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ABSTRACT

We present a simple and robust numerical technique for a novel phase-field model of three-dimensional (3D)
shape transformation. Shape transformation has been achieved using phase-field models. However, previous
phase-field models have intrinsic drawbacks, such as shrinkage due to motion by mean curvature and unwanted
growth. To overcome these drawbacks associated with previous models, we propose a novel phase-field model that
eliminates these shortcomings. The proposed phase-field model is based on the Allen-Cahn (AC) equation with
nonstandard mobility and a nonlinear source term. To numerically and efficiently solve the proposed phase-field
equation, we adopt an operator splitting method, which consists of the AC equation with a nonstandard mobility
and a fidelity equation. The modified AC equation is solved using a fully explicit finite difference method with
a time step that ensures stability. For solving the fidelity equation, we use a semi-implicit scheme with a frozen
coefficient. We have performed several numerical experiments with various 3D sources and target shapes to verify

the robustness and efficacy of our proposed mathematical model and its numerical method.

1. Introduction

Shape transformation is the process of changing the shape of an ob-
ject. In the context of computer graphics and image processing, shape
transformation typically involves manipulating the geometric proper-
ties of an object to achieve a desired shape. There are several types
of shape transformations. In this study, we focus on morphing, which
is a technique used to smoothly transform one shape into another by
creating a sequence of intermediate shapes. Shape transformation has
been widely used in animation [1,2], computer vision [3,4], volume
reconstruction [5], and metal casting [6]. Various studies have been
conducted on shape transformation in two dimensions (2D) as well
as in three dimensions (3D) [5,7]. One notable study was performed
by Alexander et al. who developed a new method for deforming two
arbitrary topological 2D shapes with complex textures. Their method
combined space-time transfinite interpolation, generating smooth tran-
sitions between the source and target shapes without requiring any
correspondence between boundary points or features. Weng et al. [1] ex-
plored a 2D shape deformation method based on nonlinear least squares
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optimization, which effectively preserves the two local shape character-
istics. In order to preserve as much local detail as possible in surface
deformation operations, Qin et al. [8] developed a method for control-
ling the stiffness of a surface by changing the size of local elements.
The overall stiffness of the shape is determined by the size of the local
element.

Meanwhile, with the development of 3D technology, research on
the shape transformation of 3D objects has become increasingly im-
portant. Machine learning has enabled the development of new, more
efficient, and accurate methods for shape transformation. For example,
Gao et al. [9] developed a novel mesh deformation automatic trans-
fer architecture that can be used to transform shapes even if they do not
match. In addition, the phase-field model, based on the Allen—Cahn (AC)
equation [10], has been shown to be very effective in shape transforma-
tion [7,11-15]. The AC equation, proposed by Allen and Cahn in 1979,
satisfies the maximum principle and holds the property that the total en-
ergy of the system decreases over time [10]. The AC equation has been
applied in many fields, such as materials science [16,17], image seg-
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Fig. 1. (a) Non-standard variable mobility M (¢) =

mentation [18-21], data assimilation [22], topology optimization [23],
and reconstruction [24]. Wang and Shi [24] proposed a new surface re-
construction method based on the modified AC equation. Research on
the conservative AC (CAC) equation, which is one of the modified forms
of the AC equation and conserves mass, has been actively conducted in
studies [25-27]. A high-order energy stable scheme for the CAC equa-
tion was presented in [25]. Cui et al. [26] proposed an operator splitting
scheme for solving the nonlocal CAC equation. Sun and Zhang [27] pre-
sented a radial basis function method for solving the CAC equation on
smooth compact surfaces embedded in 3D. Kim et al. [5] improved the
AC equation and applied it to the 3D volume reconstruction of multi-
slice data. Li et al. [28] efficiently performed volume inpainting using
the modified AC equation. Furthermore, in shape transformation, many
researchers have used the AC equation. For example, Wang et al. [14]
proposed a 3D shape transformation method based on the phase-field
model, including a modified AC equation. This method can handle shape
transformations of objects with sharp boundaries and different topolo-
gies.

Shape transformation is used in a variety of applications, includ-
ing metal casting [11,29], which requires sensible rearrangement of
shapes. During the process of metal casting, the source shape under-
goes various undesirable localized deformations to produce the desired
shape. Traditionally, time-consuming and costly experiments are per-
formed to identify material properties through trial and error routines.
However, computational experiments using mathematical modeling and
numerical methods provide a more efficient way to save both cost and
time. In the literature, numerous research studies [7,11,30] have been
conducted on the casting process. For example, Si et al. [31] used the
finite difference method for heat flow and the finite element method
for thermo-elasto-plastic stress analysis during the casting process. To
calculate the heat flux and heat transfer coefficient at the interface of
the metal-sand mold, an inverse conduction model was used in [32].
Furthermore, Fieres et al. [29] used computed tomography and an im-
mersed boundary finite element method to simulate pore-scale defects
in the casting and molding process. Additionally, to predict the loca-
tion of shrinkage defects like porosity and cracks, auto cast software for
contact wheel was used by [33].

