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 A B S T R A C T

We consider a numerical algorithm for a phase-field mathematical model of multiple dendritic growth on 
a spherical surface. One numerical method for curved surfaces is a triangular mesh-based computation 
method for surfaces. Calculating the governing equations with anisotropic properties using interface angles 
in a triangular grid is a significant challenge. To solve this issue, we compute the phase-field equation by 
rotating the triangular mesh relative to the vertex of the crystal seed and then projecting and interpolating 
it to Cartesian coordinates. When projecting the triangular mesh onto Cartesian coordinates, we apply an 
adaptive block region that embeds each dendritic phase. The growth simulations of multiple crystals present 
additional challenges. For multi-crystals, the criteria for rotation are ambiguous; hence, the criteria for rotation 
are clarified by applying the vector-valued phase-field equation to resolve this problem. Various numerical 
experiments are conducted on a spherical surface to verify the reliability and robustness of the proposed 
numerical algorithm to solve the phase-field equations of multiple dendritic growth. We comprehensively 
present the computational results, and show compelling evidence that validates the reliability and robustness 
of our computational method.
1. Introduction

Dendritic growth models are employed to simulate the microstruc-
ture that solidifies during the casting process. As solidification de-
fects from casting influence subsequent processes and elevate oper-
ational costs, it is essential to regulate and forecast the solidifying 
microstructure. This helps in minimizing defects and, consequently, in 
cost reduction. Understanding dendritic growth is important because 
the solidifying microstructure is primarily formed through dendrite 
growth [1–3].

The phase-field model is based on the concept of an order pa-
rameter. The order parameter serves as a numerical descriptor that 
defines the state or phase of each point within a system and is taken as 
distinct values in individual phases. For example, in a binary system, 
the order parameter might assume a value of 0 in one phase and 
1 in another. Between these phases, there exists a transition area 
where the order parameter changes continuously, which effectively 
describes the diffuse interface. Therefore, it enables the computation 
of interface movement without tracking the interface. Based on this 
foundation, the phase-field approach encompasses phenomena from 
solidification, where it can model the formation of crystals in liquids, 
to solid-state phase transformations, wherein it can depict changes 
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within the solid phase itself. The phase-field method has been applied 
to model crystal growth, which effectively simulates the formation of 
complex dendrites [4–6]. Following this, research on dendritic growth 
computations based on the phase-field model has attracted increasing 
attention. Recent studies have applied phase-field simulations to ice 
crystal growth in NaCl solutions and have studied factors such as sub-
cooling, salt diffusion, and external magnetic fields [7,8]. These works 
highlight the role of multi-field coupling in accurately predicting den-
dritic structures and improving desalination efficiency [9]. Laxmipathy 
et al. [10] performed numerical simulations for the macrostructural 
evolution of unidirectionally solidified dendrites with different crystal 
orientations using a multi-component vector-valued phase-field model 
to study the growth competition of columnar dendrites under convec-
tive conditions. Geng et al. [11] introduced an anisotropic interfacial 
energy function to propose a lattice Boltzmann-phase field model for 
studying faceted crystal growth. Their study explained the mechanism 
of faceted structure formation and the evolution of interfacial velocity. 
Zhao et al. [12] developed surrogate models for computationally ef-
ficient phase-field simulations of dendritic microstructures during the 
solidification process. Fig.  1 presents a snapshot of the freezing of soap 
bubbles [13].
https://doi.org/10.1016/j.icheatmasstransfer.2025.109195
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Fig. 1. Freezing of a bubble stacked on an icy substrate.
Source: Reprinted from Ahmadi et al. [13] with permission 
from NPG.

First, we consider the following governing equation [14–18]: 

 = ∫

[

𝜖2(𝜃)
2

|∇𝜙|2 + 2𝜙2(1 − 𝜙)2 + 16𝜆𝑈
(

𝜙3

3
−
𝜙4

2
+
𝜙5

5

)]

d𝐱, (1)

where 𝜙 is the phase-field function, and 
𝜖(𝜃) = 𝜖0(1 + 𝜖6 cos(6𝜃)). (2)

Hence, we have 
𝜖2(𝜃)𝜙𝑡 = − 𝛿

𝛿𝜙
, (3)

where 𝛿𝛿𝜙  is the variational derivative with respect to 𝜙. Then, Eq. (3) 
can be written as
𝜖2(𝜃)𝜙𝑡 = ∇ ⋅ (𝜖2(𝜃)∇𝜙) + 4[𝜙 − 0.5 − 2𝜆𝑈𝜙(1 − 𝜙)]𝜙(1 − 𝜙)

+
(

|∇𝜙|2𝜖(𝜃)
𝜕𝜖(𝜃)
𝜕𝜙𝑥

)

𝑥
+
(

|∇𝜙|2𝜖(𝜃)
𝜕𝜖(𝜃)
𝜕𝜙𝑦

)

𝑦
, (4)

𝑈𝑡 = 𝐷𝛥𝑈 +𝐾𝜙𝑡. (5)

Here, the subscripts (⋅)𝑡, (⋅)𝑥, and (⋅)𝑦 represent partial differentiation 
with respect to 𝑡, 𝑥, and 𝑦, respectively

