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In this study, we present an operator splitting method (OSM) for the Cahn–Hilliard (CH) equation on a 
nonuniform mesh. The CH equation is a fourth-order partial differential equation that models phase separation 
phenomena in binary mixtures. Because the CH equation is applied in various scientific fields, numerous 
numerical methods have been developed to enhance the computational efficiency and accuracy. In this work, 
we consider a nonuniform mesh to improve spatial efficiency. To solve the CH equation in two-dimensional (2D) 
space on a nonuniform mesh, we consider the linear stabilized splitting (LSS) scheme along with the OSM. The 
LSS scheme is an unconditionally energy gradient stable method. To construct a simple numerical scheme, we 
consider the OSM in two-dimensional space. We validate that the proposed scheme satisfies the mass-preserving 
property. Furthermore, we conduct numerical experiments to demonstrate the efficiency and various properties 
of the proposed scheme.
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Fig. 1. Helmholtz free energy 𝐹 (𝜙) = 0.25(𝜙2 − 1)2.

1. Introduction

We consider the Cahn–Hilliard (CH) equation on a nonuniform 
mesh:

𝜕𝜙(𝐱, 𝑡)
𝜕𝑡

=Δ[𝐹 ′(𝜙(𝐱, 𝑡)) − 𝜖2Δ𝜙(𝐱, 𝑡)], 𝐱 ∈Ω, 𝑡 > 0, (1)

where Ω ⊂ R2. 𝜙 is the scalar field, 𝜖 is a positive constant related to 
interfacial thickness, and 𝐹 (𝜙) = 0.25(𝜙2 − 1)2 is the Helmholtz free 
energy characterized by a double well potential [1–3,44] as shown in 
Fig. 1.

The CH equation is derived from the Ginzburg–Landau free energy

(𝜙) = ∫
Ω

(
𝐹 (𝜙) + 𝜖

2

2
|∇𝜙|2)𝑑𝐱.

The zero Neumann boundary conditions are considered as

𝐧 ⋅∇𝜙 = 𝐧 ⋅∇Δ𝜙 = 0, 𝐱 ∈ 𝜕Ω, 𝑡 > 0, (2)

where 𝐧 is the outer unit normal vector on 𝜕Ω. By Eq. (2), we have

𝑑

𝑑𝑡
(𝜙) = −∫

Ω

|∇[𝐹 ′(𝜙(𝐱, 𝑡)) − 𝜖2Δ𝜙(𝐱, 𝑡)]|2𝑑𝐱 ≤ 0,

𝑑

𝑑𝑡 ∫
Ω

𝜙𝑑𝐱 = 0.

Therefore, we obtain that the total free energy is non-increasing, and 
the total mass is conserved. The CH equation was originally devel-

oped to model the phase separation phenomenon [1]. Specifically, it 
describes the spinodal decomposition in binary alloys. The CH equa-

tion is a phase field model that can be applied to explain the physical 
phenomena in various topics such as block copolymer [4,5], vector-

valued dynamics [6,7], multi-phase fluid flows [8–14], phase separation 
on curved surfaces [15,16], image inpainting [17–21], volume recon-

struction [22–24], logarithmic free energy [25], kinetics of phase sep-

aration in iron [26], multicomponent CH systems [27], mixed systems 
of conductive, insulative material [28], copolymer-homopolymer mix-

ture [29], and in arbitrary domains [30], among others. Furthermore, 
various numerical schemes for solving the CH equation have been de-

veloped such as the convex splitting scheme [31–34], lattice Boltzmann 
method [35], Saul’yev scheme [36], and Galerkin scheme [37].

The CH equation includes nonlinear and biharmonic terms, making 
it difficult to solve numerically. Therefore, in recent years, the convex 
splitting scheme is an approach for numerically solving the CH equa-

tion, which was developed by Eyre [31]. Using this scheme, we can 
overcome the limitations in time step size and the difficulty associated 
with solving the equation implicitly. The nonlinear term is numerically 
solved by adding some appropriate stabilization terms. Chen and Yang 
[32] proposed a stabilized-SAV approach for solving the anisotropic 
CH equation. Three linear stabilization terms remove the oscillations 
caused by anisotropy, while keeping the required second-order accu-

racy. By incorporating these linear stabilization terms, the problem 
208
reduces to solving three decoupled linear equations at each time step. 
Wang and Yu [33] proposed and analyzed an energy stable method 
for the CH gradient flow based on the stabilized linear Crank–Nicolson 
scheme. The authors treated the nonlinear bulk form by combining ad-

ditional linear stabilization terms and showed error analysis of their 
proposed scheme. The nonlinear term is decomposed into the convex 
and the concave terms within the convex splitting scheme [34]. The au-

thors then presented that the governing equation can be numerically 
solved with the convex part implicit and the concave term explicit.

The contents of this paper are as follows. In Section 3, we present our 
numerical scheme. In Section 4, numerical simulations are performed to 
validate our proposed scheme. The conclusion is given in Section 5.

2. Review of a linear stabilized splitting scheme

In this section, we discuss the linear stabilized splitting (LSS) scheme 
for the CH equation. The LSS scheme, a type of convex splitting method, 
was originally developed by Eyre [31]. It splits the convex and ex-

pansive parts of the time discretized energy functional. Then, we can 
construct the unconditional energy gradient stable scheme using the 
convexity. A numerical method is defined to be unconditionally gradi-

ent stable if the discrete total free energy is decreasing for any time step 
Δ𝑡. Here, we present several properties of the LSS method for the CH 
equation. Let 𝜙𝑛 be numerical approximation at 𝑛Δ𝑡, where Δ𝑡 is the 
time step. The LSS scheme is written as follows [3,31]:

𝜙𝑛+1 − 𝜙𝑛

Δ𝑡
=Δ𝜇𝑛+

1
2 , 𝑛 ≥ 0,

where 𝜇𝑛+
1
2 = (𝜙𝑛)3 − 3𝜙𝑛 +2𝜙𝑛+1 − 𝜖2Δ𝜙𝑛+1. Here, the zero Neumann 

boundary condition is assumed. To discuss the relation between the 
discrete energy functional and the numerical scheme, we consider the 
following time discrete energy functional:

𝑛 = ∫
Ω

[
𝐹𝑛 + 𝜖

2

2
|∇𝜙𝑛|2]𝑑𝐱,

where 𝐹𝑛 = 𝐹 (𝜙𝑛). When using splitting schemes to numerically solve 
the CH and Allen–Cahn equations, the energy stability is important 
[38]. Lee and Shin [39] showed mass conservation and energy stability 
of the compact scheme for the CH equation. Jeong et al. [40] proved 
the solvability and energy dissipation of various numerical scheme for 
the Allen–Cahn equation. Inspired by these approaches [38–40], we di-

vide the energy functional into its convex part 𝑛
𝑐

and its expansive part 
𝑛
𝑒

as follows:

𝑛
𝑐
= ∫

Ω

[
(𝜙𝑛)2 + 𝜖

2

2
|∇𝜙𝑛|2]𝑑𝐱, 𝑛

𝑒
= ∫

Ω

[
−𝐹𝑛 + (𝜙𝑛)2

]
𝑑𝐱.

