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A B S T R A C T

We perform an in silico investigation of the formation of multiple intense zebra stripes by
extending the domain with an appropriate extending speed. The common zebra has alternating
dark and light stripes, creating a two phase pattern. However, some Equus burchelli zebras have
an intermediate gray color stripe situated between the dark and light stripes. To numerically
investigate the formation of multiple intense zebra stripes, we first find the equilibrium state
of the governing system in the one-dimensional (1D) static domains using various frequency
modes. After finding the equilibrium state for the governing system in the 1D static domains,
we stack a numerical data. Then, we load the stacked numerical data to use as an initial state
for finding the growth rate that forms the multiple intense zebra stripe formation in the 1D
extended domains. Next, convergence experiments are conducted to verify the convergence of
the numerical method for the governing system. Finally, numerical simulations are performed to
confirm the formation of multiple intense zebra stripes in two-dimensional extending domains
and on evolving curved surfaces.

1. Introduction

After C. Darwin theorized about the benefits of zebra stripes [7,22], numerous scientists have conducted research to confirm or
refute his assertions. Previously, it was believed that zebras’ stripes helped them to camouflage from predators. However, recent
scientific findings suggest that these stripes may primarily serve as protection against biting flies such as the tsetse fly [5,26]. These
flies are carriers of diseases such as anthrax and trypanosomiasis, which can be fatal to zebras. The stripes may confuse the flies,
making it difficult for them to land on zebras and bite them. Zebra stripe patterns help to protect the zebras from disease and allow
them to live longer and healthier lives. Research on zebra stripes and their relationship with biting flies is ongoing, and scientists are
still gaining insights into the complete extent of the stripes’ protective benefits. There are three primary zebra species, namely Equus
burchelli, Equus zebra, and Equus grevyi [11]. The patterns of stripes in different species of zebras evolve with distinct numbers and
sizes over time [2]. Among them, the shadow stripe that emerges on some Equus burchelli zebra skin [4,5] is an interesting topic
of research in the fields of mammalian and mathematical biology. The formation of shadow stripe patterns in Equus burchelli zebra
skin is manifested by rapid growth effects when growing from an embryonic state to adulthood [11]. In zebras, this occurs very
early (between 21–35 days), while their gestation period is approximately 360 days. Moreover, before color cells are fully expressed,
these shadow stripes are formed on zebra skin by rapid growth during the formation of dark and white stripe patterns [11].
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To model pattern formation on mammalian skin in 1952 Alan Turing [31] presented his theory through reaction–diffusion (RD)
quations. Bard stated that the size of the domain plays a crucial role in the emergence of spatial patterns [2]. Later, numerous studies
ave been conducted to produce spatial patterns with variations in domain size using RD equations. For example, Crampin et al. [6]
sed the concept of frequency-doubling to study the effect of isotropic domain growth in one spatial dimension for generating
pecific waveforms using RD models. The authors in [28] used a generalized Turing model with an alternating direction-implicit
ADI) scheme to study cell growth and pattern formation on the skin of growing marine angelfish. Neville et al. [27] considered
oth exponential domain growth and chemically controlled growth to investigate pattern formation in biological systems using
uring instability theory [32]. They discovered that domain growth or shrinkage depends quadratically on the pattern amplitude.
im et al. [14] investigated how domain growth in a two-dimensional system influences zebra stripe development. They employed

he Laplace–Beltrami operator on a triangulated surface within the RD system, varying rotational speeds to stretch and split the
tripes, and resulting in diverse shapes, sizes, and brightness as the domain expanded. Liu et al. [21] used different waveforms
ith distinct speeds to produce various patterns in one and two-dimensional systems. They generated stripes with two phases