The proposed method rotates all points on the sphere with respect 
to the crystal center point and then computes 𝜙 for the rotated points. 
In contrast, the previous method [19] sets every point on the sphere as 
a reference and individually rotates its one-ring neighboring points to 
compute 𝜙 at the reference point. Fig.  2 schematically illustrates the re-
sults of rotating a crystal and projecting it onto the 𝑥𝑦-plane using both 
the proposed (red dash line) and previous (blue solid line) methods. As 
shown in Fig.  2(b), the previous method leads to mismatches because 
the rotation axis (𝐚𝐫 in Eq. (9)) varies depending on the position of the 
reference point. As a result, different rotation angles (𝜌 in Eq. (10)) 
are produced when each point is rotated individually. The primary 
objective of this study is to resolve this mismatch problem, we propose 
the method that rotates all points based on a single reference point, 
guaranteeing consistency in the rotation process.

After rotation and interpolation, standard finite difference meth-
ods are applied to solve Eq. (4) numerically. Then, we subsequently 
interpolate and project the numerical solution of Eq. (4) back to the 
triangular mesh. Next, we solve Eq. (5) on a triangular mesh using the 
Laplace–Beltrami operator (LBO).

However, we encountered an additional problem in the simulation 
of the growth of multiple crystals. If there are multiple crystals, the 
reference for rotation is ambiguous. Hence, to resolve this problem, we 
applied a vector-valued phase-field equation. A 2D phase-field equation 
for multiple dendritic growth is as follows:
𝜖2(𝜃𝑘)(𝜙𝑘)𝑡 = ∇ ⋅ (𝜖2(𝜃𝑘)∇𝜙𝑘) + 4[𝜙𝑘 − 0.5 − 2𝜆𝑈𝜙𝑘(1 − 𝜙𝑘)]𝜙𝑘(1 − 𝜙𝑘)

+
(

|∇𝜙𝑘|
2𝜖(𝜃𝑘)

𝜕𝜖(𝜃𝑘)
𝜕(𝜙𝑘)𝑥

)

𝑥
+
(

|∇𝜙𝑘|
2𝜖(𝜃𝑘)

𝜕𝜖(𝜃𝑘)
𝜕(𝜙𝑘)𝑦

)

𝑦
, (6)

𝑈𝑡 = 𝐷𝛥𝑈 +𝐾
𝑁
∑

(𝜙𝑘)𝑡, (7)

𝑘=1

2 
where 𝑘 denotes 𝑘th component of crystal for 𝑘 = 1,… , 𝑁 , 𝜙𝑘
and 𝜃𝑘 are the vector-valued phase-field and angle of the k-th crys-
tal, respectively. Here, 𝜃𝑘 is the angle between the normal vector, 
−∇𝜙𝑘 = (−(𝜙𝑘)𝑥,−(𝜙𝑘)𝑦), of the interface and the 𝑥-axis, i.e., 𝜃𝑘 =
tan−1

(

(𝜙𝑘)𝑦∕(𝜙𝑘)𝑥
)

. The anisotropic term is 𝜖(𝜃𝑘) = 𝜖0(1 + 𝜖6 cos(6𝜃𝑘)). 
Let
(

|∇𝜙𝑘|
2𝜖(𝜃𝑘)

𝜕𝜖(𝜃𝑘)
𝜕(𝜙𝑘)𝑥

)

𝑥
=

(

((𝜙𝑘)2𝑥 + (𝜙𝑘)2𝑦)𝜖(𝜃𝑘)𝜖
′(𝜃𝑘)

(

−
(𝜙𝑘)𝑦

(𝜙𝑘)2𝑥 + (𝜙𝑘)2𝑦

))

𝑥

= −
(

𝜖′(𝜃𝑘)𝜖(𝜃𝑘)(𝜙𝑘)𝑦
)

𝑥 ,
(

|∇𝜙𝑘|
2𝜖(𝜃𝑘)

𝜕𝜖(𝜃𝑘)
𝜕(𝜙𝑘)𝑦

)

𝑦
=

(

((𝜙𝑘)2𝑥 + (𝜙𝑘)2𝑦)𝜖(𝜃𝑘)𝜖
′(𝜃𝑘)

(𝜙𝑘)𝑥
(𝜙𝑘)2𝑥 + (𝜙𝑘)2𝑦

)

𝑦

=
(

𝜖′(𝜃𝑘)𝜖(𝜃𝑘)(𝜙𝑘)𝑥
)

𝑦 .

Therefore, Eq. (6) can be rewritten as

𝜖2(𝜃𝑘)
𝜕𝜙𝑘
𝜕𝑡

= ∇ ⋅ (𝜖2(𝜃𝑘)∇𝜙𝑘) + 4[𝜙𝑘 − 0.5 − 2𝜆𝑈𝜙𝑘(1 − 𝜙𝑘)]𝜙𝑘(1 − 𝜙𝑘)

−
(

𝜖′(𝜃𝑘)𝜖(𝜃𝑘)(𝜙𝑘)𝑦
)

𝑥 +
(

𝜖′(𝜃𝑘)𝜖(𝜃𝑘)(𝜙𝑘)𝑥
)

𝑦 . (8)

The rest of this paper is structured as follows. In Section 2, we 
describe the computational method in detail. In Section 3, we present 
many numerical experiments. Section 4 provides a summary of conclu-
sions.