Then, 𝑛
𝑐

and 𝑛
𝑒

are the convex and concave functionals, respectively. 
Therefore, the semi discretized energy functional can be written as 
𝑛 = 𝑛

𝑐
− 𝑛

𝑒
. Using the variational derivative of 𝑛, we can obtain 

the numerical scheme as follows:

𝜙𝑛+1 − 𝜙𝑛

Δ𝑡
=Δ

(
𝛿𝑛+1
𝑐

𝛿𝜙
−
𝛿𝑛
𝑒

𝛿𝜙

)
.

It can be interpreted as the numerical scheme as a gradient flow of the 
time discrete Ginzburg–Landau energy in an 𝐻−1-manner. The LSS is 
satisfying mass preserving property:

∫
Ω

𝜙𝑛+1𝑑𝐱 = ∫
Ω

𝜙𝑛𝑑𝐱 +Δ𝑡∫
Ω

Δ𝜇𝑛+
1
2 𝑑𝐱

= ∫
Ω

𝜙𝑛𝑑𝐱 +Δ𝑡∫
𝜕Ω

𝐧 ⋅
(
∇𝜇𝑛+

1
2
)
𝑑𝑆 = ∫

Ω

𝜙𝑛𝑑𝐱,

where we use the divergence theorem and the zero Neumann boundary 
condition. Therefore, the LSS scheme is a mass preserving scheme for 
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the CH equation. To discuss the properties of the considered numerical 
scheme, we define the following function space . Let us define the 
following function space :

 ={𝜙 ∶ ∫
Ω

𝜙𝑑𝐱 = ∫
Ω

𝜙𝑛𝑑𝐱 for 𝑛 > 0 and

𝜙,𝜇 have the homogeneous Neumann boundary condition}.

To demonstrate the solvability, we proceed as follows:

(i) (𝑢, 𝑣)2 = ∫Ω 𝑢𝑣𝑑𝐱.

(ii) (𝑢, 𝑣)−1 = − ∫Ω 𝑢Δ𝑣𝑑𝐱.

Using the above definition, we can show that the LSS scheme is uniquely 
solvable. Given 𝜙𝑛 and 𝜙 ∈ , we consider the following functional,

𝐺 (𝜙) = 1
2
‖𝜙‖2−1 + Δ𝑡𝑐(𝜙) − (𝜙𝑛,𝜙)−1 + 𝛿𝑡 (𝑔𝑛,𝜙)2

where 𝑔𝑛 = (𝜙𝑛)3 − 3𝜙𝑛. For every 𝜓 ∈ 𝐶∞
𝑐
(Ω), the variational deriva-

tive of 𝐺(𝜙) is written by

𝛿𝐺

𝛿𝜙
= (𝜙− 𝜙𝑛,𝜓)−1 + Δ𝑡

𝛿𝑐
𝛿𝜙

(𝜙) + Δ𝑡 (𝑔𝑛,𝜓)2 .

Because 𝑐(𝜙) = ‖𝜙‖2 + 𝜖2

2 ‖∇𝜙‖22, we can say that

𝛿𝑐
𝛿𝜙

(𝜙) =
(
2𝜙− 𝜖2Δ𝜙,𝜓

)
2 .

Then, the variational derivative of 𝐺 can be

𝛿𝐺

𝛿𝜙
= (𝜙− 𝜙𝑛,𝜓)−1 + Δ𝑡

(
2𝜙− 𝜖2Δ𝜙+ 𝑔𝑛,𝜓

)
2 .

In addition, 𝐺(𝜙) can be convex functional because 𝑐(𝜙) and 12‖𝜙‖2−1
are convex. Then, there exists a unique minimizer 𝜙𝑛+1 of 𝐺(𝜙) which 
is the solution of 𝛿𝐺∕𝛿𝜙 = 0. In other words,

𝛿𝐺

𝛿𝜙
(𝜙𝑛+1) =

(
𝜙𝑛+1 − 𝜙𝑛,𝜓

)
−1 + Δ𝑡

(
2𝜙𝑛+1 − 𝜖2Δ𝜙𝑛+1 + 𝑔𝑛,𝜓

)
2

=
(
𝜙𝑛+1 − 𝜙𝑛,𝜓

)
−1 + Δ𝑡

(
𝜇
𝑛+ 1

2 , 𝜓

)
2
= 0.

Therefore, we show that the LSS scheme is solvable. Next, we present 
that the minimizer is unique. Let us assume that 𝜙̂ is another minimizer. 
Then, 𝐺

(
𝜙̂
)
=𝐺 (𝜙∗) and 𝜓 = 𝜙̂−𝜙∗ ≠ 0. Using the convexity of 𝐻 , we 

can obtain that

𝐺
(
𝜙∗ + 0.5𝜓

)
=𝐻(0.5) < 𝐻(0) +𝐻(1)

2
=
𝐺
(
𝜙̂
)
+𝐺 (𝜙∗)
2

= 2𝐺 (𝜙∗)
2

=𝐺
(
𝜙∗
)
.

Then, 𝜙∗ +0.5𝜓 is the minimizer, it contradicts that 𝜙∗ is the minimizer 
of 𝐺. In addition, we can conclude that the LSS scheme is unconditional 
energy stable because 𝑛

𝑐
and 𝑛

𝑒
are chosen as the convex and concave 

functions [45], respectively:

𝑛+1 − 𝑛 = [𝑛+1
𝑐

− 𝑛
𝑐

]
−
[𝑛+1
𝑒

− 𝑛
𝑒

] ≤( 𝛿𝑛+1𝑐

𝛿𝜙
−
𝛿𝑛
𝑒

𝛿𝜙
,𝜙𝑛+1 − 𝜙𝑛

)
2

=
(
𝜇
𝑛+ 1

2 ,Δ𝑡Δ𝜇𝑛+
1
2
)
2
= −Δ𝑡

‖‖‖‖𝜇𝑛+ 1
2
‖‖‖‖2−1 ≤ 0.