dark and light) in two-dimensional systems by using the theory of Turing instability in the growing domain. Furthermore, Krause
t al. [16] extended previous work [21] by using concentration-dependent growth into various RD models to generate patterns in
ne-dimensional and N-dimensional manifolds for time-dependent expansion or contraction of space. Notably, although the study
omprehensively investigated stripe patterns in 1D systems for FitzHugh–Nagumo kinetics under different growth scenarios, the
roduction of fading patterns was not observed in either [21] or [16]. Yang and Kim [35] employed distinct space-dependent
arameters within various domains to model realistic non-uniform zebra stripes, which enabled them to generate stripes of varying
idths corresponding to different parts of the zebra’ body. When parameters are kept constant [20], regular pattern formations can
e modeled; however, mammals often exhibit regional variation in stripe spacing [15]. To simulate stripe pattern formations with
onhomogeneous thickness in a zebra, the authors took space-dependent diffusion and feed concentration parameters as the stripe
pacing in zebras varies regionally. The authors achieved sharp transitions and smooth profiles in the RD system by applying an
xplicit finite difference scheme.

From the literature, numerous studies have investigated zebra stripe formation in two phases (dark and light) [8,10,11,23,30]
ut there has been no study on faded patterns, such as those seen in Equus burchelli [11]. The aim of this research is to explore the
ormation of faded stripes resembling zebra skin patterns in Equus burchelli using the Lengyel–Epstein model. We perform numerical
nvestigations on the formations of multiple intense zebra stripes using an extending domain. We analyze the equilibrium state of the
overning system in one-dimensional static domains, considering various frequency modes. By using the numerical data from these
omains, we obtain the initial state for determining the required growth rate for forming multiple intense zebra stripes in one-
imensional expanding domains. Additionally, we perform convergence tests to assess the convergency of the numerical scheme
or the governing system. Finally, we demonstrate the formation of multiple intense zebra stripes in two-dimensional expanding
omains and on evolving curved surfaces through numerical simulations.

The research is structured as follows: Section 2 introduces the governing system used to mathematically model the formation
f multiple intense zebra stripes. In Sections 3 and 5, the numerical solution algorithms for the governing equations are presented.
ections 4 and 6 show the numerical results obtained from the proposed algorithm. Finally, in Section 7, concluding remarks are
rovided.

. Governing system

This research employs the Lengyel–Epstein model [20] to investigate the formation of multiple intense stripes in zebras:
𝜕𝑢(𝐱, 𝑡)

𝜕𝑡
= 𝐷𝑢𝛥𝑢(𝐱, 𝑡) + 𝑓 (𝑢(𝐱, 𝑡), 𝑣(𝐱, 𝑡)), (1)

𝜕𝑣(𝐱, 𝑡)
𝜕𝑡

= 𝐷𝑣𝛥𝑣(𝐱, 𝑡) + 𝑔(𝑢(𝐱, 𝑡), 𝑣(𝐱, 𝑡)), (2)

where

𝑓 (𝑢(𝐱, 𝑡), 𝑣(𝐱, 𝑡)) = 𝑘1

(

𝑣(𝐱, 𝑡) − 𝑢(𝐱, 𝑡)𝑣(𝐱, 𝑡)
1 + 𝑣(𝐱, 𝑡)2

)

, (3)

𝑔(𝑢(𝐱, 𝑡), 𝑣(𝐱, 𝑡)) = 𝑘2 − 𝑣(𝐱, 𝑡) − 4𝑢(𝐱, 𝑡)𝑣(𝐱, 𝑡)
1 + 𝑣(𝐱, 𝑡)2

. (4)

Here, 𝑢(𝐱, 𝑡) and 𝑣(𝐱, 𝑡) represent two morphogens at spatial 𝐱 in the domain 𝛺 and temporal 𝑡, which are the concentrations of an
inhibitor and an activator, respectively. The nonlinear functions 𝑓 (𝑢(𝐱, 𝑡), 𝑣(𝐱, 𝑡)) and 𝑔(𝑢(𝐱, 𝑡), 𝑣(𝐱, 𝑡)) involve the chemical reactions
f 𝑢(𝐱, 𝑡) and 𝑣(𝐱, 𝑡). The parameters 𝐷𝑢 and 𝐷𝑣 are the diffusion coefficients of 𝑢(𝐱, 𝑡) and 𝑣(𝐱, 𝑡), respectively; while 𝑘1 and 𝑘2
enote positive constants related to the feed concentrations. In this study, we use the following homogeneous Neumann boundary
ondition [19]:

𝐧 ⋅ ∇𝑢(𝐱, 𝑡) = 0 and 𝐧 ⋅ ∇𝑣(𝐱, 𝑡) = 0, 𝐱 ∈ 𝜕𝛺, (5)

here 𝜕𝛺 is the boundary of the domain and 𝐧 is the unit outer normal to the boundary. The solutions of the governing Eqs. (1)
nd (2) at homogeneous steady state are given by 𝑓 (𝑢∗, 𝑣∗) = 0 and 𝑔(𝑢∗, 𝑣∗) = 0, where

∗ 2 ∗
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𝑢 = 1 + 0.04𝑘2 and 𝑣 = 0.2𝑘2. (6)



Mathematics and Computers in Simulation 225 (2024) 648–658H. Kim et al.
Fig. 1. (a) Photo of baby and adult Equus burchelli type zebras. (b) and (c) are subparts of image (a).
Source: This photo is reproduced courtesy of Frans van Heerden.

These solutions correspond to the case where the concentrations of 𝑢 and 𝑣 cannot change with time. We shall use the above-
mentioned conditions to simulate the formation of multiple intense stripes in zebras. The real shadow stripe patterns on Equus
burchelli zebra-type skin can be seen in Fig. 1. It can be inferred that this shadow stripe pattern is dull in brightness when it is a
baby zebra, however becomes darker as it grows into an adult zebra.

3. Numerical solution algorithm in one-dimensional space

In this section, we present a numerical approach for solving the governing system in one-dimensional space on the interval
𝛺 = (𝐿𝑥, 𝑅𝑥). We introduce the discrete domain 𝛺𝑑 = {𝑥𝑖 ∣ 𝑥𝑖+1 = 𝑥𝑖 + ℎ𝑖, 1 ≤ 𝑖 < 𝑁𝑥, 𝑥1 = 𝐿𝑥, 𝑥𝑁𝑥

= 𝑅𝑥}, where ℎ𝑖 represents a
non-uniform grid size and 𝑁𝑥 denotes the total number of grids in the 𝑥-direction. Let 𝑇 denote the final time, and 𝑁𝑡 represents
the number of temporal steps. Then, we denote by 𝑢𝑛𝑖 = 𝑢(𝑥𝑖, 𝑛𝛥𝑡) and 𝑣𝑛𝑖 = 𝑣(𝑥𝑖, 𝑛𝛥𝑡) where 𝛥𝑡 = 𝑇 ∕𝑁𝑡 is the temporal step. We
discretize the governing system (1) and (2) using an explicit finite difference method [9] with the following equations:

𝑢𝑛+1𝑖 − 𝑢𝑛𝑖
𝛥𝑡

= 𝐷𝑢𝛥𝑑𝑢
𝑛
𝑖 + 𝑘1

(

𝑣𝑛𝑖 −
𝑢𝑛𝑖 𝑣

𝑛
𝑖

1 + (𝑣𝑛𝑖 )2

)

, (7)

𝑣𝑛+1𝑖 − 𝑣𝑛𝑖
𝛥𝑡

= 𝐷𝑣𝛥𝑑𝑣
𝑛
𝑖 + 𝑘2 − 𝑣𝑛𝑖 −

4𝑢𝑛𝑖 𝑣
𝑛
𝑖

1 + (𝑣𝑛𝑖 )2
, (8)

where

𝛥𝑑𝑢
𝑛
𝑖 =

2
ℎ𝑖−1(ℎ𝑖−1 + ℎ𝑖)

𝑢𝑛𝑖−1 −
2

ℎ𝑖−1ℎ𝑖
𝑢𝑛𝑖 +

2
ℎ𝑖(ℎ𝑖−1 + ℎ𝑖)

𝑢𝑛𝑖+1

and

𝛥𝑑𝑣
𝑛
𝑖 =

2
ℎ𝑖−1(ℎ𝑖−1 + ℎ𝑖)

𝑣𝑛𝑖−1 −
2

ℎ𝑖−1ℎ𝑖
𝑣𝑛𝑖 +

2
ℎ𝑖(ℎ𝑖−1 + ℎ𝑖)

𝑣𝑛𝑖+1.

