 6 3 3
−1 −1 2 0 0 0 5 2
0 0 0 3 0 0 0 5

⎤

⎥

⎥

⎦

,  =
⎡

⎢

⎢

⎣

1 1 2 3 5 5 6 7
2 2 3 1 6 6 7 5
3 4 4 4 7 8 8 8

⎤

⎥

⎥

⎦

, (10)

which is shown in Fig. 7(b). Fig. 7(c) shows the 3D printed model using a 3D printer. The same process can be applied to other
complex surfaces.

We should point out that our method involves the direct concatenation of two matrices without considering issues related to facet
intersection and coincidence. We employ this technique to integrate the internal porous structure of a three-dimensional model with
the digitally represented surface, which is demonstrated in the subsequent sections, ultimately obtaining a comprehensive three-
dimensional model. The integration technique described above is capable of satisfying this requirement. After the merged model
is input into the 3D printer, it undergoes adaptive adjustments based on the requirements of slicing and G-code interpretation.
This process includes Boolean intersection and difference operations to rectify the model into a closed three-dimensional structure,
facilitating direct additive manufacturing. The discussion on coincidence and intersection issues in the concatenation process goes
beyond the scope of this paper and could be explored in future research.

3. Methodology of our proposed algorithm

Our proposed method aims to generate models with adaptively designed lightweight scaffolds according to the corresponding
physical fields. The input 3D model is voxelized, and the distances of the voxels on the outer surface are set to zero. If a voxel is
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𝑠

Fig. 8. Schematic for developing adaptive refinement mesh algorithm.

inside of the model, its distance is positive and it is calculated by using the minimal distance between the voxel on the boundary.
Otherwise, if a voxel is outside the model, it will have a negative distance. The schematic for developing adaptive refinement mesh
algorithm has been shown in Fig. 8. With the input digital model, we commence with sign distance partitioning. Subsequently,
an adaptive grid design is employed, resulting in the generation of a comprehensive model featuring multiscale grids, predicated
on the partitioning of distinct regions. The interval [0, 𝐿] is partitioned into several sub-intervals or levels, where 𝐿 is the largest
positive distance. The voxels in each level are considered to be filled with the same accuracy. Here, the size of the voxel in each
level should be specified. In order to illustrate the algorithm, we demonstrate the flowchart of the two-dimensional Star-model in
Fig. 8. Let 𝛺 = (0, 𝐿𝑥) × (0, 𝐿𝑦) × (0, 𝐿𝑧) be the 3D domain and we define 𝜙𝑖,𝑗,𝑘 = 𝜙((𝑖− 1)ℎ+ 0.5ℎ, (𝑗 − 1)ℎ+ 0.5ℎ, (𝑘− 1)ℎ+ 0.5ℎ). We
introduce a hierarchy of increasingly finer grids, 𝛺0, 𝛺1,… , 𝛺𝑆 , restricted to subspaces with higher accuracy. Let ℎ𝑆 = 𝑐 ⋅ ℎ be the
minimal length of domain 𝛺𝑆 , where 𝑐 is a positive integer. Then, the length of domain 𝛺𝑠 is set as ℎ𝑠 = 2𝑆−𝑠ℎ𝑆 = 2𝑆−𝑠𝑐 ⋅ ℎ, for
= 0,… , 𝑆. Let 𝑁̂𝑥 = 𝑁𝑥∕(2𝑆𝑐), 𝑁̂𝑦 = 𝑁𝑦∕(2𝑆𝑐), 𝑁̂𝑧 = 𝑁𝑧∕(2𝑆𝑐), where 𝑁̂𝑥, 𝑁̂𝑦, and 𝑁̂𝑧 represent the number of coarse mesh grids

in each direction. Let 𝑑𝑠 be the conditional thresholds, such as distance or stress values. For each small domain of the subspace 𝛺𝑠,
we can count the number of points for which signed distance value is greater than 𝑑𝑠 as follows:

𝑖𝑏+2𝑆−𝑠𝑐−1
∑

𝑖=𝑖𝑏

𝑗𝑏+2𝑆−𝑠𝑐−1
∑

𝑗=𝑗𝑏

𝑘𝑏+2𝑆−𝑠𝑐−1
∑

𝑘=𝑘𝑏

𝑓 (𝜙𝑖𝑗𝑘, 𝑑𝑠). (11)