3. Numerical solution algorithm

3.1. Discretization

Now, we present the discrete CH equation on a nonuniform mesh in 
two-dimensional (2D) space, i.e., Ω = (𝐿𝑥, 𝑅𝑥) ×(𝐿𝑦, 𝑅𝑦). To discuss the 
numerical scheme, we consider the Laplace operator Δ and biharmonic 
operator Δ2 in 2D,

Δ

Th

𝜕𝜙

w

an

sp

𝑖 =
ge

2(
𝑞𝑁

as

po

(𝑛
at

of

th

𝐷

𝐷

Th

be

Eq

𝜙

fo

co
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Fig. 2. Discretized domain with nonuniform mesh in 2D.

𝜙 = 𝜕
2𝜙

𝜕𝑥2
+ 𝜕

2𝜙

𝜕𝑦2
, Δ2𝜙 = 𝜕

4𝜙

𝜕𝑥4
+ 2 𝜕4𝜙

𝜕𝑥2𝜕𝑦2
+ 𝜕

4𝜙

𝜕𝑦4
.

en, the CH equation (1) is written by,

(𝐱, 𝑡)
𝜕𝑡

= 𝜕
2𝐹 ′ (𝜙(𝐱, 𝑡))
𝜕𝑥2

+ 𝜕
2𝐹 ′ (𝜙(𝐱, 𝑡))
𝜕𝑦2

− 𝜖2
(
𝜕4𝜙(𝐱, 𝑡)
𝜕𝑥4

+ 2𝜕
4𝜙(𝐱, 𝑡)
𝜕𝑥2𝜕𝑦2

+ 𝜕
4𝜙

𝜕𝑦4

)
, (3)

here 𝐱 = (𝑥, 𝑦). To discretize the numerical scheme, we consider 𝑥𝑖
d 𝑦𝑗 that are nonuniform grid points in the 𝑥- and 𝑦-directions, re-

ectively. Here, 𝑥𝑖 = 𝑥𝑖−1 + 𝑝𝑖−1 and 𝑦𝑗 = 𝑦𝑗−1 + 𝑞𝑗−1 are chosen for 
1, ⋯ , 𝑁𝑥 and 𝑗 = 1, ⋯ , 𝑁𝑦 where 𝑁𝑥 and 𝑁𝑦 are positive inte-

rs. By using the zero Neumann boundary condition, we have 𝑝0 =
𝑥1−𝐿𝑥), 𝑝𝑁𝑥 = 2(𝑅𝑥−𝑥𝑁𝑥 ), 𝑝−1 = 𝑝1, 𝑝𝑁𝑥+1 = 𝑝𝑁𝑥−1, 𝑞0 = 2(𝑦1−𝐿𝑦), 
𝑦
= 2(𝑅𝑦−𝑦𝑁𝑦 ), 𝑞−1 = 𝑞1, 𝑞𝑁𝑦+1 = 𝑞𝑁𝑦−1. Let us define 𝑝

𝑖+ 1
2

and 𝑞
𝑗+ 1

2
 𝑝
𝑖+ 1

2
= (𝑝𝑖 + 𝑝𝑖+1)∕2 and 𝑞

𝑗+ 1
2
= (𝑞𝑗 + 𝑞𝑗+1)∕2. The nonuniform grid 

ints 𝑥𝑖 and 𝑦𝑗 are presented in Fig. 2.

Let 𝜙𝑛
𝑖𝑗

be the numerical approximation of 𝜙(𝑥𝑖, 𝑦𝑗 , 𝑡𝑛). Here, 𝑡𝑛 =
 −1)Δ𝑡 and Δ𝑡 is the time step. In addition, we consider discrete oper-

ors 𝐷𝑥𝑥, 𝐷𝑦𝑦, 𝐷𝑥𝑥𝑥𝑥, 𝐷𝑥𝑥𝑦𝑦 and 𝐷𝑦𝑦𝑦𝑦 which are the discrete operator 
 𝜕

2

𝜕𝑥2
, 𝜕

2

𝜕𝑦2
, 𝜕

4

𝜕𝑥4
, 𝜕

4

𝜕𝑦4
, and 𝜕4

𝜕𝑥2𝑦2
, respectively. On the nonuniform mesh, 

ese can be described as follows:

𝑥𝑥𝜙𝑖𝑗 =
𝜙𝑖+1,𝑗 − 𝜙𝑖𝑗
𝑝𝑖𝑝𝑖− 1

2

−
𝜙𝑖𝑗 − 𝜙𝑖−1,𝑗
𝑝𝑖−1𝑝𝑖− 1

2

and

𝑦𝑦𝜙𝑖𝑗 =
𝜙𝑖,𝑗+1 − 𝜙𝑖𝑗
𝑞𝑗𝑞𝑗− 1

2

−
𝜙𝑖𝑗 − 𝜙𝑖,𝑗−1
𝑞𝑗−1𝑞𝑗− 1

2

.

e discrete Laplacian Δ𝑑 and the discrete Biharmonic operator Δ2
𝑑

can 
 written as 𝐷𝑥𝑥 +𝐷𝑦𝑦 and (𝐷𝑥𝑥 +𝐷𝑦𝑦)2, respectively. We discretize 
. (3) using the LSS and the operator splitting scheme (OSM) [42]:

𝑛+1
𝑖𝑗

− 𝜙𝑛
𝑖𝑗

Δ𝑡
=Δ𝑑 [(𝜙𝑛𝑖𝑗 )

3 − 3𝜙𝑛
𝑖𝑗
+ 2𝜙𝑛+1

𝑖𝑗
− 𝜖2Δ𝑑𝜙𝑛+1𝑖𝑗

], (4)

r 𝑖 = 1, ⋯ , 𝑁𝑥 and 𝑗 = 1, ⋯ , 𝑁𝑦. For the discrete CH equation (4), we 
nsider the following OSM,
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𝜙
(
𝑥𝑖, 𝑦𝑗 , (𝑛+ 1)Δ𝑡

)
=
(Δ𝑡

𝑦
◦Δ𝑡

𝑥

)
𝜙
(
𝑥𝑖, 𝑦𝑗 , 𝑛Δ𝑡

)
.