2. Computational method

In this section, we describe the computational algorithm for solving 
the two-dimensional phase-field Eq. (7) and (8) on a spherical surface. 
For anisotropic dendritic growth, we first rotate the spherical surface 
in three-dimensional (3D) space, with radius 𝑅, so that the crystal 
seed is located at the North Pole point. Then, we project the spherical 
surface onto a two-dimensional plane to solve Eq. (8). On the other 
hand, since Eq. (7) assumes isotropic behavior, it is solved directly 
on the spherical surface in 3D space. To avoid confusion, we denote 
points on the spherical surface in 3D space by (𝑥, 𝑦, 𝑧), and points in the 
projected two-dimensional plane for anisotropic dendritic growth by 
(𝑋, 𝑌 ). The detailed description of the numerical algorithm is presented 
in the remainder of this section.

Let a spherical surface  of radius 𝑅 be centered at (𝑥, 𝑦, 𝑧) = (0, 0, 0). 
We generate a triangular mesh 𝑑 using the SphereMesh function 
in MATLAB [20]. We will rotate the spherical surface  so that the 
coordinate of the vertex of the crystal center (seed) point 𝐱𝑐 is the North 
Pole point 𝐱𝑡 = (0, 0, 𝑅). To rotate the spherical surface, let us define the 
rotation axis 𝐚𝐫 as follows 

𝐚𝐫 =
𝐱𝑐 × 𝐱𝑡
|𝐱𝑐 × 𝐱𝑡|

, (9)

as shown in Fig.  3(a). Once the axis of rotation 𝐚𝐫 is determined, the 
angle of rotation 𝜑, which represents the amount of rotation, is defined 
as the angle between the two vectors 𝐱𝑐 and 𝐱𝑡, i.e., 

𝜑 = cos−1
( 𝐱𝑐 ⋅ 𝐱𝑡
|𝐱𝑐 ||𝐱𝑡|

)

. (10)

To locate the crystal seed 𝐱𝑐 to 𝐱𝑡, We rotate the spherical surface 
𝑑 around 𝐚𝐫 by 𝜑 [21]: 

𝐱̃𝑠 = (1 − cos(𝜑))(𝐱𝑠 ⋅ 𝐚𝐫 )𝐚𝐫 + cos(𝜑)𝐱𝑠 + sin(𝜑)𝐚𝐫 × 𝐱𝑠, for ∀𝐱𝑠 ∈ 𝑑 . (11)

Next, to reduce the computational cost, we define sub-domain ̃ ′

including the crystal and belonging to the upper spherical cap, see 
Fig.  3(b). We compute 𝜙 not in the entire domain , but in the upper 
spherical cap ̃ ′. Herein, 𝜃ℎ(∈ (0, 𝜋∕2)) of the cap is the polar angle 
between the rotated crystal center point 𝐱̃𝑐 (= (0, 0, 𝑅)) and the edge of 
the disc forming the base of the cap. This angle is determined according 
to the size of the crystal to ensure that the spherical cap encompasses 
the crystal. Specifically, it is always greater than the polar angle 𝜃𝑝
between the rotated crystal center point and the crystal tip. We used 
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Fig. 2. Schematic diagram for the previous and proposed rotation methods.
Fig. 3. Schematic for rotation algorithm and the computational domain for 𝜙.
𝜃ℎ = 𝜃𝑝+𝜋∕36. In Fig.  5, the region represented in light green indicates 
the sub-domain ̃ ′, which is adaptively determined based on the size 
of the crystal.

The points 𝐱̃𝑠(∈ ̃ ′) are projected onto the 𝑥𝑦-plane, which we 
denote it as ̂𝐱𝑠. Next, the projected points ̂𝐱𝑠 are extended by accounting 
for the arc length between each 𝐱̃𝑠 and the rotated crystal center 𝐱̃𝑐 , as 
follows: 

𝐱̄𝑠 = 𝑅 cos−1
( 𝐱̃𝑠 ⋅ 𝐱̃𝑐
|𝐱̃𝑠||𝐱̃𝑐 |

) 𝐱̂𝑠
|𝐱̂𝑠|

. (12)

Finally, we interpolate the phase-field values and the temperature 
field values from the projected values at the vertices 𝐱̄𝑠 using the 
scatteredInterpolant function in MATLAB [22].