Here, 𝑓 (𝑥, 𝑦) = 0, if 𝑥 < 𝑦, otherwise, 𝑓 (𝑥, 𝑦) = 1. In addition, 𝑖𝑏, 𝑗𝑏, and 𝑘𝑏 are the indices of each small domain within the subspace
𝛺𝑠:

𝑖𝑏 = 1 +
𝑠
∑

𝑚=0
(𝑖𝑚 − 1)2𝑆−𝑚𝑐, 𝑗𝑏 = 1 +

𝑠
∑

𝑚=0
(𝑗𝑚 − 1)2𝑆−𝑚𝑐, 𝑘𝑏 = 1 +

𝑠
∑

𝑚=0
(𝑘𝑚 − 1)2𝑆−𝑚𝑐,

where 𝐢 = [𝑖0, 𝑖1,… , 𝑖𝑆 ], 𝐣 = [𝑗0, 𝑗1,… , 𝑗𝑆 ] and 𝐤 = [𝑘0, 𝑘1,… , 𝑘𝑆 ] are three integer vectors. We refine the mesh grid based on the
center point of every small domain. The center of 𝛺𝑠 is defined as 𝐶𝑥 = (𝑖𝑏−1)ℎ+0.5ℎ𝑠, 𝐶𝑦 = (𝑗𝑏−1)ℎ+0.5ℎ𝑠, 𝐶𝑧 = (𝑘𝑏−1)ℎ+0.5ℎ𝑠.
If the judgement condition is satisfied, we generate box elements with an accuracy of ℎ𝑠 in these subspaces. Otherwise, we divide
the coarse space into eight fine subspaces and repeat the previous step. We divide the whole algorithm into the following steps.

∙ 𝑆𝑡𝑒𝑝 1 ∶ Calculate the location (𝐶𝑥, 𝐶𝑦, 𝐶𝑧) of the central point in each box and generate the lightweight structure in the
corresponding box.

∙ 𝑆𝑡𝑒𝑝 2 ∶ Refine the mesh grids under a judgement on whether to stratify according to the condition

𝑖𝑏+2𝑆−𝑠𝑐−1
∑

𝑖=𝑖𝑏

𝑗𝑏+2𝑆−𝑠𝑐−1
∑

𝑗=𝑗𝑏

𝑘𝑏+2𝑆−𝑠𝑐−1
∑

𝑘=𝑘𝑏

𝑓 (𝜙𝑖𝑗𝑘, 𝑑𝑠) = (2𝑆−𝑠𝑐)3, (12)

which determines whether the grid is fully immersed within the corresponding partitioned region. Upon updating the variable 𝑠
and refining the next grid level for recursive computation, we exit the current loop and update (𝑖𝑏, 𝑗𝑏, 𝑘𝑏) if the specified conditions
are not met. The filtering space size can be selected adaptively with multiple printing sizes. By observing the output multiscale grid
in Fig. 8, it is worth pointing out that our adaptive mesh algorithm can realize manufacturing with an arbitrary number of levels
by considering the accuracy of 3D printer nozzles in engineering applications.

4. Application results and discussions

In this section, we focus on the numerical investigation of the intricate scaffold design, extensively exploring the entire procedure
of designing porous scaffolds for the digital STL model based on unit porous structures. Initially, we conduct the voxel resolution
simulation to determine the division of regions. Subsequently, we create porous scaffolds in a regular sphere model with Schwarz
Primitive lattice of different structure sizes. To validate the universality of the proposed algorithm, we generate porous scaffolds in
a more complex dragon model. Finally, we apply our method to topology optimization to show that the merging strategy can be
employed in multiscale topology optimization with porous structure design.
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Fig. 9. Voxels combination process. From (a) to (e) shows the model construction process in which the size of unit voxel decreases and the spatial resolution
increases layer by layer. cyan, red, green, blue and yellow to represent the areas filled with voxels of size 1, 2, 4, 8 and 16, respectively. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

