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We present a computational method for the 3D volume reconstruction from cross-sectional data. The proposed 
method is based on the Allen–Cahn (AC) equation with a source term. The source term is related to shape 
transformation from a source object to a target object. Using the operator splitting method, the governing 
equation is solved by splitting it into three steps. The numerical solution is obtained explicitly using the Euler’s 
methods and the separation of variables. To reconstruct the 3D object from two slice data, we set one slice as the 
target data and the other data as the initial data. We solve the governing equation and stack intermediate 
solutions based on the relative fraction of the symmetric difference of two regions occupied by the target 
and source data. To demonstrate that the proposed method can reconstruct a 3D model through extracted 
intermediate slice data during shape transformation, we perform several computational tests. Furthermore, the 
proposed method is applied to a 3D volume reconstruction from multi-slice data of human vertebra.
1. Introduction

Advances in imaging techniques such as a computed tomography 
(CT) have accelerated the visualizing slice data or internal anatomy. 
It is possible to accurately analyze brain bleeding, organ bleeding, 
and complex fractures, etc., which are caused by accidents in which 
a large physical force is applied from the outside such as traffic acci-

dents and fall accidents and then carry on treatment. The reason why 
fast and accurate analysis and treatment was possible is because the di-

agnosis was performed by applying volumetric reconstruction based on 
appropriate adjacent slices without dividing and analyzing hundreds 
of comprised large volumes of complex clinical database slices. The 
three-dimensional geometrical models created by applying volume re-

construction under computer aid undoubtedly helped surgeons improve 
their diagnosis. For this reason, we research a 3D volume reconstruction 
of multi-slice data using shape transformation in this study.

Studies to reconstruct the three-dimensional shape by using slice 
data have been researched in a variety of methods. In earlier studies, 
fast reconstruction technique by reducing the problem which construct-
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ing a sequence of partial approximations when connecting two contour 
lines in adjacent planes was studied [1]. The computer-aided anatomi-

cal reconstruction system was developed, and the system provides cal-

culating the volumes, lengths and surface areas [2]. To reconstruct a 
smooth 3D object from serial cross sections, a robust algorithm was 
proposed in [3]. The univariate contour interpolation method was used 
along with the approximate gradient directions of the unknown sur-

face to solve bivariate problems [4]. They suggested 𝐶1-continuous 
terrain reconstruction, however, the other research [5] considered the 
reconstructed surface to be at least 𝐶2-continuous. To reconstruct the 
consistent 𝑑-dimensional surface from (𝑑 − 1)-dimensional slices under 
some constraints, phase-field models were proposed [6]. The partial dif-

ferential equation model was presented in [7], which has a penalization 
term and parameter control term for 3D smooth surfaces reconstruction 
from 2D parallel slices. The helical filtered back-projection, compressed 
sensing, and more recent deep learning techniques were considered for 
accurate volume reconstruction by improving the problems of multi-

row detector CT scanners [8]. An adaptive reconstruction method was 
presented in [9] that processes MRI images of fetal brains damaged 
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by artifacts and reconstruct volume using sliced images. Images with 
80–90% data removed were also reconstructed as super-resolution im-

ages. In recent years, not only studies on 3D volume reconstruction from 
slice data using numerical methods, but also studies on 3D volume re-

construction from slices using convolutional neural network techniques 
have been conducted [10,11].

The phase-field models have been frequently applied for volume re-

construction [12–16] and repairing [17]. Using image segmentation 
method based on the modified Cahn–Hilliard equation with a fidelity 
term [18], the initial slice data obtained from given CT or MRI images, 
multi objects can be constructed. This proposed method was extended 
from binary system to multi-component system [19]. Furthermore, the 
proposed method introduced in [18] was improved by adding a prepro-

cessing step for smoothing the slice constraints [20].

In this study, we propose a simple and explicit computational algo-

rithm for the volume reconstruction using extracted slice data during 
shape transformation. To perform the shape transformation, we use a 
modified Allen–Cahn (AC) equation [21]. Its numerical algorithm is ob-

tained using the Euler’s methods and closed-form solution, therefore, 
the numerical algorithm is constructed simply and explicitly.