We set ℎ0 = ℎ1 and ℎ𝑁𝑥
= ℎ𝑁𝑥−1 for the homogeneous Neumann boundary condition in one-dimensional space, and

𝑢𝑛0 = 𝑢𝑛2, 𝑢
𝑛
𝑁𝑥+1

= 𝑢𝑛𝑁𝑥−1
, 𝑣𝑛0 = 𝑣𝑛2, and 𝑣𝑛𝑁𝑥+1

= 𝑣𝑛𝑁𝑥−1
. (9)

We note that we use a fully explicit finite difference method for simplicity in exposition and to focus on the novel proposed model.
We may use an unconditionally stable numerical scheme that does not have temporal step size restrictions [29] or a practically stable
numerical method [18].

4. Numerical experiments in one-dimensional space

4.1. Equilibrium state in 1D static domains

We shall perform the numerical simulation to find the equilibrium state for the RD system (1) and (2) in the one-dimensional
static domain [0, 10]. Here, the parameters are set as 𝑁𝑥 = 300, 𝐷𝑢 = 1, 𝐷𝑣 = 0.007, 𝑘1 = 30, 𝑘2 = 11. First, we solve the discretized
governing system (7) and (8) with the following initial states:

𝑢(𝑥, 0) = 𝑢∗ + 0.05 cos(𝑘𝑥), 𝑣(𝑥, 0) = 𝑣∗ + 0.05 cos(𝑘𝑥),

where 𝑢∗ = 1 + 0.04𝑘2 and 𝑣∗ = 0.2𝑘2 for 12 ≤ 𝑘 ≤ 18.
650
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Fig. 2. Find the equilibrium state for (a) 𝑘 = 12, (b) 𝑘 = 18, (c) 𝑘 = 13 and (d) 𝑘 = 17; The first column shows initial states and second column shows equilibrium
states at 𝑡 = 10000000𝛥𝑡.

Figs. 2 and 3 show initial states in first columns, and the equilibrium states in second columns for 12 ≤ 𝑘 ≤ 18. At 𝑡 = 107𝛥𝑡,
ach number of frequency modes has the same number of frequency mode as 𝑘 = 15. Therefore, we plan to save this numerical data
f equilibrium state for 𝑘 = 15 at 𝑡 = 107𝛥𝑡 and load it separately to analyze the growth factor of evolving domains that can form
aded patterns.

.2. Growth factors for fade pattern formation in 1D evolving domains

Now, we shall find a suitable growth speed value in the 𝑥-direction to form fading patterns in one-dimensional evolving
omains. First, the initial condition is set by loading the equilibrium state shown in Fig. 3(f). Next, we use the evolving condition
(𝑡 + 𝛥𝑡) =

(

1 + 𝑠 𝑡
)

𝑥(0). If the growth speed values are 𝑠 = 0.5, 𝑠 = 0.8, 𝑠 = 0.9, and 𝑠 = 1.0, the numerical results in
651
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Fig. 3. Find the equilibrium state for (e) 𝑘 = 14, (f) 𝑘 = 15 and (g) 𝑘 = 16; The first column shows initial states and second column shows equilibrium states at
𝑡 = 10000000𝛥𝑡.

igs. 4(a), (b), (c) and (d) can be obtained. There are fade frequency perturbations between principal frequency perturbations. It
s possible to form faded zebra stripe patterns in the two-dimensional (2D) evolving domains by applying the growth speed values
bout 0.8 ≤ 𝑠 ≤ 1.0. We shall save and recall the numerical results in Fig. 4 for visualization of continuously formation of faded
ebra stripe patterns in 2D extending domains.

.3. Visualization of continuously faded zebra stripe patterns in 2D extending domains

To visualize continuously fading zebra stripe patterns in 2D expanding domains, we refer back to the 1D numerical results
resented in Fig. 4. Firstly, these numerical results in Fig. 4 are extended into the 𝑦-direction while maintaining the same frequency

values. Secondly, using a grayscale color scheme ranging from white (lower values) to black (higher values), we plot these extended
numerical results of 𝑢 (see Fig. 5) in 2D expanding domains. As shown in Fig. 5, the 1D numerical results are plotted in 2D expanding
domains for various growth factor values: (a) 𝑠 = 0.8, (b) 𝑠 = 0.9 m and (c) 𝑠 = 1.0.