More recently, Kim et al. [11] discussed an example of metal casting
by using a phase-field model to improve the quality of the product in
the mechanical field. Their method efficiently deals with the time step
constraint during the solution of the diffusion term. However, for more
complex 3D shapes, the model shows discontinuity in the shape trans-
formation process due to motion by mean curvature. In this paper, we
address these problems by proposing a modified phase-field model with
nonstandard mobility, fidelity, and a nonlinear source term. The govern-
ing model is solved numerically using an operator splitting method. The
diffusion term is solved using a fully explicit finite difference method,
and the fidelity term is solved using a semi-implicit scheme. Nonstan-
dard mobility in the diffusion term and a frozen coefficient in the fidelity
term are used to improve the accuracy and stability of the numerical so-
lution. The method is validated with several numerical experiments on
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3D sources and targets. The computational results show that the model
can accurately and realistically simulate changes in the shape of a ma-
terial, which can be applied in the casting of metals.

This paper is organized as follows. In Section 2, the proposed equa-
tion and its numerical method are presented. Section 3 presents compar-
ison tests and various experiments on shape transformation. Conclusions
are given in Section 4.

2. Modified AC equation and its numerical method
2.1. Governing equation

We propose the following new modified Allen—Cahn (AC) equation
with a fidelity term for modeling shape transformation:

0p(x,1) _ F'(¢(X 1)
o —M(d)(XJ))( + Ad(x, )>

+aFCP($(x, t))(l//(X) - (x,1), (€))
where F(¢) = 0.25(¢* — 1)? is a double-well potential, ¢(x,7) is the

phase-field, and w(x) is a target shape. Here, M (d(x,1)) = ¢p(x,1) is
a non-standard variable mobility, € is an interfacial transition parame-
ter, FC(¢) = |¢* — 1] is fidelity coefficient, a is a fidelity parameter, p
is a positive parameter. We note that if M (¢(x,7)) =1 and « =0, then
Eq. (1) becomes the conventional AC equation [10,34], i.e.,

0.1 _ F'(¢(X 1)

ot

The non-standard variable mobility M (¢) and FC?(¢) are illustrated
in Figs. 1(a) and (b), respectively. The non-standard variable mobility,
denoted as M(¢), prevents the motion by mean curvature, while the
term a FCP(¢) restricts growth to the non-interfaces. To examine the
effect of non-standard mobility, let us consider the following equation
with @ =0 from Eq. (2):

dp(x,1)
ot

+ Ap(x, ). (2)

F’(¢(X )

=M(¢(x,1)) < + Ag(x, t)> 3
Figs. 2(a) and (b) illustrate the temporal evolutions for the classical AC
equation (2) and the AC equation with non-standard mobility (3), re-
spectively, at the same time. In the case of the classical AC equation,
the interface exhibits shrinkage due to the effect of motion by mean
curvature. Conversely, when non-standard mobility is introduced, the
mobility is zero at the interface (¢ = 0), which prevents the interface
from shrinking and allows it to maintain its shape. To provide a vi-
sual representation, Fig. 3 illustrates schematic for the dynamics of the
proposed model in two-dimensional space. Figs. 3(a)—(c) represent the
temporal evolution of the zero-level contour of ¢, ¢ with its zero-level
set, and the fidelity term in Eq. (2), a FC?¢p(y — ¢), respectively. From
the results shown in Fig. 3(c), for the interface of ¢, the fidelity term is
positive on the side that is adjacent to the target y and negative on the
side that is not. Consequently, the fidelity term drives ¢ to conform to
the target shape.
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Fig. 2. Dynamics over time for the (a) classical AC equation (2) and (b) AC equation with non-standard mobility (3).
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Fig. 3. Schematic illustration for the dynamics of the proposed model in two-dimensional space. (a) Temporal evolution of the zero-level contour of ¢ with target.
(b) Temporal evolution of ¢ with its zero-level set. (c) Temporal evolution of the fidelity term in Eq. (2), a FC?¢p(y — ¢).

2.2. Computational algorithm To obtain the numerical solution of the governing Eq. (1), we can
follow a two-step process. Firstly, we employ the explicit Euler method
to solve the AC equation (4)
We discretize Q = (x;,x,) X (y,y,) X (2, 2,) as Q; = {(x;,¥;,2¢) =
(x;+ (@ —0.5)h,y, +(j —0.5)h,z; + (k —0.5)h)}, where I <i< N, 1 < =@ "(P".
x ijk ljk_M( n ijk + A" )
J<N,, and 1 < k < N, with a uniform grid size 4. Moreover, we use the At = ¢ijk) &2 d¢ijk ’
notations d)",'jk and v;jk to represent ¢(x;,y;, zy, nAt) and w(x;, Y. 25,
respectively, where At is the time step size. By employing the operator where Ay ¢, = (@, H DL DO T

splitting method, we can decompose Eq. (1) into the following separate 6¢If’j ») /h?%. From Eq. (6), we can obtain the intermediate solution q.’);“j B
equations: as follows:
F'@)
0 t F’ t * ijk
20— mgny (- CEED 4 sgixn)) @ B= Ol MM (‘ 2t Ad"’f’jk) : @
€
db(x.1) Next, the fidelity term is solved using the semi-implicit scheme with a
dt’ =aFCP(p(x, )y (x) — p(x,1)). 5) frozen coefficient using Eq. (5).
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(b) Proposed model
¥

t = 300At
t = 400At
t = 500At

Fig. 4. Temporal evolutions to numerical solutions of the model in (a) Kim et al. [11] (left) and (b) proposed model (right) with a = 100.