We solve now Eq. (6) using values interpolated into the two-
dimensional Cartesian local coordinate. Let ℎ be grid size, 𝑁 = [2𝐿∕ℎ]+
1 be the number of grids with 𝐿 = 𝜃ℎ𝑅, and 𝛺𝑑 = {𝑋𝑖 = −𝐿 + (𝑖 −
0.5)ℎ, 𝑌𝑗 = −𝐿 + (𝑗 − 0.5)ℎ, 1 ≤ 𝑖, 𝑗 ≤ 𝑁} be the set of cell centers. Let 
𝜙𝑛𝑘,𝑖𝑗 = 𝜙𝑘(𝑋𝑖, 𝑌𝑗 , 𝑛𝛥𝑡), 𝑈𝑛

𝑖𝑗 = 𝑈 (𝑋𝑖, 𝑌𝑗 , 𝑛𝛥𝑡), and 𝜃𝑛𝑘,𝑖𝑗 = 𝜃𝑘(𝑋𝑖, 𝑌𝑗 , 𝑛𝛥𝑡)). 
Then, Eq. (8) is discretized as follows:

𝜖2(𝜃𝑛𝑘,𝑖𝑗 )
𝜙𝑛+1𝑘,𝑖𝑗 − 𝜙

𝑛
𝑘,𝑖𝑗

𝛥𝑡
=

[

∇𝑑 ⋅ (𝜖2(𝜃𝑘)∇𝑑𝜙𝑘)
]𝑛
𝑖𝑗 (13)

+4[𝜙𝑛𝑘,𝑖𝑗 − 0.5 − 2𝜆𝑈 𝑛
𝑖𝑗𝜙

𝑛
𝑘,𝑖𝑗 (1 − 𝜙

𝑛
𝑘,𝑖𝑗 )]𝜙

𝑛
𝑘,𝑖𝑗 (1 − 𝜙

𝑛
𝑘,𝑖𝑗 )

−
[

𝐷𝑥
(

𝜖′(𝜃𝑘)𝜖(𝜃𝑘)𝐷𝑦𝜙𝑘
)]𝑛
𝑖𝑗 +

[

𝐷𝑦
(

𝜖′(𝜃𝑘)𝜖(𝜃𝑘)𝐷𝑥𝜙𝑘
)]𝑛
𝑖𝑗 ,

where 𝜃𝑛𝑘,𝑖𝑗 is the angle at 𝐱̄𝑛𝑖𝑗 , and ∇𝑑𝜙𝑘 = (𝐷𝑥𝜙𝑘, 𝐷𝑦𝜙𝑘) is the discrete 
gradient. The two terms in Eq. (14) are

𝜖(𝜃𝑛𝑘,𝑖𝑗 ) = 𝜖0
(

1 + 𝜖6 cos(6(𝜃𝑛𝑘,𝑖𝑗 − 𝜃̄))
)

, (14)

𝜖′(𝜃𝑛 ) = −6𝜖 𝜖 sin(6(𝜃𝑛 − 𝜃̄)), (15)
𝑘,𝑖𝑗 0 6 𝑘,𝑖𝑗

3 
where 𝜃̄ is an orientation angle. To compute 𝜖2(𝜃𝑛𝑘,𝑖𝑗 ), we define

−∇𝑑𝜙
𝑛
𝑘,𝑖𝑗 = −(𝐷𝑥𝜙

𝑛
𝑘,𝑖𝑗 , 𝐷𝑦𝜙

𝑛
𝑘,𝑖𝑗 ) = −

(

𝜙𝑛𝑘,𝑖+1,𝑗 − 𝜙
𝑛
𝑘,𝑖−1,𝑗

2ℎ
,
𝜙𝑛𝑘,𝑖,𝑗+1 − 𝜙

𝑛
𝑘,𝑖,𝑗−1

2ℎ

)

.

Hence, we have 

𝜃𝑛𝑘,𝑖𝑗 = tan−1
(

𝜙𝑛𝑘,𝑖,𝑗−1 − 𝜙
𝑛
𝑘,𝑖,𝑗+1

𝜙𝑛𝑘,𝑖−1,𝑗 − 𝜙
𝑛
𝑘,𝑖+1,𝑗

)

. (16)

Using this angle 𝜃𝑛𝑘,𝑖𝑗 and Eq. (14), we compute 𝜖2(𝜃𝑛𝑘,𝑖𝑗 ). Next, we 
get
[

∇𝑑 ⋅ (𝜖2(𝜃𝑘)∇𝑑𝜙𝑘)
]𝑛
𝑖𝑗

=
𝜖2(𝜃𝑛

𝑘,𝑖+ 1
2 ,𝑗

)
(

𝜙𝑛𝑘,𝑖+1,𝑗 − 𝜙
𝑛
𝑘,𝑖𝑗

)

− 𝜖2(𝜃𝑛
𝑘,𝑖− 1

2 ,𝑗
)
(

𝜙𝑛𝑘,𝑖𝑗 − 𝜙
𝑛
𝑘,𝑖−1,𝑗

)

ℎ2

+
𝜖2(𝜃𝑛

𝑘,𝑖,𝑗+ 1
2

)
(

𝜙𝑛𝑘,𝑖𝑗 − 𝜙
𝑛
𝑘,𝑖,𝑗+1

)

− 𝜖2(𝜃𝑛
𝑘,𝑖,𝑗− 1

2

)
(

𝜙𝑛𝑘,𝑖𝑗 − 𝜙
𝑛
𝑘,𝑖,𝑗−1

)

ℎ2
,

[

𝐷𝑥
(

𝜖′(𝜃𝑘)𝜖(𝜃𝑘)𝐷𝑦𝜙𝑘
)]𝑛
𝑖𝑗

=
𝜖′(𝜃𝑘,𝑖+ 1

2 ,𝑗
)𝜖(𝜃𝑘,𝑖+ 1

2 ,𝑗
)
(

𝜙𝑛𝑘,𝑖+1,𝑗+1 − 𝜙
𝑛
𝑘,𝑖+1,𝑗−1 + 𝜙

𝑛
𝑘,𝑖,𝑗+1 − 𝜙

𝑛
𝑘,𝑖,𝑗−1

)