4.1. Region partition based on the volumetric distance field

In this section, we present the process of a multiscale design method based on spatial resolution. The specific implementation
in Fig. 9 shows the numerical results for 5 different sizes of voxels. The signed distance function is used here to partition the
interior of the model, allowing for the placement of Triply Periodic Minimal Surface (TPMS) structures of different sizes within
voxel partitions. Cyan, red, green, blue, and yellow represent areas filled with voxels of sizes 16, 8, 4, 2, and 1, respectively. It is
important to emphasize that, due to the large size of the model, voxel features might not be clearly discernible in the segmented
figures. However, as we progressively increase the resolution, expressing the model with smaller voxel units, the contours of the
model gradually become clearer. Our method excels in seamlessly integrating spatial resolution with TPMS structure placement,
ensuring a comprehensive and flexible design. Variable voxel sizes enable nuanced exploration of the interior, providing an efficient
way to adapt TPMS structures to different scales. This adaptability enhances overall efficiency, establishing our approach as a robust
tool for multiscale design based on spatial resolution.

4.2. Composite scaffold design in hemisphere

In this section, we present a composite scaffold for a hemisphere with different sized TPMS Schwarz P surfaces using the proposed
method. First, we make a hemispherical shell with an outer radius of 𝑅 = 3 and a thickness of 𝑟 = 0.5. Here, the value of 𝑟 is chosen
to be larger than the diagonal of smaller P surface. The interior of the hemisphere is filled with P surfaces of sizes 2 × 2 × 2 and
1 × 1 × 1. Each P surface is placed so that its edges are on integer value points.

In addition, we densely pack P surfaces within the hemisphere to fill it completely without any gaps. Larger P surfaces of size
2 × 2 × 2 are then placed within the interior of a hemisphere of radius 2. Subsequently, smaller P surfaces are positioned in the
remaining space. When larger and smaller P surfaces come into contact, the proposed merging algorithm is applied to naturally
merge the two different-sized P surfaces. Each added P surface is augmented to the previously existing surface structure to combine
all surface structures. Fig. 10 demonstrates the composite scaffold obtained by using two Schwarz Primitive structures with different
cell sizes. From left to right, the results of each stage of the proposed method are illustrated. Firstly, we show the merging results
without a Boolean operation and a close-up view of the merged parts. According to the sphere size, we apply the Boolean operation
on the designed porous scaffolds. Then, we show the top slice of the hemisphere. By combining the spherical shell and the merged
scaffolds into one STL model, we obtain the final results, which can be directly used for additive manufacturing. Subsequently, we
display the 3D printed model produced using the proposed method in different views, as shown in Fig. 11. From these results, it is
evident that our method can generate a smooth transition between the unit lattices of multi-size units and can be directly applied
to real additive manufacturing processes.
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Fig. 10. Composite scaffold using two P surfaces of different sizes. From left to right, the simulations are the merging results without Boolean operation and
the closed view of merging parts, the spherical shell with infinite thickness and the top slice of the hemisphere after Boolean operation, and the results using
the proposed algorithm in different view angle, respectively.

Fig. 11. Physical model manufactured from the proposed mathematical algorithm in different views.

4.3. Composite structure design with different type TPMS unit lattices

In this subsection, we perform our method in merging different types of TPMS units. Utilizing a variety of microscopic unit
cells introduces a significant challenge, as neighboring volume elements often display either partial or complete mismatched
characteristics. This mismatch can lead to design failures and render manufacturing impractical. Addressing these challenges requires
the implementation of effective mitigation strategies, which have been systematically investigated in recent academic studies. Our
consideration involves examining two adjacent cubic volumes and periodic TPMSs that share a common edge. As shown in Fig. 12(a),
(b), and (c), we use Primitive-Gyroid, Primitive-Diamond, and Diamond-I-WP composite structures, respectively. The outcomes
unequivocally demonstrate that our approach adeptly refines the surface of the composite structure while concurrently enhancing
internal connectivity. Moreover, we illustrate curves to substantiate that the devised porous scaffold maintains the average mean
curvature as shown in Fig. 12(d). From the results, we can observe that the average mean curvature increases and then converges
to some value at the steady state. This demonstrates that our method can indeed modify the surface curvature of the merged model,
achieving a state where the mean curvature is uniformly equal throughout, thereby satisfying the properties characteristic of minimal
surfaces.

