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 A B S T R A C T

This study presents a normalized time-fractional Fisher equation to resolve scaling inconsis-
tencies associated with conventional time-fractional derivatives. A finite difference scheme 
is applied to numerically solve the equation. Computational experiments are conducted to 
investigate the impact of the fractional order on the system’s dynamics. The numerical results 
demonstrate the influence of memory effects on the solution’s evolution and highlight the 
advantages of the proposed normalization approach for fractional-order models.

1. Introduction

The Fisher equation is a classical reaction–diffusion equation that has been extensively studied for its traveling wave solutions [1] 
and applications [2] in ecological modeling. To resolve the scaling inconsistencies related to fractional orders, we present the 
following normalized time-fractional Fisher equation:

𝜕𝛼𝑢
𝜕𝑡𝛼

= 𝐷 𝜕2𝑢
𝜕𝑥2

+ 𝜌(1 − 𝑢)𝑢, 0 < 𝛼 < 1, (1)

𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑥 ∈ 𝛺 = (𝐿𝑥, 𝑅𝑥), 𝑢(𝐿𝑥, 𝑡) = 𝜓1(𝑡) and 𝑢(𝑅𝑥, 𝑡) = 𝜓2(𝑡), 𝑡 ≥ 0, (2)

where the normalized time-fractional derivative [3–5] is defined as follows: 
𝜕𝛼𝑢(𝑥, 𝑡)
𝜕𝑡𝛼

= 1 − 𝛼
𝑡1−𝛼 ∫

𝑡

0

𝜕𝑢(𝑥, 𝑠)
𝜕𝑠

𝑑𝑠
(𝑡 − 𝑠)𝛼

, (3)

which is similar to the Caputo fractional derivative [6,7] and provides a fair comparison across different fractional orders. The 
time-fractional Fisher equation can be applied to various challenging and interesting problems in chemistry and biology, such as 
the population genetics of the neutron and flame spreading models [8]. Furthermore, Alquran et al. [9] validated the outcome 
using a time-fractional equation to analyze the behavioral pattern of the bird species Phalacrocorax carbo. The application is based 
on abundance data collected from the real-world observations. We provide a brief review of previous studies on numerical schemes 
for the time-fractional Fisher equation. Gabrick et al. [10] proposed a numerical scheme to solve the fractional reaction–diffusion 
equation under various kernels, which include singular and non-singular types, and the stability conditions explicitly depend on the 
kernel. Using Caputo fractional derivatives, Gabrick et al. [11] analyzed the effects of fractional differential operators in time, space, 
and both variables and demonstrated that the time to reach a steady state is significantly influenced by the fractional order. Majeed 
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et al. [12] proposed a numerical algorithm based on the cubic B-spline finite element method to solve time-fractional Burgers’ and 
Fisher equations using the L1 formula for time discretization and the Crank–Nicolson scheme for spatial interpolation. The numerical 
results demonstrated the method’s effectiveness in solving nonlinear fractional equations, validated by error norm calculations. The 
Yang transform is an integral transform discovered by Yang [13], which is capable of solving fractional partial differential equations 
using the homotopy perturbation method developed by He [14]. The Yang transform with the homotopy perturbation technique can 
find an analytical approximate solution for complicated non-linear fractional partial differential equations [15]. Zidan et al. [16] 
suggested an analytical technique using the Adomian decomposition technique and homotopy perturbation methodology with the 
Yang transform to solve the time-fractional Fisher equation. The Sumudu transform iterative method, introduced by Watugala [17], is 
similar to the Laplace transform. However, its distinguishing feature is that the convergent solution is expressed through a recursive 
relation.

In the above-mentioned studies, researchers mainly focused on developing methods to solve the traditional time-fractional Fisher 
equation. However, when we investigate and compare the effects of the fractional order, a problem arises because the integral of 
the weight function of the time-fractional derivative depends on both time and the fractional order [5]. To resolve this issue, we 
present a normalized time-fractional Fisher equation based on a normalized weighting function [5], where its integral with respect 
to time is independent of both time and the fractional order.

This paper is organized as follows. Section 2 describes the numerical method for the time-fractional Fisher equation. Section 3 
presents the computational experiments. Section 4 provides the conclusions.