Here, the operator Δ𝑡
𝑥

is defined by

Δ𝑡
𝑥
𝑢𝑛
𝑖𝑗
= 𝑢𝑛+1

𝑖𝑗
,

where 𝑢𝑛+1
𝑖𝑗

and 𝑢𝑛
𝑖𝑗

have a relationship of

𝑢𝑛+1
𝑖𝑗

− 𝑢𝑛
𝑖𝑗

Δ𝑡
=Δ𝑑

((
𝑢𝑛
𝑖𝑗

)3
− 3𝑢𝑛

𝑖𝑗

)
− 2𝜖2𝐷𝑥𝑥(𝐷𝑦𝑦𝑢𝑛𝑖𝑗 )

+ 2𝐷𝑥𝑥𝑢𝑛+1𝑖𝑗
− 𝜖2𝐷𝑥𝑥(𝐷𝑥𝑥𝑢𝑛+1𝑖𝑗

).

Here, 𝑢𝑛
𝑖𝑗

is 𝜙 
(
𝑥𝑖, 𝑦𝑗 , 𝑛Δ𝑡

)
. The operator Δ𝑡

𝑦
is defined by,

Δ𝑡
𝑦
𝑣𝑛
𝑖𝑗
= 𝑣𝑛+1

𝑖𝑗
,

where 𝑣𝑛+1
𝑖𝑗

and 𝑣𝑛
𝑖𝑗

have a relationship of

𝑣𝑛+1
𝑖𝑗

− 𝑣𝑛
𝑖𝑗

Δ𝑡
= 2𝐷𝑦𝑦𝑣𝑛+1𝑖𝑗

− 𝜖2𝐷𝑦𝑦(𝐷𝑦𝑦)𝑣𝑛+1𝑖𝑗
.

Here, 𝑣𝑛+1
𝑖𝑗

is 𝜙𝑛+1
𝑖𝑗

and 𝑣𝑛
𝑖𝑗

is 𝑢𝑛+1
𝑖𝑗

. The zero Neumann boundary con-

dition (2) is implemented by 𝜙0𝑗 = 𝜙1𝑗 , 𝜙−1𝑗 = 𝜙2𝑗 , 𝜙𝑁𝑥+1,𝑗 = 𝜙𝑁𝑥𝑗 , 
𝜙𝑁𝑥+2,𝑗 = 𝜙𝑁𝑥−1,𝑗 , 𝜙𝑖0 = 𝜙𝑖1, 𝜙𝑖,−1 = 𝜙𝑖2, 𝜙𝑖,𝑁𝑦+1 = 𝜙𝑖𝑁𝑦 and 𝜙𝑖,𝑁𝑦+2 =
𝜙𝑖,𝑁𝑦−1. Let 𝝓𝑛 = (𝜙𝑛

𝑖𝑗
).

We define the discrete energy functional on the nonuniform mesh as 
follows [41,43]:

𝑑 (𝝓𝑛) =
𝑁𝑦∑
𝑗=1

𝑁𝑥∑
𝑖=1
𝐹 (𝜙𝑛

𝑖𝑗
)𝑝
𝑖− 1

2
𝑞
𝑗− 1

2

+ 𝜖
2

2

𝑁𝑥−1∑
𝑖=1

𝑁𝑦−1∑
𝑗=1

[
𝑞𝑗

𝑝𝑖

(
𝜙𝑛
𝑖+1,𝑗 −𝜙

𝑛
𝑖𝑗

)2
+
𝑝𝑖

𝑞𝑗

(
𝜙𝑛
𝑖,𝑗+1 − 𝜙

𝑛
𝑖𝑗

)2]
.

In addition, we define the total weighted sum of 𝜙𝑛 as

𝑑 (𝝓𝑛) =
𝑁𝑦∑
𝑗=1

𝑁𝑥∑
𝑖=1
𝜙𝑛
𝑖𝑗
𝑝
𝑖− 1

2
𝑞
𝑗− 1

2
. (5)

The total weighted sum of other variables can be defined similarly.

3.2. Mass preserving property

Now, we present the mass preserving property of the proposed 
scheme in 2D space. The discrete CH equation in 2D space is solved 
using two operators Δ𝑡

𝑥
and Δ𝑡

𝑦
, which splits Eq. (5). Let us define 

𝜇
𝑛+ 1

2
𝑖𝑗

as follows:

𝜇
𝑛+ 1

2
𝑖𝑗

= (𝜙𝑛
𝑖𝑗
)3 − 3𝜙𝑛

𝑖𝑗
+ 2𝜙𝑛+1

𝑖𝑗
− 𝜖2Δ𝑑𝜙𝑛+1𝑖𝑗

.

Then, Eq. (4) can be briefly written as

𝜙𝑛+1
𝑖𝑗

− 𝜙𝑛
𝑖𝑗

Δ𝑡
=Δ𝑑𝜇

𝑛+ 1
2

𝑖𝑗
.

Applying the total weighted sum defined in Eq. (5) to both sides yields:

𝑑

(
𝜙𝑛+1
)
=𝑑 (𝜙𝑛) + Δ𝑡𝑑

(
Δ𝑑𝜇

𝑛+ 1
2
)
.

From

𝐷𝑥𝑥𝜇
𝑛+ 1

2
𝑖𝑗
𝑝
𝑖− 1

2
𝑞
𝑗− 1

2
=
⎛⎜⎜⎜⎝
𝜇
𝑛+ 1

2
𝑖+1,𝑗 − 𝜇

𝑛+ 1
2

𝑖𝑗

𝑝𝑖
−
𝜇
𝑛+ 1

2
𝑖𝑗

− 𝜇
𝑛+ 1

2
𝑖−1,𝑗

𝑝𝑖−1

⎞⎟⎟⎟⎠ 𝑞𝑗− 1
2
,

and the zero Neumann boundary conditions, we can obtain the follow-

ing.
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𝑑

(
𝐷𝑥𝑥𝜇

𝑛+ 1
2
)
=
𝑁𝑦∑
𝑗=1

𝑁𝑥∑
𝑖=1

⎛⎜⎜⎜⎝
𝜇
𝑛+ 1

2
𝑖+1,𝑗 − 𝜇

𝑛+ 1
2

𝑖𝑗

𝑝𝑖
−
𝜇
𝑛+ 1

2
𝑖𝑗

− 𝜇
𝑛+ 1

2
𝑖−1,𝑗

𝑝𝑖−1

⎞⎟⎟⎟⎠ 𝑞𝑗− 1
2

=
𝑁𝑦∑
𝑗=1
𝑞
𝑗− 1

2

𝑁𝑥∑
𝑖=1

⎛⎜⎜⎜⎝
𝜇
𝑛+ 1

2
𝑖+1,𝑗 − 𝜇

𝑛+ 1
2

𝑖𝑗

𝑝𝑖
−
𝜇
𝑛+ 1

2
𝑖𝑗

− 𝜇
𝑛+ 1

2
𝑖−1,𝑗

𝑝𝑖−1

⎞⎟⎟⎟⎠
=
𝑁𝑦∑
𝑗=1
𝑞
𝑗− 1

2

⎛⎜⎜⎜⎝
𝜇
𝑛+ 1

2
𝑁𝑥+1,𝑗

− 𝜇
𝑛+ 1

2
𝑁𝑥𝑗

𝑝𝑁𝑥

−
𝜇
𝑛+ 1

2
1𝑗 − 𝜇

𝑛+ 1
2

0𝑗

𝑝0

⎞⎟⎟⎟⎠ = 0.