In previous studies related to the effects of domain growth, Maini et al. [24] considered an exponentially growing domain,
linearly growing domain and a logistically growing domain to numerically research period-doubling patterns. In their numerical

esults as shown in Fig. 6, there are two phases states. In contrast, in our numerical results in Fig. 5, three phases (gray scale) appear
sing an appropriate growth rate 𝑠. With a suitable growth rate value 𝑠, the faded stripe patterns of a zebra can be simulated.

.4. Convergence experiments

To investigate whether the parameter values used in the simulation were sufficiently small, we compared the simulation results
n Fig. 5(d) using parameter values that were halved for both spatial and temporal resolutions. Fig. 7(a) shows the same result of
ig. 5(d). We consider the same conditions as those in Fig. 5(d) except for 𝑁𝑥 and 𝛥𝑡. Fig. 7(b) is a result using 𝑁𝑥 = 600 and
𝑡 = 5.5556e-5. Even with parameters halved, the results are not different.
652
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Fig. 4. Finding the growth factor using the equilibrium state in Fig. 3(f). The snapshots of 𝑢 (blue color) and 𝑣 (red color) for each growth factor (a) 𝑠 = 0.5,
b) 𝑠 = 0.8, (c) 𝑠 = 0.9 and (d) 𝑠 = 1.0 at 𝑡 = 100000𝛥𝑡. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
f this article.)

.5. Faded zebra stripe pattern formation using multi-speed growth rates

From now on, we shall numerically investigate the formation of faded zebra stripe patterns under multi-speed growth rate
onditions. Let us consider the multi-speed growth rates 𝑠 defined by 𝑠max = 1.0 and 𝑠min = 0.5 as follows:

𝑠𝑖 = 𝑠min +
𝑠max − 𝑠min

2

⎛

⎜

⎜

1 + tanh
⎛

⎜

⎜

𝑥𝑛𝑖 − 𝑥𝑛𝑁𝑥
5

√

⎞

⎟

⎟

⎞

⎟

⎟

,

653

⎝ ⎝

5 2
⎠⎠



Mathematics and Computers in Simulation 225 (2024) 648–658H. Kim et al.
Fig. 5. Faded zebra stripe patterns for inhibitor 𝑢 in 2D extending domains at 𝑡 = 100000𝛥𝑡, with respect to different growth factor values (a) 𝑠 = 0.5, (b) 𝑠 = 0.8,
(c) 𝑠 = 0.9 and (d) 𝑠 = 1.0.

Fig. 6. Turing patterns for the Schnakenberg kinetics on growing domain under conditions of (a) exponential growth, (b) linear growth, and (c) logistical growth.
Source: Reprinted from Maini et al. [24] with permission from the Royal Society publishing.

where 𝑁𝑥 = 300, and 𝑖 = 0,… , 𝑁𝑥 − 1. Let ℎ0𝑖 be initial spatial step size. In this experiment, we use the evolving condition:
ℎ𝑛𝑖 =

(

1 + 𝑠𝑖
𝑛

100000

)

ℎ0𝑖 . The discrete domain is updated as 𝛺𝑛
𝑑 = {𝑥𝑛𝑖 |𝑥

𝑛
𝑖+1 = 𝑥𝑛𝑖 + ℎ𝑛𝑖 , 0 ≤ 𝑖 ≤ 𝑁𝑥}. The initial state is used as the

initial state of Fig. 5. Fig. 8 shows the numerical result of 𝑢 at 𝑡 = 100000𝛥𝑡. As shown in the faded stripe patterns with different
brightness formed from the belly to the buttocks of the zebra in Fig. 1(c), the numerical results in Fig. 8 also show that the faded
stripe patterns with different brightness are formed depending on the multi-speed growth rates. The rationale for using the hyperbolic
tangent profile for growth rate is explained as follows: during the growth process of a zebra from the torso to the buttocks, stretching
at the front of the torso progresses slowly, while growth accelerates in the middle part, leading to the creation of another transition
layer. The growth process progresses at a uniform rate as it proceeds toward the buttocks.