4ℎ2

−
𝜖′(𝜃𝑘,𝑖− 1

2 ,𝑗
)𝜖(𝜃𝑘,𝑖− 1

2 ,𝑗
)
(

𝜙𝑛𝑘,𝑖,𝑗+1 − 𝜙
𝑛
𝑘,𝑖,𝑗−1 + 𝜙

𝑛
𝑘,𝑖−1,𝑗+1 − 𝜙

𝑛
𝑘,𝑖−1,𝑗−1

)

4ℎ2
,

[

𝐷𝑦
(

𝜖′(𝜃𝑘)𝜖(𝜃𝑘)𝐷𝑥𝜙𝑘
)]𝑛
𝑖𝑗

=
𝜖′(𝜃𝑘,𝑖,𝑗+ 1

2
)𝜖(𝜃𝑘,𝑖,𝑗+ 1

2
)
(

𝜙𝑛𝑘,𝑖+1,𝑗+1 − 𝜙
𝑛
𝑘,𝑖−1,𝑗+1 + 𝜙

𝑛
𝑘,𝑖+1,𝑗 − 𝜙

𝑛
𝑘,𝑖−1,𝑗

)

4ℎ2
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Fig. 4. Schematic illustration of surface mesh.
−
𝜖′(𝜃𝑘,𝑖,𝑗− 1

2
)𝜖(𝜃𝑘,𝑖,𝑗− 1

2
)
(

𝜙𝑛𝑘,𝑖+1,𝑗 − 𝜙
𝑛
𝑘,𝑖−1,𝑗 + 𝜙

𝑛
𝑘,𝑖+1,𝑗−1 − 𝜙

𝑛
𝑘,𝑖−1,𝑗−1

)

4ℎ2
,

where

𝜃𝑘,𝑖− 1
2 ,𝑗

= tan−1
(

𝜙𝑛𝑘,𝑖+1,𝑗−1 − 𝜙
𝑛
𝑘,𝑖+1,𝑗+1 + 𝜙

𝑛
𝑘,𝑖,𝑗−1 − 𝜙

𝑛
𝑘,𝑖,𝑗+1

4(𝜙𝑛𝑘,𝑖𝑗 − 𝜙
𝑛
𝑘,𝑖+1,𝑗 )

)

,

𝜃𝑘,𝑖+ 1
2 ,𝑗

= tan−1
(

𝜙𝑛𝑘,𝑖,𝑗−1 − 𝜙
𝑛
𝑘,𝑖,𝑗+1 + 𝜙

𝑛
𝑘,𝑖−1,𝑗−1 − 𝜙

𝑛
𝑘,𝑖−1,𝑗+1

4(𝜙𝑛𝑘,𝑖−1,𝑗 − 𝜙
𝑛
𝑘,𝑖𝑗 )

)

,

𝜃𝑘,𝑖,𝑗− 1
2
= tan−1

(

4(𝜙𝑛𝑘,𝑖𝑗 − 𝜙
𝑛
𝑘,𝑖,𝑗+1)

𝜙𝑛𝑘,𝑖−1,𝑗+1 − 𝜙
𝑛
𝑘,𝑖+1,𝑗+1 + 𝜙

𝑛
𝑘,𝑖−1,𝑗 − 𝜙

𝑛
𝑘,𝑖+1,𝑗

)

,

𝜃𝑘,𝑖,𝑗+ 1
2
= tan−1

(

4(𝜙𝑛𝑘,𝑖,𝑗−1 − 𝜙
𝑛
𝑘,𝑖𝑗 )

𝜙𝑛𝑘,𝑖−1,𝑗 − 𝜙
𝑛
𝑘,𝑖+1,𝑗 + 𝜙

𝑛
𝑘,𝑖−1,𝑗−1 − 𝜙

𝑛
𝑘,𝑖+1,𝑗−1

)

.

Now, we present a discretization of the LBO [23,24] on the curved 
surfaces. Fig.  4(a) shows the triangular surface mesh of given spherical 
surface . Let 𝑛 be the number of the one-ring points neighboring 𝐱𝑠 and 
let 𝐱𝑠𝑖  for 𝑖 = 1, 2,… , 𝑛 be the one-ring points neighboring 𝐱𝑠. We define 
the triangle 𝑇𝑖 for 𝑖 = 1, 2,… , 𝑛 as ▵ 𝐱𝑠𝐱𝑠𝑖𝐱𝑠𝑖−1  and define the angles 𝛼𝑠𝑖
and 𝛽𝑠𝑖  as ∠𝐱𝑠𝐱𝑠𝑖+1𝐱𝑠𝑖  and ∠𝐱𝑠𝐱𝑠𝑖−1𝐱𝑠𝑖 , respectively, where 𝐱𝑠0 = 𝐱𝑠𝑛  and 
𝐱𝑠𝑛+1 = 𝐱𝑠1 . The area of the triangle 𝑇𝑖 is defined by

𝑎(𝑇𝑖) =
1
2

√

|𝐱𝑠𝑖 − 𝐱𝑠|2|𝐱𝑠𝑖−1 − 𝐱𝑠|2 −
(

𝐱𝑠𝑖 − 𝐱𝑠, 𝐱𝑠𝑖−1 − 𝐱𝑠
)2

and the sum of the area of the triangles is defined by

𝐴(𝐱𝑠) =
𝑛
∑

𝑖=1
𝑎(𝑇𝑖).