The presented study consists of the following sections. We present 
the phase-field model and its algorithm of numerical solution in Sec-

tion 2. In Section 3, we implement the numerical tests for volume 
reconstruction using a shape transformation. Conclusions are offered 
in Section 5.

2. Modified AC equation and computational solution

2.1. Modified AC equation

We propose the following phase-field model [21] for the volume 
reconstruction using a shape transformation.

𝜕𝜙(𝐱, 𝑡)
𝜕𝑡

= −𝐹 ′(𝜙(𝐱, 𝑡))
𝜖2

+ Δ𝜙(𝐱, 𝑡)

+ 𝛼
√

𝐹 (𝜙(𝐱, 𝑡))(𝜓(𝐱) −𝜙(𝐱, 𝑡)), 𝐱 ∈Ω, 𝑡 > 0, (1)

where 𝜙(𝐱, 𝑡) is the phase-field, 𝜖 is a positive constant, 𝛼 is a parameter 
that controls fidelity, and 𝐹 (𝜙) = (𝜙2 − 1)2

/
4. We denote the source and 

target shapes by 𝜙(𝐱, 0) and 𝜓(𝐱), respectively.

2.2. Numerical solution algorithm

In the 2D space Ω = (𝑎, 𝑏) × (𝑐, 𝑑), we shall discretize Eq. (1) to find 
the numerical solution. Let 𝑁𝑥 and 𝑁𝑦 be the numbers of cells, and ℎ =
(𝑏 − 𝑎)∕𝑁𝑥 = (𝑑 − 𝑐)∕𝑁𝑦 be the grid size. We set the discrete domain Ω =
{(𝑥𝑖, 𝑦𝑗 ) ∶ 𝑥𝑖 = 𝑎 + ℎ𝑖, 𝑦𝑗 = 𝑐 + ℎ𝑗, 0 ≤ 𝑖 ≤𝑁𝑥, 0 ≤ 𝑗 ≤𝑁𝑦}. The discrete 
approximation of 𝜙(𝑥𝑖, 𝑦𝑗 , 𝑛Δ𝑡) is denoted by 𝜙𝑛

𝑖𝑗
, where Δ𝑡 is the time 

step size. Now, we split Eq. (1) using the operator splitting method into

𝜕𝜙(𝐱, 𝑡)
𝜕𝑡

=Δ𝜙(𝐱, 𝑡), (2)

𝜕𝜙(𝐱, 𝑡)
𝜕𝑡

= −𝐹 ′(𝜙(𝐱, 𝑡))
𝜖2

, (3)

𝜕𝜙(𝐱, 𝑡)
𝜕𝑡

= 𝛼
√

𝐹 (𝜙(𝐱, 𝑡))(𝜓(𝐱) −𝜙(𝐱, 𝑡)). (4)

Through the following three steps, we can find the numerical solution of 
Eq. (1). To begin with, we solve the diffusion term (2) using the explicit 
Euler’s scheme:

𝜙∗
𝑖𝑗
− 𝜙𝑛

𝑖𝑗

Δ𝑡
=Δ𝑑𝜙

𝑛
𝑖𝑗
, (5)

where Δ𝑑𝜙
𝑛
𝑖𝑗
= (𝜙𝑛

𝑖+1,𝑗 + 𝜙𝑛
𝑖−1,𝑗 + 𝜙𝑛

𝑖,𝑗+1 + 𝜙𝑛
𝑖,𝑗−1 − 4𝜙𝑛

𝑖𝑗
)∕ℎ2 with a Dirich-

let boundary condition. Equation (5) can be rewritten as 𝜙∗
𝑖𝑗
= 𝜙𝑛

𝑖𝑗
+

Δ𝑡Δ𝑑𝜙
𝑛
𝑖𝑗

. Next, we can derive the closed-form solution of the reaction 
term (3) applying separation of variables:
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𝜙∗∗
𝑖𝑗

= 𝜙∗
𝑖𝑗

/√(
1 −

(
𝜙∗
𝑖𝑗

)2
)
𝑒
− 2Δ𝑡

𝜖2 +
(
𝜙∗
𝑖𝑗

)2
. (6)