2. Computational solutions

We describe a computational scheme for Eq. (1). Let 𝛺ℎ = {𝑥𝑖|𝑥𝑖 = 𝐿𝑥 + (𝑖 − 1)ℎ, 𝑖 = 1,… , 𝑁𝑥} be a discrete domain and ℎ be a 
space step. Let 𝑢𝑛𝑖 = 𝑢

(

𝑥𝑖, 𝑡𝑛
)

, where 𝑡𝑛 = (𝑛 − 1)𝛥𝑡. We discretize Eq. (3) as

𝜕𝛼𝑢(𝑥𝑖, 𝑡𝑛+1)
𝜕𝑡𝛼

= 1 − 𝛼
𝑡1−𝛼𝑛+1

𝑛
∑

𝑚=1
∫

𝑡𝑚+1

𝑡𝑚

𝜕𝑢(𝑥𝑖, 𝑠)
𝜕𝑠

𝑑𝑠
(𝑡𝑛+1 − 𝑠)𝛼

≈
𝑛
∑

𝑚=1

1 − 𝛼
𝑡1−𝛼𝑛+1

∫

𝑡𝑚+1

𝑡𝑚

𝑑𝑠
(𝑡𝑛+1 − 𝑠)𝛼

𝑢𝑚+1𝑖 − 𝑢𝑚𝑖
𝛥𝑡

=
𝑛
∑

𝑚=1

(𝑛 + 1 − 𝑚)1−𝛼 − (𝑛 − 𝑚)1−𝛼

𝑛1−𝛼
𝑢𝑚+1𝑖 − 𝑢𝑚𝑖

𝛥𝑡
. (4)

As a result, we derive 
𝑛
∑

𝑚=1
𝑤𝑛𝑚

𝑢𝑚+1𝑖 − 𝑢𝑚𝑖
𝛥𝑡

= 𝐷
𝑢𝑛+1𝑖−1 − 2𝑢𝑛+1𝑖 + 𝑢𝑛+1𝑖+1

ℎ2
+ 𝜌(1 − 𝑢𝑛𝑖 )𝑢

𝑛+1
𝑖 , (5)

where 𝑤𝑛𝑚 = [(𝑛 + 1 − 𝑚)1−𝛼 − (𝑛 − 𝑚)1−𝛼]∕𝑛1−𝛼 . Therefore, Eq. (5) becomes 

− 𝐷
ℎ2
𝑢𝑛+1𝑖−1 +

(𝑤𝑛𝑛
𝛥𝑡

+ 2𝐷
ℎ2

− 𝜌(1 − 𝑢𝑛𝑖 )
)

𝑢𝑛+1𝑖 − 𝐷
ℎ2
𝑢𝑛+1𝑖+1 =

𝑤𝑛𝑛
𝛥𝑡
𝑢𝑛𝑖 −

𝑛−1
∑

𝑚=1
𝑤𝑛𝑚

𝑢𝑚+1𝑖 − 𝑢𝑚𝑖
𝛥𝑡

. (6)

Eq. (6) can be written as 𝐴𝐮𝑛+1 = 𝐠, where

𝐴 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑤𝑛𝑛
𝛥𝑡 +

2𝐷
ℎ2

− 𝜌(1 − 𝑢𝑛2) − 𝐷
ℎ2

0 ⋯ 0 0

− 𝐷
ℎ2

𝑤𝑛𝑛
𝛥𝑡 +

2𝐷
ℎ2

− 𝜌(1 − 𝑢𝑛3) − 𝐷
ℎ2

⋯ 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 ⋯ − 𝐷
ℎ2

𝑤𝑛𝑛
𝛥𝑡 +

𝐷
ℎ2

− 𝜌(1 − 𝑢𝑁𝑥−1)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

𝐮𝑛+1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑢𝑛+12
𝑢𝑛+13
⋮

𝑢𝑛+1𝑁𝑥−1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, 𝐠 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑤𝑛𝑛
𝛥𝑡 𝑢

𝑛
2 − 𝐹

𝑛
2 +

𝜓𝑛+11
ℎ2

𝑤𝑛𝑛
𝛥𝑡 𝑢

𝑛
3 − 𝐹

𝑛
3

⋮

𝑤𝑛𝑛
𝛥𝑡 𝑢

𝑛
𝑁𝑥−1

− 𝐹 𝑛𝑁𝑥−1 +
𝜓𝑛+12
ℎ2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,  and 𝐹 𝑛𝑖 =
𝑛−1
∑

𝑚=1
𝑤𝑛𝑚

𝑢𝑚+1𝑖 − 𝑢𝑚𝑖
𝛥𝑡

.