4.4. Porous scaffolds for the arbitrary STL model

To validate the universality of the proposed method, we perform the merging and combining strategies to an arbitrary STL model,
which is the dragon model of the Stanford 3D scanning repository. According to the size of the dragon model, we divided the dragon
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Fig. 12. Composite structures with different type of TPMS unit lattices. (a) is composed of Primitive and Gyroid structures. (b) is composed of Primitive and
Diamond structures. (c) is composed of Diamond and I-WP structures. (d) is the evolution of the average mean curvature.

model into three layers, which are composed of different unit cells. As can be seen from Fig. 13(a) to (c), we demonstrate the internal
three layers from 8 voxel resolution to 2 voxel resolution. According to the cell size of each layer, we replace the corresponding
spacial voxels with the Schwarz Diamond lattices using our merging method. We should note that the Boolean operation has been
applied to the surface layer, which is composed by 1 voxel resolution. As shown in Fig. 13(d), the porous scaffolds can be adaptively
filled according to the voxel size. To avoid breakages on the model surface and prevent lightweight structures from exceeding the
bounded surfaces, we performed boolean operations on the completed filling to ensure smoothness of the surface. By combining
the surface of the digital model with the designed scaffolds, we obtained the final result as shown in Fig. 13(e). We realized the
reconstruction of the digital model with lightweight scaffolds, which can be directly used in additive manufacturing. As can be seen
from the results, our method can be used to achieve the merging of a shell and internal porous structure, which can be adaptively
design to conserve the computational burden.

4.5. Coupling scheme with topology optimization

Topology optimization in the model, which solves a material distribution problem, is significant for generating an optimal
topology in rapid prototyping [15,27]. In contrast to the traditional CAD method, the topology optimization method has more
extensive and efficient design freedom [6].

According to the stress field, we can determine where materials or structures with a strong bearing capacity are needed and
where less material can be used to reduce the weight of the model [29]. Before introducing the coupling scheme with topology
optimization, we should present the objective of the topology optimization problem as follows:

 (𝝓,𝐮) = ∫𝛺
𝑊 (𝝓,𝐮)d𝐱 = ∫𝛺

1
2
(𝐮) ∶ 𝐃(𝝓) ∶ (𝐮)d𝐱, (13)

where 𝝓 is the optimal layout, 𝐮 is the displacement vector,  is the strain tensor, and 𝐃 is the fourth-order stiffness tensor. By
calculating the following linear elastic equations,

(𝐮) = 1
2
(

∇𝐮 + (∇𝐮)𝑇
)

, 𝜎(𝝓,𝐮) = 𝐃(𝝓) ∶ (𝐮), ∇ ⋅ 𝜎(𝝓,𝐮) = 𝟎, (14)

we aim to minimize the objective function, which represents the compliance of the cantilever beam structure. Here 𝜎 is a source-free
stress tensor. The initial state of the substance is shown in Fig. 14(a), with a compliance calculated as 216.54. Fig. 14(b) can be
obtained by fixing the left two corners of the rectangle and applying downward stress at the right center point. The compliance of
the optimized structure is 145.11. Here, we assume the material to be a general anisotropic linear elastic material. Additionally, we
can compute the stress distribution as shown in Fig. 14(c), where warmer colors represent larger stress values. As seen in the results,
it is observed that stress is primarily concentrated at the intersection point in the middle of the cantilever beam. We refer to [56]
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Fig. 13. Deign results of the Stanford dragon, which has dimensions 95.4 mm × 68 mm × 44.4 mm. (a)–(c) Deign results for each level. (d) The porous scaffold
of the composite structure. (e) The combined results by merging of a shell (yellow part) and the internal porous structure. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 14. Multiscale scaffolds implementation based on the stress distribution. (a) is the initial state. (b) is the result of topology optimization obtained by
applying the downward force at the center point to the right of (a). (c) is the equipotential distribution of the stress field. (d) is multiscale scaffold with our
adaptive algorithm from (c). Blue, cyan, and red represent the layers with voxel accuracies of 4, 2 and 1, respectively. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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Table 1
Lists of the number of levels, the actual model size, the time radio 𝑅𝑇 , the memory radio 𝑅𝑀 , and the CPU-times.
Here 𝑅𝑇 = 𝑇𝑎∕𝑇𝑢 and 𝑅𝑀 = 𝑀𝑎∕𝑀𝑢, where 𝑇𝑎 and 𝑀𝑎 are the total time and memory with adaptive voxel size,
𝑇𝑢 and 𝑀𝑢 are the total time and memory with uniform voxel size.