For more details about the explicit AC equation solver, see [22]. For 
solving the fidelity term (4), the implicit Euler’s scheme with the frozen 

coefficient 
√

𝐹

(
𝜙∗∗
𝑖𝑗

)
is adopted:

𝜙𝑛+1
𝑖𝑗

− 𝜙∗∗
𝑖𝑗

Δ𝑡
= 𝛼

√
𝐹

(
𝜙∗∗
𝑖𝑗

)
(𝜓𝑖𝑗 − 𝜙𝑛+1

𝑖𝑗
). (7)

Finally, we get

𝜙𝑛+1
𝑖𝑗

=
𝜙∗∗
𝑖𝑗

+Δ𝑡𝛼𝜓𝑖𝑗

√
𝐹

(
𝜙∗∗
𝑖𝑗

)
1 +Δ𝑡𝛼

√
𝐹

(
𝜙∗∗
𝑖𝑗

) . (8)

The proposed numerical algorithm for constructing a volume from 
two slice data is as follows. Let Ω1(𝑡) and Ω2(𝑡) be two time-dependent 
domains; and Ω1(0) = 𝑆1 and Ω2(0) = 𝑆2 be two given slice data, see 
Fig. 1(a) and (b), respectively. If we set Ω2(𝑡) as the target data, then 
Ω2(𝑡) = 𝑆2 for all time 𝑡. We can represent Ω1(𝑡) = {𝐱|𝜙(𝐱, 𝑡) ≥ 0} and 
Ω2(0) = {𝐱|𝜓(𝐱) ≥ 0} using 𝜙(𝐱, 𝑡) and 𝜓(𝐱). Fig. 1(c) shows an interme-

diate shape Ω1(𝑡) at some time 𝑡 > 0.

Let (𝑡) = 𝐴𝑟𝑒𝑎 
(
(Ω1(𝑡) ∪ 𝑆2) ⧵ (Ω1(𝑡) ∩𝑆2)

)
be the area of the set 

(Ω1(𝑡) ∪ 𝑆2) ⧵ (Ω1(𝑡) ∩ 𝑆2) at time 𝑡 as shown in Fig. 1(d). During shape 
transformation from source data 𝑆1 to target data 𝑆2, we save inter-

mediate data Ω1(𝑡) at time 𝑡, based on (𝑡). Here, the gradually saved 
intermediate data are used as cross-sectional slice data that can recon-

struct the 3D volume. This stacking process schematically illustrated in 
Fig. 1(e) and (f).

Let 𝑁𝑧 be an integer, which is the number of slice data that we 
want to have between the two given slice data. Let Ψ𝑖𝑗𝑘 be a three-

dimensional reconstructed volume data which is defined on Ω𝑉 =
{(𝑥𝑖, 𝑦𝑗 , 𝑧𝑘) ∶ 𝑥𝑖 = 𝑎 + ℎ𝑖, 𝑦𝑗 = 𝑐 + ℎ𝑗, 𝑧𝑘 = ℎ𝑘, 0 ≤ 𝑖 ≤𝑁𝑥, 0 ≤ 𝑗 ≤𝑁𝑦, 0 ≤
𝑘 ≤𝑁𝑧 + 1}. We define the three-dimensional volume as

Ψ𝑖𝑗𝑘 =
⎧⎪⎨⎪⎩
𝜙0
𝑖𝑗

if 𝑘 = 0,
𝜙
𝑛𝑘
𝑖𝑗

if 𝑘 = 1,… ,𝑁𝑧,

𝜓𝑖𝑗 if 𝑘 =𝑁𝑧 + 1,
(9)

where 𝑛𝑘 the minimum integer which satisfies the following condition

(𝑛𝑘Δ𝑡) ≤
𝑁𝑧 + 1 − 𝑘

𝑁𝑧 + 1
(0), (10)

where (0) =
𝑁𝑥∑
𝑖=1

𝑁𝑦∑
𝑗=1

||||||
𝜓𝑖𝑗 −𝜙0

𝑖𝑗

2

||||||ℎ2 is an initial area excluding the inter-

section of the source 𝑆1 and target 𝑆2. Fig. 1(g) shows the isosurface of 
Ψ at level zero.