By applying a similar procedure to 𝑑

(
𝐷𝑦𝑦𝜇

𝑛+ 1
2
)

, we conclude that

𝑑 (Δ𝑑𝜇
𝑛+ 1

2 ) =𝑑 (𝐷𝑥𝑥𝜇
𝑛+ 1

2 ) +𝑑 (𝐷𝑦𝑦𝜇
𝑛+ 1

2 ) = 0,

𝑑

(
𝜙𝑛+1
)
=𝑑 (𝜙𝑛) .

Therefore, the mass preserving property holds for the CH equation using 
the LSS scheme in 2D space.

4. Numerical results

In this section, we present numerical experiments using the pro-

posed numerical scheme on nonuniform meshes. In the following nu-

merical experiments, we refine the mesh into a nonuniform structure, 
with finer mesh in interesting regions and coarser resolution in less 
critical regions. To investigate the effect of the nonuniform mesh on the 
numerical results, we consider the following rectangular initial condi-

tion

𝜙(𝑥, 𝑦,0) =

{
1, if − 0.38 < 𝑥 < 0.38 and − 0.22 < 𝑦 < 0.22,
−1, otherwise.

(𝑥, 𝑦) ∈ Ω = (−1,1) × (−1,1)

with two different nonuniform meshes. The initial condition on two 
nonuniform meshes is shown in the first column of Fig. 3. Fig. 3 shows 
the temporal evolution of the numerical solution with an adaptive fine 
mesh, with a sufficient and tight buffer for the interface of the initial 
condition. Here, we use Δ𝑡 = 2.4691𝑒-4. In Fig. 3(a), the numerical so-

lution becomes a circular shape and follows the CH dynamics. On the 
other hand, in Fig. 3(b), the solution is pinned and unable to accurately 
capture the dynamics of the CH solution.

4.1. The total energy decreasing and total mass preserving properties in 2D

Fig. 4 presents the total energy decreasing and mass preserving 
properties on a nonuniform mesh at each time. To perform the numer-

ical experiments, the computational domain Ωℎ = (0, 1)2 is used. The 
nonuniform grids 𝑝 and 𝑞 have random values between 0.9ℎ and 1.1ℎ, 
where ℎ = 1∕256. The parameter 𝜖, which is related to the thickness 
of interface, is considered as 8ℎ∕ 

(
2
√
2 tanh−1 (0.9)

)
, and the time step 

Δ𝑡 is set to ℎ2. In addition, the total iteration number is set to 1000. 
The initial condition is 𝜙(𝑥𝑖, 𝑦𝑗 , 0) = rand(𝑥𝑖, 𝑦𝑗 ), where rand(𝑥𝑖, 𝑦𝑗 ) is 
a random valued function between −0.1 and 0.1. The normalized to-

tal discrete energy ℎ(𝜙𝑛)∕ℎ(𝜙0) and the total discrete mass ℎ(𝜙𝑛)
are represented by black and blue lines, respectively. In addition, the 
snapshots present the computational results at times 250Δ𝑡, 500Δ𝑡, and 
1000Δ𝑡 from left to right, respectively. From the computational results, 
the proposed numerical scheme satisfies the total discrete mass preser-

vation and energy dissipation properties on the randomly structured 
mesh.

We present the total energy decreasing and the mass preserving 
properties in a 2D subdomain on the nonuniform mesh in Fig. 5. 
The computational domain Ωℎ = (0, 1)2 is considered. The nonuniform 
meshes 𝑝𝑖 and 𝑞𝑗 are defined as follows:
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Fig. 3. Temporal evolutions of numerical solutions with an adaptive fine mesh with (a) a sufficient buffer and (b) a tight buffer for the interface of the initial 
condition. Here, Δ𝑡 = 2.4691𝑒-4.

Fig. 4. Discrete total energy, discrete total mass, and snapshots at times 𝑡 = 250Δ𝑡,500Δ𝑡, and 1000Δ𝑡 on the nonuniform mesh.
𝑝𝑖 =

{
ℎ, if 0.3 < 𝑥𝑖 < 0.7,
13.5ℎ, otherwise,

𝑞𝑗 =

{
ℎ, if 0.3 < 𝑦𝑗 < 0.7,
13.5ℎ, otherwise,

where ℎ = 1∕180. Therefore, in Fig. 5, we consider the subdomain 
(0.3, 0.7)2 with a fine mesh in Ωℎ and a coarse mesh otherwise. 𝜖 =
2.5ℎ∕ 

(
2
√
2 tanh−1 (0.9)

)
and the time step Δ𝑡 = 0.5ℎ2 are used. In ad-

dition, the final time is fixed at 0.01 and the total iteration time is set 
to 0.01∕Δ𝑡. The initial condition is

𝜙(𝑥𝑖, 𝑦𝑗 ,0) =

{
0.5rand(𝑥𝑖, 𝑦𝑗 ) if 0.31 < 𝑥𝑖, 𝑦𝑗 < 0.69,
−1, otherwise,

where rand(𝑥𝑖, 𝑦𝑗 ) is a random valued function between −1 and 1. In 
addition, Fig. 5 illustrates the snapshots at times 250Δ𝑡, 500Δ𝑡, and 
1000Δ𝑡. Fig. 5 presents the total energy and the total mass at each time. 
The normalized total discrete energy ℎ(𝜙𝑛)∕ℎ(𝜙0) and the total dis-

crete mass ℎ(𝜙𝑛) are shown as the black and blue lines, respectively. 
The normalized total discrete energy presents the ratio between the 
total discrete energy of initial condition and the energy at each time 
𝑛Δ𝑡. From the results, the proposed numerical method satisfies the to-

tal discrete mass preservation and energy dissipation properties on the 
nonuniform mesh.