We may also apply the Fourier spectral method for the diffusion equation [18].

3. Computational tests

To analyze the effect of 𝛼 with respect to the initial value of 𝑢, we reformulate 𝑢(𝑥, 𝑡) as an ordinary differential equation in time, 
specifically as 𝑢(𝑡), and rewrite Eq. (5) as follows: 

𝑛
∑

𝑚=1
𝑤𝑛𝑚

𝑢𝑚+1 − 𝑢𝑚
𝛥𝑡

= 𝜌(1 − 𝑢𝑛)𝑢𝑛. (7)
2 



S. Kwak et al. Applied Mathematics Letters 166 (2025) 109542 
Fig. 1. Temporal evolution of 𝑢(𝑡) with 𝑢(0) = (a) 0.05, (b) 0.5, and (c) 0.95.

Table 1
The spatial errors and convergence rates.
 ℎ 0.20 Rate 0.10 Rate 0.05  
 Error 1.4056e−02 2.01 3.5001e−03 2.07 8.3493e−04 

Table 2
The temporal errors and convergence rates.
 𝛥𝑡 0.20 Rate 0.10 Rate 0.05  
 Error 6.8668e−01 1.00 3.4347e−01 1.23 1.4595e−01 

Eq. (7) can be represented as 

𝑢𝑛+1 = 𝑢𝑛 + 𝛥𝑡
𝑤𝑛𝑛

𝜌 (1 − 𝑢𝑛) 𝑢𝑛 −
𝑛−1
∑

𝑚=1
𝑤𝑛𝑚

𝑢𝑚+1 − 𝑢𝑚
𝑤𝑛𝑛

. (8)

Fig.  1 shows the different dynamics for 𝑢(0) = 0.05, 0.5, and 0.95 with 𝛥𝑡 = 0.5. Fig.  1(a) shows that for a small value of 𝑢(0), a 
smaller value of 𝛼 results in a greater increase in 𝑢(𝑡). On the other hand, as shown in Fig.  1(c), when 𝑢(0) is large, a larger value 
of 𝛼 has a more significant impact on the growth of 𝑢(𝑡).

To verify the order of the numerical scheme used, a convergence test is conducted. Let us consider an initial condition: 

𝑢(𝑥, 0) = 1
(

1 + 𝑒𝑥−10
)2
, 𝛺 = (0, 100). (9)

Tables  1 and 2 provide the maximum-norm error ‖𝑢ref − 𝑢‖∞ and rate of the numerical solution for space and time, where 𝑢ref
denotes the reference solution. The parameters used are 𝜓1(𝑡) = 1, 𝜓2(𝑡) = 0, 𝛼 = 0.7, 𝜌 = 6, 𝐷 = 1, 𝛥𝑡 = 1.e−3, a final time 𝑇 = 2. 
The reference solutions in Tables  1 and 2 were obtained using ℎ = 0.0125 and 𝛥𝑡 = 1.5625.e−4, respectively. When the error with 
respect to time is investigated, the spatial step size is fixed ℎ = 0.1.

We note that this paper focuses on the proposal of a normalized time-fractional Fisher equation and the investigation of 
fractional-order effects. For the analysis of the numerical scheme, please refer to [19]. 

To investigate the effect of 𝛼, the initial condition (9) is considered in 𝛺 = (1, 200). Here, the used parameters are 𝜓1(𝑡) = 1, 
𝜓2(𝑡) = 0, 𝐷 = 1, 𝜌 = 6, 𝑁𝑥 = 2001, 𝛥𝑡 = 2.e−3, and 𝑇 = 2.5. Fig.  2 shows the temporal evolution and final profiles of 𝑢(𝑥, 𝑡)
for different fractional orders 𝛼. Fig.  2(a), (b), and (c) show the temporal evolution of the solution 𝑢(𝑥, 𝑡) for 𝛼 = 0.5, 0.7, and 1, 
respectively. Fig.  2(d) shows the final time solution of 𝑢(𝑥, 𝑇 ) for each value of 𝛼, compared to the initial condition 𝑢(𝑥, 0). As the 
value of 𝛼 increases, the evolution speed of 𝑢(𝑥, 𝑡) becomes slower. However, when observing the overall profile, the case where 
𝛼 = 1 represents dynamics similar to a traveling wave solution. For 𝛼 ≠ 1, as the value of 𝛼 decreases, the initial profile near 𝑥 = 10
tends to be preserved.