Then, the discrete LBO at 𝐱𝑠 [25] is given by

𝛥𝑈𝑠 ≈
3

𝐴(𝐱𝑠)

𝑛
∑

𝑖=1

cot 𝛼𝑠𝑖 + cot 𝛽𝑠𝑖
2

(𝑈𝑠𝑖 − 𝑈𝑠),

where 𝑈𝑠 = 𝑈 (𝐱𝑠) and 𝑈𝑠𝑖 = 𝑈 (𝐱𝑠𝑖 ).

3. Computational tests

We use 𝑅 = 120, the number of crystal seeds 𝑁 = 1, and the 
initial angle of the spherical cap 𝜃ℎ = 𝜋∕18 = 10◦. Here, if the distance 
between the tip of the crystal and the edge of the disc forming the base 
of the cap is less than any reference, increase the angle 𝜃ℎ of the cap 
by 𝜋∕36 = 5◦ to widen the computational domain. We use the default 
values of parameters: 𝜆 = 3.1913, 𝜖0 = 1, 𝜖6 = 1∕(62 −1), 𝜃̄ = 𝜋∕6, 𝐷 = 1, 
ℎ = 0.5, and 𝛥𝑡 = 0.1ℎ2∕𝐷.

3.1. Temporal evolution

To consider isothermal crystallization on spheres. we use the fol-
lowing initial conditions: 

𝜙(𝐱𝑠, 0) =
1
2

(

1 + tanh

(

𝑟 − 𝑅𝜃
√

2

))

,

( )

(17)

𝑈 (𝐱𝑠, 0) = 1 − 𝜙(𝐱𝑠, 0) 𝛥,

4 
where 𝜃 = cos−1
(

(𝐱𝑠) ⋅ (0, 0, 𝑅)
)

, undercooling 𝛥 = −0.65, and 𝑟 = 5
for 𝐱𝑠 = (𝑥𝑠, 𝑦𝑠, 𝑧𝑠) ∈ 𝑑 . Fig.  5 shows snapshots of the anisotropic ice 
crystal growth at different times 𝑡 = 0𝛥𝑡, 4000𝛥𝑡, 8000𝛥𝑡, and 12000𝛥𝑡. 
The computational domain is shown in fluorescent colors and as the 
crystals grew, the computational domain expands.

3.2. Effect of the simulation parameters

We conducted the comparison test on the evolution of crystal 
growth depending on the simulation parameters such as orientation 
angle 𝜃̄, latent heat 𝐾, and the curvature 2∕𝑅 at 𝑡 = 6000𝛥𝑡. Fig.  6 
corresponds to the results for the orientation angle, thermal parameter, 
and spherical radius, respectively. Each row presents the results for a 
specific test parameter, while each column, from left to right, repre-
sents simulations conducted with different values of the corresponding 
parameter.

First, Fig.  6(a) shows the results for different orientation angles, 
𝜃̄ = 2𝜋∕12, 3𝜋∕12, and 4𝜋∕12. Regardless of the orientation angle, 
the dendritic structures crystallize effectively, which indicates that 
the proposed method can stably simulate anisotropic crystal growth 
for different preferred orientations. The overall morphology remains 
consistent while adapting to the specified angular alignment.

Second, Fig.  6(b) presents the results for different latent heat val-
ues, 𝐾 = 0.9, 1.0, and 1.1. The latent heat parameter influences the 
branching structure of the dendrites, where higher 𝐾 values result in 
more pronounced and well-developed branches. Conversely, when 𝐾 is 
lower, the branching becomes less prominent, and the dendritic shape 
becomes more compact. Based on this test, 𝐾 = 1.0 is chosen for all 
subsequent simulations as it provides a balanced branching structure 
suitable for studying dendritic growth dynamics.

Last, Fig.  6(c) shows the results of the proposed scheme for different 
spherical radii, 𝑅 = 90,120, and 150. Note that for a smaller spherical 
radius (higher curvature), the dendrites appear less ramified. Based on 
this test, 𝑅 = 120 is chosen for all subsequent simulations.