We consider a case where we have two subdomains of interest 
within the 2D computational domain Ωℎ = (0, 1)2. The subdomains are 
defined as (𝑥𝑖, 𝑦𝑗 ) ∈ (0.15, 0.25)2 and (𝑥𝑖, 𝑦𝑗 ) ∈ (0.55, 0.85)2. To apply a 
fine mesh within these subdomains, the grid size is defined as,
211
𝑝𝑖 =

{
0.2ℎ, if 0.1 < 𝑥𝑖 < 0.3 and 0.5 < 𝑥𝑖 < 0.9,
ℎ, otherwise,

𝑞𝑗 =

{
0.2ℎ, if 0.1 < 𝑦𝑗 < 0.3 and 0.5 < 𝑦𝑗 < 0.9,
ℎ, otherwise,

where ℎ = 0.05. Therefore, we obtain the nonuniform mesh. In each 
subdomain, the initial condition 𝜙(𝑥𝑖, 𝑦𝑗 , 0) is defined as rand(𝑥𝑖, 𝑦𝑗 ), 
where rand(𝑥𝑖, 𝑦𝑗 ) is a random valued function between −1 and 1; else-

where, 𝜙(𝑥𝑖, 𝑦𝑗 , 0) = −1. Note that the area of the fine mesh is larger 
than the domain of interest to avoid pinning effect appears when a 
coarse mesh with constant value is adjacent to a fine mesh with ran-

dom values. Therefore, the initial condition is given by

𝜙(𝑥𝑖, 𝑦𝑗 ,0) =
⎧⎪⎨⎪⎩

rand(𝑥𝑖, 𝑦𝑗 ) if 0.18 < 𝑥𝑖, 𝑦𝑗 < 0.22
and 0.58 < 𝑥𝑖, 𝑦𝑗 < 0.82,

−1, otherwise.

The parameter values Δ𝑡 = 0.1ℎ2 𝜖 = 2.8ℎ∕ 
(
2
√
2 tanh−1 (0.9)

)
are used 

for this test until the final time 𝑇 = 1000Δ𝑡 = 0.01. Fig. 6 illustrates the 
snapshot images of the normalized total discrete energy ℎ(𝜙𝑛)∕ℎ(𝜙0)
and the total mass of phase field at 𝑡 = 250Δ𝑡, 500Δ𝑡, and 𝑡 = 1000Δ𝑡. 
From Fig. 6, we observe that the proposed scheme satisfies the total 
energy decrease and the total mass preservation.

To confirm the well-posedness of the considered numerical scheme, 
we evaluate the condition numbers of 𝐴𝑥 and 𝐴𝑦, which are pentadi-
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Fig. 5. Discrete total energy, discrete total mass, and snapshots at times 𝑡 = 250Δ𝑡,500Δ𝑡, and 1000Δ𝑡 on the nonuniform mesh.

Fig. 6. Discrete total energy, discrete total mass, and snapshots at times 𝑡 = 250Δ𝑡,500Δ𝑡, and 1000Δ𝑡 on the nonuniform mesh.
Table 1

Comparison of the condition numbers on different nonuniform grids.

𝑘 54 27 18 13.5 10.8

Condition number of 𝐴𝑥 2.9998 2.9771 2.9551 2.9345 2.9151
Condition number of 𝐴𝑦 2.9998 2.9771 2.9551 2.9345 2.9151

agonal matrices defined by 𝑥 and 𝑦, respectively. There are several 
ways to define the condition number, such as ‖𝐴𝑥‖‖𝐴−1

𝑥
‖ or the ratio 

of the largest eigenvalue and the smallest eigenvalue of the matrices 𝐴𝑥
and 𝐴𝑦 [47,46]. In this part, we define the condition number as the ra-

tio of the largest eigenvalue to the smallest eigenvalue of the matrices 
𝐴𝑥 and 𝐴𝑦 [46]. To obtain the numerical result, we use the same pa-

rameters as in Fig. 5, excluding the mesh sizes 𝑝 and 𝑞. The mesh sizes 
𝑝 and 𝑞 are then applied as

𝑝𝑖 =

{
ℎ, if 0.3 < 𝑥𝑖 < 0.7,
𝑘ℎ, otherwise,

𝑞𝑗 =

{
ℎ, if 0.3 < 𝑦𝑗 < 0.7,
𝑘ℎ, otherwise,

where 𝑘 are chosen as 54, 27, 18, 13.5, and 10.8. We list the condition 
numbers of 𝐴𝑥 and 𝐴𝑦 for each 𝑘 = 54, 27, 18, 13.5, and 10.8 value 
in Table 1. Because each condition number is strictly larger than 1 but 
smaller than 3, we can conclude that 𝐴 is well-posed. Therefore, we can 
confirm that the numerical scheme is solvable.

4.2. CPU time comparison with uniform mesh and nonuniform mesh in 2D

Now, we present a comparison between the uniform and nonuni-

form meshes. To perform the numerical test, we use Ωℎ = (0, 1)2, a time 
step of Δ𝑡 = 1𝐸 − 5, and a total of 2000 iterations. In addition, the uni-

form grid is considered with resolutions of 1∕64, 1∕128, and 1∕256. The 
nonuniform mesh is considered as
212
𝑝𝑖 =

{
ℎ, if 0.3 < 𝑥𝑖 < 0.7,
4.75ℎ, otherwise,

𝑞𝑗 =

{
ℎ, if 0.3 < 𝑦𝑗 < 0.7,
4.75ℎ, otherwise,

where ℎ = 1∕64,

𝑝𝑖 =

{
ℎ, if 0.3 < 𝑥𝑖 < 0.7,
9.5ℎ, otherwise,

𝑞𝑗 =

{
ℎ, if 0.3 < 𝑦𝑗 < 0.7,
9.5ℎ, otherwise,

where ℎ = 1∕128, and

𝑝𝑖 =

{
ℎ, if 0.3 < 𝑥𝑖 < 0.7,
19.25ℎ, otherwise,

𝑞𝑗 =

{
ℎ, if 0.3 < 𝑦𝑗 < 0.7,
19.25ℎ, otherwise,

where ℎ = 1∕256. In each case, 𝜖 = 0.01 and the initial condition 
𝜙(𝑥𝑖, 𝑦𝑗 , 0) is considered as

𝜙(𝑥𝑖, 𝑦𝑗 ,0) =

{
2cos
(
𝜋(𝑥𝑖−0.5)

0.3

)
cos
(
𝜋(𝑦𝑗−0.5)

0.3

)
− 1, if 0.35 < 𝑥𝑖, 𝑦𝑗 < 0.65,

−1, otherwise,

Fig. 7 presents the evolution of 𝜙𝑛
𝑖𝑗

. Fig. 7(a) presents the evolu-

tion of 𝜙𝑛
𝑖𝑗

, the total energy, and the total mass on the nonuniform 
mesh. The snapshot illustrates 𝜙𝑛

𝑖𝑗
at times 1000Δ𝑡, 2000Δ𝑡, and 4000Δ𝑡. 