We investigate the effects of 𝛼 in more detail. In 𝛺 = (0, 200), the initial condition is given by

𝑢(𝑥, 0) =

⎧

⎪

⎨

⎪

⎩

1, if 21 ≤ 𝑥 ≤ 30,
1

(

1 + 𝑒𝑥−10
)2
, otherwise.

The following parameter values are used: 𝜓1(𝑡) = 1, 𝜓2(𝑡) = 0, 𝐷 = 1, 𝜌 = 6, 𝑁𝑥 = 2001, 𝑇 = 2.5, and 𝛥𝑡 = 2.e−3. Fig.  3 shows the 
dynamics of 𝑢(𝑥, 𝑡) for three different values of the fractional order 𝛼. Fig.  3(a), (b) and (c) are the numerical results of 𝑢(𝑥, 𝑡) with 
𝛼 = 0.5, 0.7, and 1, respectively. In Fig.  3(d), we can certainly observe the memory effect of 𝛼 through the different results of 𝑢(𝑥, 𝑇 )
for each 𝛼.

We consider the following initial condition with complex perturbation:
𝑢(𝑥, 0) = 0.05𝑥 + 0.05𝑥 cos(𝜋𝑥), 𝛺 = (0, 10),
3 
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Fig. 2. The temporal evolution of 𝑢(𝑥, 𝑡) with (a) 𝛼 = 0.5, (b) 𝛼 = 0.7, and (c) 𝛼 = 1. (d) The final time profile of 𝑢(𝑥, 𝑇 ) at 𝑇 = 2.5.

Fig. 3. Mesh plot of 𝑢(𝑥, 𝑡): (a) 𝛼 = 0.5, (b) 𝛼 = 0.7, and (c) 𝛼 = 1. (d) is the solution of 𝑢(𝑥, 𝑇 ) for 𝛼 = 0.5, 0.7, and 1.

Fig. 4. Dynamics of 𝑢(𝑥, 𝑡) for different fractional orders: (a) 𝛼 = 0.5, (b) 𝛼 = 0.7, and (c) 𝛼 = 1. (d) shows a comparison of 𝑢(𝑥, 𝑇 ) with the initial condition 
𝑢(𝑥, 0).

and investigate the effects of fractional order 𝛼 when the diffusion coefficient 𝐷 is large. Here, we consider a no-flux condition. The 
specific parameter values used are 𝐷 = 2, 𝜌 = 6, 𝛥𝑡 = 5.e−4, 𝑇 = 0.3, and ℎ = 0.05. Fig.  4(a)–(c) present temporal evolution of 𝑢(𝑥, 𝑡)
as mesh plots for 𝛼 = 0.5, 𝛼 = 0.7, and 𝛼 = 1, respectively. Fig.  4(d) shows the results of 𝑢(𝑥, 𝑇 ) for each 𝛼 value along with the 
initial condition 𝑢(𝑥, 0). We observe a strong memory effect, as smaller 𝛼 values tend to preserve the initial shape despite the large 
diffusion coefficient.

4. Conclusions

In this paper, we introduced a normalized time-fractional Fisher equation to resolve challenges in analyzing fractional dynamics 
and provide a more consistent framework for comparing behaviors at different fractional orders. The proposed numerical scheme, 
based on a finite difference method, was validated through computational experiments, and demonstrated accuracy and efficiency 
in capturing the dynamics of the system. The numerical results highlighted the influence of fractional orders on growth processes. 
Future research could further extend this framework to more complex fractional systems and multidimensional domains. For 
example, the operator splitting method (OSM) can be applied to obtain numerical solutions for the two-dimensional (2D) and three-
dimensional (3D) normalized time-fractional Fisher equations. First, the 2D normalized time-fractional Fisher equation is briefly 
considered.