3.3. Effect of position of crystal

We compare the evolution of the crystal growth according to the 
initial position on spherical domain. Fig.  7 schematically illustrates 
the process of rotating and projecting two crystals located at different 
positions using the proposed method. Fig.  7(a) presents the two crys-
tals, while Fig.  7(b) and (d) depict the rotation of the sphere based 
on the center of each crystal. Fig.  7(c) and (e) show the projection 
of the rotated crystals onto the 𝑥𝑦-plane. In Fig.  7(b)–(e), the solid 
line represents the 𝑥-axis, while the dashed line indicates a vector 
forming an angle equal to the reference angle 𝜃̄ with the 𝑥-axis. As 
observed in Fig.  7, the rotation angle varies depending on the position 
of the crystal seed. Consequently, when crystals rotated from different 
positions are projected onto the 𝑥𝑦-plane, their reference angles differ. 
This discrepancy arises because the rotation axis changes with the 
seed position, which causes the sphere to rotate around different axes, 



S. Kim et al. International Communications in Heat and Mass Transfer 167 (2025) 109195 
Fig. 5. Evolution of the phase at (a) 𝑡 = 0𝛥𝑡, (b) 𝑡 = 4000𝛥𝑡, (c) 𝑡 = 8000𝛥𝑡, and (d) 𝑡 = 12000𝛥𝑡.
Fig. 6. Dendritic growth with various simulation parameters such as (a) the orientation angle 𝜃̄ = 2𝜋∕12, 𝜃̄ = 3𝜋∕12, and 𝜃̄ = 4𝜋∕12, (b) the latent heat 𝐾 = 1.1, 𝐾 = 1.0, and 
𝐾 = 0.9, and (c) the spherical radii 𝑅 = 90, 𝑅 = 120, and 𝑅 = 150 at 𝑡 = 6000𝛥𝑡.
whereas the 𝑥𝑦-plane remains fixed and does not rotate. Therefore, 
the proposed method ensures that the reference angle of polycrys-
talline is determined according to the rotation angle 𝜌 at each position. 
This guarantees that all crystals grow while maintaining a consistent 
reference angle, regardless of the initial position and rotation of the 
seed.

Given that the proposed method can reliably simulate anisotropic 
crystal growth for different preferred orientations, it is important to 
keep in mind that the phase evolution results correspond to different 
reference angles depending on the position of the crystal. The central 
position of the crystal follows a spherical coordinate system, and the 
pairs of poles 𝜓 and azimuth 𝜉 angles of the radiation used (𝜓, 𝜉) =
(0, 0), (𝜋∕5, 0), (2𝜋∕5, 0), (3𝜋∕5, 0), (4𝜋∕5, 0), and (𝜋, 0). Fig.  8 displays the 
evolution of crystal growth according to position using the proposed 
algorithm. As shown in Fig.  8, we see a similar dendrite growth at all 
positions. Thus, this test demonstrates the robustness of the our scheme 
to crystal growth according to the position on the sphere.

3.4. Influence between crystals

Interference exists as multiple crystals grow in a limited area. In this 
section, numerical experiments have been conducted on this situation, 
and numerical results are presented when there is a time difference in 
5 
crystal seed production. First, we conducted numerical experiments on 
the growth of multiple crystals in parallel. To consider multiple isother-
mal crystallization on spheres, we use the following initial conditions: 

𝜙(𝐱𝑠, 0) =
𝑁
∑

𝑘=1

1
2

(

1 + tanh

(

𝑟 − 𝑅𝜃𝑘
√

2

))

,

𝑈 (𝐱𝑠, 0) =
(

1 − 𝜙(𝐱𝑠, 0)
)

𝛥,

(18)

where 𝜃𝑘 = cos−1(𝐯𝑘 ⋅𝐱𝑠). Fig.  9 illustrates the progression of anisotropic 
multiple crystal growth at different times 0, 3000𝛥𝑡, 6000𝛥𝑡, and 10000𝛥𝑡
from (a) to (d), and highlights the competitive interactions that emerge 
as the crystals expand. Initially, as shown in Fig.  9(a), several nucle-
ation sites are distributed within the domain. As time progresses, Fig. 
9(b) captures the early growth phase, where individual crystals develop 
isotropically and maintain distinct boundaries. As the growth contin-
ues, interactions between adjacent crystals become more pronounced, 
which is depicted in Fig.  9(c). By the advanced stage, shown in Fig. 
9(d), the closely spaced nucleation sites lead to significant competi-
tion. As a result, intricate structural evolution occurs. The proposed 
method effectively captures these competitive growth dynamics and 
demonstrates that crystal interfaces interact and influence each other’s 
morphology as they expand.
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Fig. 7. Schematic of the rotation and projection with 𝜃̄ = 𝜃̄1, 𝜃̄2 in the proposed method.
Fig. 8. Evolution of crystal growth by proposed algorithm according to the position of crystal at (a) 𝑡 = 0𝛥𝑡, (b) 𝑡 = 2000𝛥𝑡, (c) 𝑡 = 4000𝛥𝑡, and (d) 𝑡 = 6000𝛥𝑡.
Fig. 9. Snapshot of the multiple crystal growth in parallel at time 𝑡 = 0, 3000𝛥𝑡, 6000𝛥𝑡, and 9000𝛥𝑡 from (a) to (d).
, 
Finally, we performed a numerical simulation for the growth of 
multiple crystals under conditions where the crystals are generated at 
different times. In addition, we compare the computational results of 
our proposed method with those of the previous studies. Therefore, we 
conducted the test from Section 3.6 in the previous study [19]. Fig. 
10 presents snapshots of crystal growth using a level 7 mesh with 20 
initial circles, where (a) shows the results of the previous method and 
(b) presents the outcomes of the proposed method. In Fig.  10(a), some 
crystals exhibit morphological distortions, which indicates potential 
inaccuracies in the simulation. In contrast, Fig.  10(b) demonstrates 
well-preserved crystal shapes, which suggests that the proposed method 
6 
effectively reduces such distortions. This result demonstrates the ro-
bustness of the proposed method in accurately capturing the crystal 
growth process.