5. Numerical solution algorithm on a curved surface in 3D space

Next, let us extend the Lengyel–Epstein model (1) and (2) by incorporating the Laplace–Beltrami operator 𝛥 :

𝜕𝑢(𝐱, 𝑡)
𝜕𝑡

= 𝐷𝑢𝛥𝑢(𝐱, 𝑡) + 𝑘1

(

𝑣(𝐱, 𝑡) − 𝑢(𝐱, 𝑡)𝑣(𝐱, 𝑡)
1 + 𝑣(𝐱, 𝑡)2

)

, (10)

𝜕𝑣(𝐱, 𝑡)
= 𝐷𝑣𝛥𝑣(𝐱, 𝑡) + 𝑘2 − 𝑣(𝐱, 𝑡) − 4𝑢(𝐱, 𝑡)𝑣(𝐱, 𝑡)

, (11)
654

𝜕𝑡 1 + 𝑣(𝐱, 𝑡)2



Mathematics and Computers in Simulation 225 (2024) 648–658H. Kim et al.
Fig. 7. Faded zebra stripe patterns for 𝑢 with (a) 𝑁𝑥 = 300, 𝛥𝑡 = 1.1111e-4 and (b) 𝑁𝑥 = 600, 𝛥𝑡 = 5.5556e-5, respectively.

Fig. 8. Faded zebra stripe patterns for inhibitor 𝑢 in 2D extending domain at 𝑡 = 100000𝛥𝑡 using multi-speed growth rates.

where  is a given curved surface domain, 𝐱 ∈  and 𝑡 > 0. The description of the discretization for the surface Lengyel–Epstein
model (10) and (11) proceeds as follows. On a triangular surface mesh 𝑀 of a closed smooth surface  as shown in Fig. 9(a), the
surface vertex set {𝐱}𝑁𝑖=1 including 𝑁 points is defined as follows. The one-ring neighbors surface vertex indices set is defined as
𝑉 (𝑖) = {𝑖1, 𝑖2,… , 𝑖𝑚}, which holds 𝑖1 = 𝑖𝑚 for a surface vertex 𝐱𝑖 as seen in Fig. 9(b). The surface vertices 𝐱𝑖, 𝐱𝑗− and 𝐱𝑗 constitute a
triangle 𝑇𝑗 . The summation of areas 𝐴(𝐱𝑖) for each triangle 𝑇𝑗 around surface vertex 𝐱𝑖 is defined as follows [13,34]:

𝐴(𝐱𝑖) =
∑

𝑗∈𝑉 (𝑖)

√

‖𝐱𝑗 − 𝐱𝑖‖2‖𝐱𝑗+ − 𝐱𝑖‖2 −
(

𝐱𝑗 − 𝐱𝑖, 𝐱𝑗+ − 𝐱𝑖
)2

2
.

The representations 𝑢(𝐱𝑖, 𝑛𝛥𝑡) and 𝑣(𝐱𝑖, 𝑛𝛥𝑡) are simply denoted by 𝑢𝑛𝑖 and 𝑣𝑛𝑖 , respectively. The discretized Laplace–Beltrami
operators [33] can be obtained using the curvature normal formula [25] as follows:

𝛥𝑢𝑖 ≈
3

𝐴(𝐱𝑖)
∑

𝑗∈𝑉 (𝑖)

cot 𝜃𝑖𝑗 + cot 𝜃𝑖𝑗+
2

(𝑢𝑗 − 𝑢𝑖),

𝛥𝑣𝑖 ≈
3

𝐴(𝐱𝑖)
∑

𝑗∈𝑉 (𝑖)

cot 𝜃𝑖𝑗 + cot 𝜃𝑖𝑗+
2

(𝑣𝑗 − 𝑣𝑖),
(12)

where angles 𝜃𝑖𝑗 and 𝜃𝑖𝑗+ in triangles 𝑇𝑗+ and 𝑇𝑗 can be seen in Fig. 9(c), respectively. Using the above mentioned descriptions of the
discretization, we have a discretized evolutionary system using the explicit Euler’s method for the surface Lengyel–Epstein model
(10) and (11) as follows:

𝑢𝑛+1𝑖 − 𝑢𝑛𝑖
𝛥𝑡

= 𝐷𝑢𝛥𝑢
𝑛
𝑖 + 𝑘1

(

𝑣𝑛𝑖 −
𝑢𝑛𝑖 𝑣

𝑛
𝑖

1 + (𝑣𝑛𝑖 )2

)

, (13)

𝑣𝑛+1𝑖 − 𝑣𝑛𝑖
𝛥𝑡

= 𝐷𝑣𝛥𝑣
𝑛
𝑖 + 𝑘2 − 𝑣𝑛𝑖 −

4𝑢𝑛𝑖 𝑣
𝑛
𝑖

1 + (𝑣𝑛𝑖 )2
. (14)

6. Numerical experiments on evolving curved surfaces in 3D space

On the evolving curved surfaces (in details evolving conditions, see [12,14]), we shall perform the investigation in silico for
formations of faded zebra stripe patterns. The initial states are set as shown in Fig. 10(a):

𝑢(𝐱, 0) = 𝑢∗ − 5.8 cos(2𝑘𝐿)

𝑣(𝐱, 0) = 𝑣∗ − 2.2 cos(2𝑘𝐿),

where 𝑢∗ = 1 + 0.04𝑘22, 𝑣
∗ = 0.2𝑘2, 𝐿 = 𝑅𝜃, 𝑅 is a radius of initial sphere and 𝜃 is a rotation angle of a triangular curved surface.

The parameters are used as 𝛥𝑡 = 0.001, 𝐷 = 1, 𝐷 = 0.007, 𝑘 = 30 and 𝑘 = 11.
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Fig. 9. Schematic illustrations. (a) triangular surface, (b) surface vertices set of one-ring neighbors of 𝐱𝑖 with 𝐱𝑖1 = 𝐱𝑖𝑚 , (c) triangles 𝑇𝑗 and 𝑇𝑗+ including angles
𝜃𝑖𝑗 and 𝜃𝑖𝑗+ , and (d) area 𝐴(𝐱𝑖) at vertex 𝐱𝑖.

Fig. 10. Faded zebra stripe pattern formation on evolving curved surfaces.

The process of forming faded zebra stripe patterns on evolving curved surfaces can be seen in Figs. 10(b)–(f). The numerical
behaviors shown in Figs. 10(b) and (c) do not exhibit a change in pattern; however, a change in scale begins to emerge in the results
shown in Fig. 10(d), and faded zebra stripe patterns can be observed in the results shown in Figs. 10(e) and (f). The number of dark
stripes identified in the final numerical results is approximately 27∼28, which is consistent with the number of stripe formation
(about ∼26) of Equus burchelli-type zebras as presented in [3]. These numerical results also support the choice of a frequency mode
𝑘 = 15 in the initial conditions.

7. Conclusions

An in silico investigation of the formation of multiple intense zebra stripes using extending domains was conducted. The Lengyel–
Epstein model was employed and discretized to describe a numerical method in the one-dimensional space. The explicit Euler method
was applied to numerically solve the proposed model. Various numerical experiments were demonstrated to find the equilibrium
state, appropriate growth factor 𝑠 and convergence. Convergence experiments were conducted for both space and time by changing
the spatial and temporal step sizes. It was validated that consistent numerical results were obtained despite changes in the spatial
and temporal step sizes. To show the faded zebra stripes as shown in Figs. 1(b) and (c), the computational results from the 1D
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domain were visualized in 2D by extending the domains. In the latter part of this research, numerical experiments on evolving
curved surfaces were conducted. The proposed method successfully reproduced the numerical behaviors observed in 1D space when
applied to evolving curved surfaces, resulting in patterns resembling zebra stripes (approximately 26 stripes) with some faded stripes
as described in [3]. Future research will use stable numerical schemes [1] to further enhance the performance of the proposed
algorithm. Moreover, to simulate full-scale zebra pattern formation, we will incorporate curvature-dependent parameters [17].
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