𝜕𝛼𝑢(𝑥, 𝑦, 𝑡)
𝜕𝑡𝛼

= 𝐷
(

𝜕2𝑢(𝑥, 𝑦, 𝑡)
𝜕𝑥2

+
𝜕2𝑢(𝑥, 𝑦, 𝑡)

𝜕𝑦2

)

+ 𝜌(1 − 𝑢(𝑥, 𝑦, 𝑡))𝑢(𝑥, 𝑦, 𝑡), (𝑥, 𝑦) ∈ 𝛺, 𝑡 > 0, (10)

𝑢(𝑥, 𝑦, 0) = 𝑢 (𝑥, 𝑦), (𝑥, 𝑦) ∈ 𝛺 = (𝐿 , 𝑅 ) × (𝐿 , 𝑅 ).
0 𝑥 𝑥 𝑦 𝑦

4 
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Let 𝑢𝑛𝑖𝑗 = 𝑢(𝑥𝑖, 𝑦𝑗 , 𝑡𝑛), where 𝑦𝑗 = 𝐿𝑦 + (𝑗 − 1)ℎ, then Eq. (10) is discretized as follows:

𝜕𝛼𝑢(𝑥𝑖, 𝑦𝑗 , 𝑡𝑛+1)
𝜕𝑡𝛼

≈
𝑛
∑

𝑚=1

(𝑛 + 1 − 𝑚)1−𝛼 − (𝑛 − 𝑚)1−𝛼

𝑛1−𝛼
𝑢𝑚+1𝑖𝑗 − 𝑢𝑚𝑖𝑗

𝛥𝑡
=

𝑛
∑

𝑚=1
𝑤𝑛𝑚

𝑢𝑚+1𝑖𝑗 − 𝑢𝑚𝑖𝑗
𝛥𝑡

= 𝑤𝑛𝑛
𝑢𝑛+1𝑖𝑗 − 𝑢𝑛𝑖𝑗

𝛥𝑡
+
𝑛−1
∑

𝑚=1
𝑤𝑛𝑚

𝑢𝑚+1𝑖𝑗 − 𝑢𝑚𝑖𝑗
𝛥𝑡

.

Then, we obtain 𝑢𝑛+1𝑖𝑗  through the following three steps.

𝑆𝑡𝑒𝑝 1 ∶
𝑢∗𝑖𝑗 − 𝑢

𝑛
𝑖𝑗

𝛥𝑡
= 𝐷
𝑤𝑛𝑛

(

𝑢∗𝑖−1,𝑗 − 2𝑢∗𝑖𝑗 + 𝑢
∗
𝑖+1,𝑗

ℎ2

)

− 1
2
𝑠𝑛𝑖𝑗 .

𝑆𝑡𝑒𝑝 2 ∶
𝑢∗∗𝑖𝑗 − 𝑢∗𝑖𝑗

𝛥𝑡
= 𝐷
𝑤𝑛𝑛

(

𝑢∗∗𝑖,𝑗−1 − 2𝑢∗∗𝑖𝑗 + 𝑢∗∗𝑖,𝑗+1
ℎ2

)

− 1
2
𝑠𝑛𝑖𝑗 .

𝑆𝑡𝑒𝑝 3 ∶
𝑢𝑛+1𝑖𝑗 − 𝑢∗∗𝑖𝑗

𝛥𝑡
=
𝜌(1 − 𝑢𝑛𝑖𝑗 )𝑢

𝑛+1
𝑖𝑗

𝑤𝑛𝑛
,

where 𝑠𝑛𝑖𝑗 =
∑𝑛−1
𝑚=1𝑤

𝑛
𝑚(𝑢

𝑚+1
𝑖𝑗 − 𝑢𝑚𝑖𝑗 )∕(𝑤

𝑛
𝑛𝛥𝑡). Further details about the OSM can be found in [20]. For the numerical solution of the 

3D normalized time-fractional Fisher equation, it is a straightforward extension of the 2D case. Inevitably, this process increases 
the computational time. To reduce the computational complexity and CPU time, we can consider a method such as meshless 
method [21].
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