3. Numerical tests

To show the performance of the proposed method for constructing 
the 3D volume object using slice data, we conduct the numerical exper-

iments. The proposed method consists of the following three steps:

First, we define the 2D initial source 𝜙(𝐱, 0), target 𝜓(𝐱), and the 
number of slices 𝑁𝑧.

Second, we perform transformation and save slice data which satis-

fies Eq. (10) for volume construction.

Third, we construct the 3D volume object from saved slice data in 
the second step.

Unless otherwise stated, we set the parameter values as 𝑁𝑥 =𝑁𝑦 =
150, Δ𝑡 = 0.15ℎ2, 𝜖 = ℎ and 𝛼 = 3000 in this study. In addition, let us 
define the following notations for the simplicity of exposition:
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Fig. 1. Schematic illustration of (a) source shape Ω1(0), (b) target shape 𝑆2 , (c) intermediate shape Ω1(𝑡) with 𝑡 > 0, (d) (Ω1(𝑡) ∪𝑆2) ⧵ (Ω1(𝑡) ∩𝑆2) at time 𝑡, (e) source, 
target, and an intermediate shapes, (f) multiple stacking, and (g) isosurface of Ψ at level zero.
Fig. 2. Radii of the slice disks from the exact and reconstructed volumes with 
respect to height ℎ𝑟 .

(𝑥, 𝑦;𝑥0, 𝑦0, 𝑟) = tanh

(
𝑟−

√
(𝑥− 𝑥0)2 + (𝑦− 𝑦0)2√

2𝜖

)
,

(𝑥, 𝑦;𝑥0, 𝑦0, 𝑎, 𝑏) = tanh

(
min(𝑎− |𝑥− 𝑥0|, 𝑏− |𝑦− 𝑦0|)√

2𝜖

)
.

3.1. Quantitative test

We perform a quantitative test with a larger circle source 𝜙(𝑥, 𝑦, 0)
and a smaller circle target 𝜓(𝑥, 𝑦) on Ω = [0, 3.2] × [0, 3.2]:

𝜙(𝑥, 𝑦,0) = (𝑥, 𝑦; 1.6,1.6,1.4) and 𝜓(𝑥, 𝑦) = (𝑥, 𝑦; 1.6,1.6,1.3).

The parameters used are as follows: 𝑁𝑥 = 𝑁𝑦 = 150, 𝑁𝑧 = 100, ℎ =
3.2∕𝑁𝑥, Δ𝑡 = 0.005ℎ2, and 𝛼 = 3000. As shown in Fig. 2, we can see that 
the radii of the slice disks from the exact and reconstructed volumes are 
in good agreement with each other.

3.2. Volume reconstruction from circle source to square target

We perform the numerical experiment for the 3D volume recon-

struction using extracted slice data during shape transformation from 
the circle source to the square target. In Fig. 3, the source 𝜙(𝑥, 𝑦, 0) and 
target 𝜓(𝑥, 𝑦) on Ω = [0, 2] × [0, 2] are given as

𝜙(𝑥, 𝑦,0) = (𝑥, 𝑦; 0.8,0.8,0.6) and 𝜓(𝑥, 𝑦) = (𝑥, 𝑦; 1.2,1.2,0.6,0.6).

Fig. 3(a) shows the snapshots of shape transformation from the circle 
source to the square target. Fig. 3(b) is the numerical result for the 3D 
volume reconstruction using extracted 𝑁𝑧 = 20 slices data during shape 
transformation.
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3.3. Volume reconstruction from three circles source to one circle target

We perform the volume reconstruction from the three circles source 
to the one circle target. We set the source 𝜙(𝑥, 𝑦, 0) and target 𝜓(𝑥, 𝑦) on 
the computational domain Ω = [0, 2] × [0, 2] are given as

𝜙(𝑥, 𝑦,0) = (𝑥, 𝑦; 1.4,0.6,0.2) + (𝑥, 𝑦; 1.4,1.4,0.2) + (𝑥, 𝑦; 0.4,1,0.2) + 2,

𝜓(𝑥, 𝑦) = (𝑥, 𝑦; 1,1,0.6).