3.5. 𝑘-fold crystal growth

To explain how the anisotropic term is handled in the governing 
equation, we conducted numerical simulations for crystal growth with 
𝑘 branches. We defined the anisotropic term by 𝜖(𝜙) = 𝜖0

(

1 + 𝜖𝑘 cos(𝑘𝜙)
)

where 𝑘 represents the number of branches in the crystal. This expres-
sion directly controls the directional preference of growth and allows 
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Fig. 10. Snapshots of crystal growth using a level 7 mesh with 20 initial circles. (a) the result of previous method [19] and (b) the result of the proposed method.
Fig. 11. Evolution of the phase at (a) 𝑡 = 0𝛥𝑡, (b) 𝑡 = 4000𝛥𝑡, (c) 𝑡 = 8000𝛥𝑡, and (d) 𝑡 = 12000𝛥𝑡. The first row corresponds to 𝑘 = 5 and the second row shows the result for 𝑘 = 7.
the model to simulate 𝑘-fold symmetric crystal growth. Therefore, we 
can perform simulations for several values of 𝑘. These simulations 
confirmed that the model produces distinct 𝑘-fold symmetric growth 
patterns. Fig.  11 shows the results for 𝑘 = 5 and 𝑘 = 7 as representative 
examples, which demonstrate that the proposed method can naturally 
reproduce anisotropic morphologies based on the chosen value of 𝑘. 
For the case of 𝑘 = 6, the result is provided in Fig.  5.

3.6. Convergence tests

We conducted a convergence study to assess the accuracy of the 
proposed algorithm in terms of spatial and temporal resolution. For 
the spatial test, the time increment was set to 𝛥𝑡 = 1.0 × 10−6, and 
computations were performed up to a total time of 15𝛥𝑡. The initial 
radius of the crystal and the spherical domain radius were set to 𝑟 =
0.25 and 𝑅 = 1, and the rest of the model parameters were set as 
described earlier in Section 3.

To evaluate spatial error, we compared the numerical solution 
obtained at each mesh level with a highly resolved reference solution 
based on level 8, using the following 𝐿2-norm formula: 

‖𝑒‖ =

√

√

√

√

√

1
𝑀

𝑀
∑

𝑝=1
(𝜙𝑝 − 𝜙ref𝑝 )2. (19)

The variable ℎ denotes the spatial resolution, and the convergence rate 
was determined from the ratio log2(‖𝑒ℎ‖∕‖𝑒ℎ∕2‖). The spatial errors and 
corresponding rates are summarized in Table  1.

We then tested convergence with respect to time. In this case, the 
mesh was fixed at level 7, which corresponds to ℎ = 0.007, and the 
7 
Table 1
Spatial convergence test results.
 Grid size, ℎ 𝐿2-Error Rate  
 0.028 7.0473 × 10−5 –  
 0.014 1.6066 × 10−5 2.1331 
 0.007 4.0892 × 10−6 1.9741 

Table 2
Temporal convergence test results.
 Time step, 𝛥𝑡 𝐿2-Error Rate  
 1.0 × 10−6 4.0907 × 10−8 –  
 5.0 × 10−7 1.9699 × 10−8 1.0543 
 2.5 × 10−7 9.1707 × 10−9 1.1030 

system evolved until 𝑡 = 3.0 × 10−5. For error estimation, we used the 
𝐿2-norm, Eq. (19), where the reference solution was computed using a 
fine time step of 𝛥𝑡 = 3.125 × 10−8. The temporal convergence rate was 
calculated by taking log2(‖𝑒𝛥𝑡‖∕‖𝑒𝛥𝑡∕2‖). Table  2 provides the temporal 
error data.

These results indicate that the scheme reaches second-order conver-
gence in space and nearly first-order convergence in time.

4. Conclusions

In this work, we have presented a computational method for the 
phase-field equation of multiple anisotropic dendritic growth. By us-
ing the developed algorithm, we successfully conducted simulations 
of freezing bubbles. One numerical method for curved surfaces is a 
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triangular mesh-based computation method for surfaces. We solved 
the governing equation by rotating the triangular mesh relative to the 
vertex of the crystal seed and then by projecting and interpolating 
it to Cartesian coordinates. When projecting the triangular mesh into 
Cartesian coordinates, we apply an adaptive block region that embeds 
each dendritic phase to get the computational efficiency. This approach 
became more effective as the number of crystals increased. The vector-
valued Allen–Cahn equation was applied to clarify the criterion of 
rotation in the case of polycrystals. Various numerical tests were con-
ducted on a spherical surface to validate the reliability and robustness 
of the proposed computational algorithm for solving the phase-field 
equations of multiple dendritic growth. We thoroughly evaluated the 
computational results obtained in these tests, and provided strong 
evidence confirming the reliability and robustness of our computational 
scheme. In addition, the subject of future research is to simulate the 
growth of polycrystals and collisions between crystals while the crystals 
on the spherical surface move in consideration of fluid flow.
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