In Fig. 7(b), we show the total mass and energy of 𝜙𝑛
𝑖𝑗

on the uni-

form mesh. The snapshot illustrates the 𝜙(𝑥𝑖, 𝑦𝑗 , 𝑛Δ𝑡) at times 1000Δ𝑡, 
2000Δ𝑡, and 4000Δ𝑡. For Figs. 7(a) and 7(b), the discrete total energy 
is illustrated as the normalized total discrete energy ℎ(𝜙𝑛)∕ℎ(𝜙0). Ta-

ble 2 lists a comparison of CPU time with the nonuniform grid and the 
uniform grid at different mesh sizes. This table lists the CPU time re-

quired for the entire evolutionary process. Here, we consider the mesh 
sizes ℎ with 1∕64, 1∕128, and 1∕256. We can confirm the CPU times 
as 6.695982, 8.710532, and 31.912587 for uniform meshes. In addi-

tion, for the nonuniform mesh, we can confirm 1.431685, 2.731794, and 
6.695982. For ℎ = 1∕64, the ratio of CPU time between uniform mesh 
and nonuniform mesh is 4.68. In addition, for ℎ = 1∕128 and 1∕256, the 



G. Lee, S. Kwak, Y. Choi et al. Computers and Mathematics with Applications 167 (2024) 207–216

Fig. 7. Discrete total energy, discrete total mass, and snapshots at times 𝑡 = 1000Δ𝑡, 2000Δ𝑡, and 4000Δ𝑡 on the (a) nonuniform mesh and (b) uniform mesh with 
mesh size ℎ = 1∕128.
Table 2

Comparison of CPU time with uniform grid and nonuniform grid.

Grid size ℎ 1∕64 1∕128 1∕256

CPU time of uniform grid 6.695982 8.710532 31.912587
CPU time of nonuniform grid 1.431685 2.731794 6.695982

ratios of CPU time are 3.19 and 4.77, respectively. The numerical test is 
performed in MATLAB on a system with a 3.6GHz processor and 8GB 
RAM. In each case, we observe that the proposed numerical scheme sat-

isfies mass preservation and energy dissipation properties. Furthermore, 
we can observe that the CPU time is faster on the nonuniform mesh.

4.3. Transformation from two rectangles to a circular interface

Fig. 8 presents the specific numerical result. To perform the nu-

merical test, we consider the computational domain Ωℎ = (−1, 1)2. The 
nonuniform meshes 𝑝 and 𝑞 are considered as

𝑝𝑖 =

{
ℎ, if 0.3 < 𝑥𝑖 < 0.7,
13.5ℎ, otherwise,

𝑞𝑗 =

{
ℎ, if 0.3 < 𝑦𝑗 < 0.7,
13.5ℎ, otherwise,

where ℎ = 1∕90. Here, Δ𝑡 = 2ℎ2 and 𝜖 = 10ℎ∕(2
√
2 tanh−1(0.9)) are 

used. The initial condition is as follows:

𝜙(𝑥𝑖, 𝑦𝑗 ,0) = tanh

(
−max

(|𝑥𝑖 + 0.15|− 0.1, |𝑦𝑗 |− 0.23
)√

2𝜖

)

+ tanh

(
−max

(|𝑥𝑖 − 0.15|− 0.1, |𝑦𝑗 |− 0.23
)√

2𝜖

)
+ 1.

In Fig. 8(a)–(d), we present the computational results at times 𝑡 = 0, 
100Δ𝑡, 500Δ𝑡, and 1000Δ𝑡, respectively. In Fig. 8, we can observe that 
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the two rectangular-shaped interfaces merge into one circular interface.

In addition, we consider two subdomains for numerical simulation 
as shown in Fig. 9. Here, the computational domain is Ωℎ = (0, 10)2, 
and the subdomains are (1, 3.5)2 and (7, 8.5)2, which are constructed 
using a fine mesh. The nonuniform mesh 𝑝 and 𝑞 are considered as

𝑝𝑖 =

{
ℎ, if 1 < 𝑥𝑖 < 3.5 and 7 < 𝑥𝑖 < 8.5,
6ℎ, otherwise,

𝑞𝑗 =

{
ℎ, if 1 < 𝑦𝑗 < 3.5 and 0.5 < 𝑦𝑗 < 8.5,
6ℎ, otherwise,

where ℎ = 0.05. 𝜖 = 8ℎ∕ 
(
2
√
2 tanh−1 (0.9)

)
and time step Δ𝑡 = ℎ2 are 

used. The initial condition is defined as 𝜙(𝑥𝑖, 𝑦𝑗 , 0) = 1 if (𝑥𝑖, 𝑦𝑗 ) ∈
(1.2, 2.1) × (1.2, 3.3), (2.4, 3.3) × (1.2, 3.3), (7.2, 7.6) × (7.1, 8.4) and 
(7.9, 8.3) × (7.1, 8.4); otherwise, 𝜙(𝑥𝑖, 𝑦𝑗 , 0) = −1. Here, we can observe 
that the two small rectangles shrink to a circle at time 150Δ𝑡. After 
then, the two larger rectangles shrink to one.

4.4. Transformation from two circles to a circular interface

Now, we present the evolution of two circular shape initial condi-

tions. In Fig. 10 present the specific numerical results. To perform the 
numerical test, we consider the computational domain Ωℎ = (−1, 1)2. 
The nonuniform mesh 𝑝 and 𝑞 are considered as follows:

𝑝𝑖 =

{
ℎ, if 0.3 < 𝑥𝑖 < 0.7,
22.5ℎ, otherwise,

𝑞𝑗 =

{
ℎ, if 0.3 < 𝑦𝑗 < 0.7,
22.5ℎ, otherwise,
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Fig. 8. Evolution of two rectangular-shaped initial conditions: (a) initial condition, (b) 𝑡 = 100Δ𝑡, (c) 𝑡 = 500Δ𝑡, and (d) 𝑡 = 1000Δ𝑡.

Fig. 9. Evolution of two rectangular-shaped initial conditions: (a) initial condition, (b) 𝑡 = 30Δ𝑡, (c) 𝑡 = 150Δ𝑡, and (d) 𝑡 = 300Δ𝑡.