Fig. 4(a) shows the snapshots of shape transformation from the three 
circles source to the one circle target. Figs. 4(b) and (c) are volume 
reconstruction using extracted 𝑁𝑧 = 20 and 𝑁𝑧 = 40 slices data during 
shape transformation, respectively.

3.4. Volume reconstruction from annulus source to circle target

Now, we consider the annulus source 𝜙(𝑥, 𝑦, 0) and circle target 
𝜓(𝑥, 𝑦) on Ω = [0, 2] × [0, 2] as

𝜙(𝑥, 𝑦,0) = (𝑥, 𝑦; 1,1,0.8) − (𝑥, 𝑦; 1,1,0.4) − 1,

𝜓(𝑥, 𝑦) = (𝑥, 𝑦; 1,1,0.5).

The numerical results for the shape transformation can be seen in 
Fig. 5(a). As shown in Figs. 5(b) and (c), two different topologies are 
smoothly merged together and the 3D volumes are reconstructed.

3.5. Volume reconstruction from complex shapes

On Ω = [0, 2] × [0, 2], the initial condition in Fig. 6(a) is set to

𝜙(𝑥, 𝑦,0) = (𝑥, 𝑦; 0.6,0.6,0.3) − (𝑥, 𝑦; 0.6,0.6,0.1) + (𝑥, 𝑦; 0.6,1.4,0.3)

− (𝑥, 𝑦; 0.6,1.4,0.1) + (𝑥, 𝑦; 1.4,0.6,0.3) − (𝑥, 𝑦; 1.4,0.6,0.1)

+ (𝑥, 𝑦; 1.4,1.4,0.3) − (𝑥, 𝑦; 1.4,1.4,0.1) − 1,

𝜓(𝑥, 𝑦) = (𝑥, 𝑦; 1,1,0.8,0.8) − (𝑥, 𝑦; 0.6,0.6,0.2,0.8)

− (𝑥, 𝑦; 0.6,1.4,0.2,0.8)

− (𝑥, 𝑦; 1.4,0.6,0.2,0.8) − (𝑥, 𝑦; 1.4,1.4,0.2,0.8) − 4.

Here, we use the same parameter values in the previous test. In this 
numerical experiment, we use more complex shapes as the source and 
target. To obtain the well-reconstructing volume as shown in Fig. 6(b) 
and (c), we use a larger value of fidelity parameter.
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Fig. 3. Snapshots of (a) shape transformation from circle source to square target and (b) numerical result for 3D volume reconstruction using extracted 20 slices 
data during shape transformation.

Fig. 4. Snapshots of (a) shape transformation from three circle source to one circle target. (b) and (c) numerical results for 3D volume reconstruction using extracted 
20 and 40 slices data during shape transformation, respectively.
3.6. Volume reconstruction from multi slice data

Now, we perform the volume reconstruction from multi slice data, 
which is shown in Fig. 7. We shall use the multi slice data of human ver-

tebra shape, shown in Fig. 8(a), which was reconstructed in a precedent 
research [18]. We set the domain size as Ω = [0, 1] × [0, 1], and the pa-

rameter values as 𝑁𝑥 =𝑁𝑦 = 160, Δ𝑡 = 0.001ℎ2, 𝜖 = 2ℎ and 𝛼 = 1.0𝑒 + 06.

First, we partition human vertebra in Fig. 8(a) into 𝑁𝑧 = 72 grids 
along the z-axis, and then choose (3 + 5𝑠)th, 69th and 72th slices, (𝑠 =
0, … , 13). The slice data chosen for volume reconstruction can be found 
in Fig. 7 ordered from left to right and from top to bottom.

Second, we perform a volume reconstruction using the proposed 
method. The reconstructed volume is presented in Fig. 8(b). Here, com-

paring with the original human vertebra in Fig. 8(a), it can be seen that 
the reconstructed volume has non-smooth result. To make the result 
smooth, we conduct the post-processing by the three-dimensional heat 
55
equation with a fidelity term [23]. The smooth numerical result after 
post-processing can be seen in Fig. 8(c).