Case Layer size Model size ((mm)3) 𝑅𝑇 𝑅𝑀 CPU-time (s)

Fig. 9 5 44.8 × 105.6 × 44.8 7.18% 11.22% 249.05
Fig. 10 2 21.3 × 42.6 × 21.3 23.29% 68.16% 21.55
Fig. 13 4 95.4 × 68 × 44.4 1.46% 14.92% 318.92
Fig. 14 3 34.8 × 17.4 × 6.9 4.81% 26.76% 4.73

and couple our method with their multiscale topology optimization system. In Fig. 14(d), our proposed algorithm has shown good
performance in the coupled computation and is well-adapted to the distribution of the stress field, guiding the merging relationship
between TPMS-based lattice structures of different sizes. The compliance of the designed structure with a porous scaffold is 164.61.
Two points need to be emphasized: (i) While the compliance of our porous structure is slightly greater than that of solid materials, our
approach allows for substantial material savings without significantly compromising compliance. (ii) We compared the compliance
of structures designed with a single-size porous configuration, yielding a compliance of 184.17, which is higher than that achieved
through our adaptive methodology. Furthermore, our algorithm can easily divide the model into multiscale voxels, providing great
convenience for subsequent lightweight scaffold design.

4.6. Computational performance test

In this subsection, we demonstrate the performance of all tests problem in this paper. Table 1 presents the information on the
umber of levels, the actual model size, the time ratio, the memory ratio and the CPU-times. Here the time ratio and the memory
atio are computed as 𝑅𝑇 = 𝑇𝑎∕𝑇𝑢 and 𝑅𝑀 = 𝑀𝑎∕𝑀𝑢, where 𝑇𝑎 and 𝑀𝑎 are the total time with adaptive voxel size, 𝑇𝑢 and 𝑀𝑢 are

the total time with uniform voxel size. The CPU times (seconds) of our calculations are measured on 3.4 GHz with 8 GB of RAM. As
can be seen from Table 1, the proposed algorithm in both the CPU-time and manufacturing time achieves high efficiency. Moreover,
the utilization of our adaptive hierarchical algorithm can significantly reduce the memory consumption in storage. Compared to
uniform designs, our approach is more suitable for large-scale computations. We can design different structures according to the
different requirements in the internal area of the model. Furthermore, the use of multiple subspace partitions and multiple accuracy
nozzles makes our algorithm more applicable.

5. Conclusion

In this article, we presented a practical volume merging method for generating porous structures using Triply Periodic Minimal
Surface (TPMS) lattice structures. This method is versatile and can be easily applied to mechanics, electrical engineering, and tissue
engineering. We constructed the design system in three steps: Firstly, we obtained the physical field in the actual model, which
could come from external input or the solution of partial differential equations. Next, we applied the merging operation, which
can integrate target structures, regardless of differences in size, porosity, or cell type. Finally, we combined the surface-only three-
dimensional model with the designed porous structure, involving Boolean operations. The primary merits of the proposed algorithm
can be summarized as follows: (1) It is not limited to complex shapes, and we can construct specific porous scaffolds with the given
essential features. (2) The compound structures obtained by our method maintain properties of smooth surfaces, continuous gradient
porosities, and constant mean curvature. (3) Our method does not require large memory storage for storing the compound structure
and complex mathematical computation for the design of the merged porous scaffolds or the reconstruction of the surface mesh.
Thus, it is simple to generate large-scale 3D porous volumes based on our method. The produced multiscale compound scaffolds have
smooth surfaces with constant mean curvature, making them suitable for additive manufacturing. Various computational simulations
were presented to investigate the robustness of the proposed algorithm.
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