Fig. 10. Evolution of two box shaped initial condition: (a) initial condition, (b) 𝑡 = 875Δ𝑡, (c) 𝑡 = 1750Δ𝑡, and (d) 𝑡 = 3500Δ𝑡.
where ℎ = 1∕128. Here, we use some computational parameters Δ𝑡 =
ℎ2, 𝜖 = 8ℎ∕(2

√
2 tanh−1(0.9)). The initial condition is considered as

𝜙(𝑥𝑖, 𝑦𝑗 ,0) = tanh
⎛⎜⎜⎜⎝
(
0.11 −

√
(𝑥𝑖 + 0.13)2 + 𝑦2

𝑗

)
√
2𝜖

⎞⎟⎟⎟⎠
+ tanh

⎛⎜⎜⎜⎝
(
0.11 −

√
(𝑥𝑖 − 0.13)2 + 𝑦2

𝑗

)
√
2𝜖

⎞⎟⎟⎟⎠+ 1.

In Fig. 10(a)–(d), we present the computational results at times 𝑡 = 0, 
875Δ𝑡, 1750Δ𝑡, and 3500Δ𝑡, respectively. In Fig. 10, we can observe 
that the two circular shaped interfaces merge into a single circular in-

terface.

In addition, we consider two subdomains for computational sim-

ulations as shown in Fig. 11. Here, the computational domain is Ωℎ =
(0, 1)2, and the subdomains are (0.1, 0.3)2 and (0.5, 0.9)2, which are con-

structed using a fine mesh. The nonuniform mesh 𝑝 and 𝑞 are considered 
as

𝑝𝑖 =

{
ℎ, if 0.1 < 𝑥𝑖 < 0.3 and 0.5 < 𝑥𝑖 < 0.9,
10ℎ, otherwise,

𝑞𝑗 =

{
ℎ, if 0.1 < 𝑦𝑗 < 0.3 and 0.5 < 𝑦𝑗 < 0.9,
10ℎ, otherwise,
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where ℎ = 0.05. The interfacial parameter 𝜖 = 6ℎ∕ 
(
2
√
2 tanh−1 (0.9)

)
and time step Δ𝑡 = ℎ2 are used. The initial condition is as follows:

𝜙(𝑥𝑖, 𝑦𝑗 ,0) =

{
1, if (𝑥𝑖, 𝑦𝑗 ) ∈

⋃4
𝑘=1𝐶𝑘,

−1, otherwise,

where 𝐶𝑘 is a circle shaped subdomain. 𝐶1 and 𝐶2 are circles with radii 
of 0.13 with centers at (1.5,2) and (2.5,2), respectively. 𝐶3 and 𝐶4 are 
circles with radii of 0.7 with centers at (6.2,7) and (7.8,7), respectively. 
Initial condition is illustrated in Fig. 11. We can observe that the two 
small circles shrink to one circle by time 500Δ𝑡. After then, the two 
large boxes also shrink to one.

To investigate more complex dynamics, we consider two subdo-

mains for numerical simulation as shown in Fig. 12. Here, the compu-

tational domain is Ωℎ = (0, 1)2, and the subdomains are (0.1, 0.3)2 and 
(0.5, 0.9)2, which are constructed by a fine mesh. Otherwise, we use a 
coarse mesh. The nonuniform mesh 𝑝 and 𝑞 are considered as

𝑝𝑖 =

{
ℎ, if 0.1 < 𝑥𝑖 < 0.3, and 0.5 < 𝑥𝑖 < 0.9,
10ℎ, otherwise,

𝑞𝑗 =

{
ℎ, if 0.1 < 𝑦𝑗 < 0.3, and 0.5 < 𝑦𝑗 < 0.9,
10ℎ, otherwise,

where ℎ = 0.05. 𝜖 = 6ℎ∕ 
(
2
√
2 tanh−1 (0.9)

)
and time step Δ𝑡 = ℎ2 are 

used. The initial condition is defined as follows:
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Fig. 11. Evolution of two box-shaped initial conditions: (a) initial condition, (b) 𝑡 = 250Δ𝑡, (c) 𝑡 = 750Δ𝑡, and (d) 𝑡 = 1000Δ𝑡.

Fig. 12. Evolution of flower shaped initial condition: (a) initial condition, (b) 𝑡 = 250Δ𝑡, (c) 𝑡 = 750Δ𝑡, and (d) 𝑡 = 1000Δ𝑡.
𝜙(𝑥𝑖, 𝑦𝑗 ,0) = tanh
⎛⎜⎜⎜⎝
0.5 + 0.25cos(4𝜃1(𝑥𝑖, 𝑦𝑗 )) −

√
(𝑥𝑖 − 2)2 + (𝑦𝑗 − 2)2)√

2𝜖

⎞⎟⎟⎟⎠
+ tanh

⎛⎜⎜⎜⎝
(1 + 0.7cos(4𝜃2(𝑥𝑖, 𝑦𝑗 )) −

√
(𝑥𝑖 − 7)2 + (𝑦𝑗 − 7)2√

2𝜖

⎞⎟⎟⎟⎠
+ 1,

where 𝜃1(𝑥, 𝑦) = tan−1 ((𝑦− 2)∕(𝑥− 2)) and 𝜃2(𝑥, 𝑦) = tan−1((𝑦 −7)∕(𝑥 −
7)). Initial condition is illustrated in Fig. 12(a). Figs. 12(a)–(d) present 
the computational results at times 𝑡 = 0Δ𝑡, 250Δ𝑡, 750Δ𝑡, and 1000Δ𝑡, 
respectively. We can observe that the flower-shaped interface shrinks to 
a rectangle, and the rectangular-shaped interface deforms into a circle.

5. Conclusions

In this paper, we presented the unconditionally energy stable numer-

ical scheme using the LSS and OSM for the CH equation on nonuniform 
meshes. The CH equation is widely used for modeling for the phase 
separation phenomena. Therefore, the enhancement of the efficiency is 
important. We presented stable numerical schemes on nonuniform grids 
to improve the efficiency for the space. We presented the numerical 
analysis that the proposed scheme satisfies the mass preserving prop-

erty. In addition, because we used the linear stabilized scheme and 
operator splitting scheme, the proposed numerical scheme is practi-

cally stable scheme. We have presented the numerical experiments to 
demonstrate the efficiency by comparison with the uniform mesh. The 
strategy for constructing a nonuniform mesh is an important subject, 
as it can cause global refinement and significantly affect accuracy and 
efficiency. In the future work, we can improve nonuniform mesh con-

struction adaptively based on time-varying numerical solutions. We can 
also consider some application works such as image inpainting and vol-

ume reconstruction using this numerical scheme to enhance efficiency.
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