4. Discussions

Because real CT data sets may contain noises, image segmentation 
techniques are required to extract images for volume reconstruction. 
Therefore, to obtain slice data from real CT data sets, we can consider 
the following modified Allen–Cahn equation with edge-stopping func-

tion [24] for an image segmentation as a pre-processing step before 
reconstructing the volume:

𝜕𝜙(𝐱, 𝑡)
𝜕𝑡

= 𝑔
(
𝑓0(𝐱)

)(
−𝐹 ′ (𝜙(𝐱, 𝑡))

𝜖2
+ Δ𝜙(𝐱, 𝑡)

)
+ 𝛽 𝑔

(
𝑓0(𝐱)

)
𝐹 (𝜙(𝐱, 𝑡)) ,

where the detailed expressions of the parameters and functions used 
can be found in [24]. (See Fig. 9.)
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Fig. 5. Snapshots of (a) shape transformation from source to target. (b) and (c) numerical results for 3D volume reconstruction using extracted 20 and 40 slices data 
during shape transformation, respectively.

Fig. 6. Snapshots of (a) shape transformation from four annulus source to four squares target. (b) and (c) are the numerical results for 3D volume reconstruction 
using extracted 20 and 40 slices data during shape transformation, respectively.
Next, we investigate the CPU times of main iterations in the pro-

posed algorithm. Here, the numerical experiments are performed on 
Intel Core i5-9400 CPU at 2.90 GHz with 8 GB RAM. Table 1 shows the 
measured total CPU time, the number of iteration steps and the average 
CPU time per iteration.

We compare the computational complexity between the proposed 
method and multigrid method. The multigrid method is an iterative 
method which is widely employed for solving partial differential equa-

tions implicitly, and also used in [18]. Typically, the relaxation part 
in the multigrid method uses the Gauss–Seidel method. We define the 
computational cost of one relaxation sweep as a work unit (WU) and 
the number of relaxation sweeps for a V-cycle as a positive integer 𝜈
larger than 1. The computational complexity of a V-cycle is less than 
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Table 1

Total CPU time, the number of iteration steps, average CPU time per iteration. 
𝑁𝑧 = 40 is used in all CPU tests.

Cases Total CPU time (s) Iteration steps Average CPU time (s)

Fig. 3 3.3569e-01 322 1.0425e-03

Fig. 4 2.5576e-01 228 1.0003e-03

Fig. 5 2.1722e-01 170 1.2778e-03

Fig. 6 2.6047e-01 142 1.8343e-03

Fig. 8 5.3088e+00 634 8.4000e-03

8𝜈 WU∕3 as induced in [25]. In [18], the authors performed the sim-

ulation in Fig. 8 with a 160 × 160 × 72 mesh grid and obtained the 
result after 14 iterations, therefore, the computational complexity is 
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Fig. 7. Multi slice data of human vertebra.

Fig. 8. Reconstructed human vertebra from multi slice data in a precedent research [18]. (a) Human vertebra, (b) volume reconstruction using the proposed method, 
and (c) volume after post-processing.
160 × 160 × 72 × 14 × 8𝜈 WU∕3. On the other hand, the computational 
complexity of the proposed method in this study, is 160 × 160 × 654 WU
because we use 2D slices with a mesh grid 160 × 160 and reconstruct 
the 3D volume after 654 iterations using the proposed method. There-

fore, it can be seen that the computational cost of the proposed method 
is reduced by at least 4𝜈 times compared to the previous work. The 
advantage of the proposed method is simple and fast. It requires less 
computational cost compared with multigrid method.
57
5. Conclusions

In this study, we proposed a numerical algorithm for the 3D vol-

ume reconstruction from the multi cross-sectional data using the AC 
equation with a source term. The source term is related to shape trans-

formation, which is a process of transforming from a source object to 
a target object. The numerical solution algorithm is based on the op-

erator splitting method and all the steps are explicit, therefore, the 
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Fig. 9. Image segmentation. Reprinted from Yibao Li et al. [18] with permission from Elsevier.
scheme is simple to implement. Several numerical tests demonstrated 
the performance of the proposed method. The volume reconstruction 
was performed using the proposed method from multi-slice data of hu-

man vertebra. To have smooth result, we adopted the post-processing 
using the three-dimensional diffusion equation with a fidelity term.
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