¢n+1 _ ¢>k
o Fk
L = aFC? () i ). ©)
Eq. (8) can be rewritten as
* 4 Atay;, FCP (qﬁi*. )
n ijk ijk ijk
qsiﬁcl = (9)

1 + AtaFCP <¢?}k)

One time step iteration is calculated by this process.
2.3. Stability analysis

In this section, we present the stability analysis of the proposed nu-
merical method and propose a time step constraint, which guarantees
the discrete maximum principle for the numerical solution of the pro-
posed model. We suppose that the time step At, initial condition, and
target satisfy the following conditions:

%)
Ar< S 190, < 1 and fuyl < 1.
for I<i<N,, 1 SjSNy,andlﬁksNz.

Initially, we consider the first step in the AC Eq. (7) with the mo-
bility. Since, we set the non-standard variable mobility as M (¢) = ¢?,
0 < M(¢) <1 for |¢p| < 1. Therefore, by the theorem in [35], the inter-
mediate solution is bounded as

(10)

|¢fjk|§1, forlsisNx,lsjsNy,andlsksNz, (11
if the time step satisfies

%)

e“h 12)

At ——.

2h? + 6¢2
Then, we examine the next step in Eq. (8) using the semi-implicit
scheme. From Eq. (9),
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|¢;’;(‘|§1, for 1<i<N, 1<j<N, and I<k<N,, 13)
for any time step At, provided |¢;“j kl <l and |y;j| < L. Therefore, the
proposed numerical method for shape transformation is stable and sat-
isfies the discrete maximum principle, under the following time step
constraint.

e2h?

e 4o

3. Computational tests

A numerical equilibrium state is determined by the discrete /,-norm
of the difference between two consecutive solutions, which must be
smaller than a specified tolerance, tol. That is,

N,

X

4
4

z

" — "I, = (¢;;k—¢,."j;1)2/(NxNyNz) < 1tol,

]
—_
Il
—_
=
1l

J 1
where we set 7ol = 1.0e-6 for the following numerical experiments, un-
less otherwise specified.

3.1. Comparison test with a previous model

In this section, we compare the previous and proposed models. First,
we introduce the previous model. The previous shape transformation
model was proposed by Kim et al. [11] as follows:
9 _ F(@)

T2 + AP+ aVF(d)w - ),

where ¢ is a source and y is a target. For the source shape, we chose
a cube and for the target shape, we chose a U-shaped bar to perform
some comparison tests as shown in the first row of Fig. 4. For the pro-
posed model, we use the non-standard variable mobility M (¢) = ¢? and

(15)
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(b) Proposed model

—

t = 200At

—

t = 400At

_-—

t = 7T00At

Fig. 5. Temporal evolutions to numerical solutions of the model in (a) Kim et al. [11] (left) and (b) proposed model (right) with & = 10000.

FC2%(¢) = |¢? — 1|? in a three-dimensional space Q= (-2,2)x(-1,1)x
(=1,1). We use the uniform grid 4 = 1/50, time step Af =0.12h2, and
€ = 5h. We note that the time step A7 = 0.124? satisfies the time step con-
straint (14) for the stability. We compare the dynamics of two different
models with a = 100 and « = 10000. Figs. 4(a) and (b) show the tempo-
ral evolutions of the model in [11] and the proposed model, respectively,
with @ = 100. For the case of [11], the numerical solution significantly
shrinks due to the mean curvature effect. On the other hand, in the
case of the proposed model, the mean curvature effect is substantially
reduced owing to the non-standard variable mobility. Fig. 5 has two
columns, which show the snapshots of the previous and proposed mod-
els with « = 10000. In the previous model, the phenomenon of growth
occurred at non-interfaces. While it was greatly reduced by the effect of
FC?(¢) in the proposed model. In the novel proposed model, the mean
curvature flow phenomenon for small « and non-consistent growth phe-
nomenon at non-interfaces for large @ were greatly reduced.

Next, we consider the efficiency of the proposed method. The pa-
rameters used are At = 0.1h2, ¢ = h, and tol = 1.0¢-5. As the fidelity
parameter « increases, the growth rate becomes faster in both the pre-
vious and proposed methods. In the previous method, there is growth
occurs at non-interfaces when the value of « is large. Therefore, we
compare the previous model, using « values with and without growth
at non-interfaces, with the proposed model using a large a. In the pre-
vious model, we use the fidelity parameter a = 3800 where growth
occurs at non-interfaces and a = 3600 where growth does not occur at
non-interfaces. In the proposed model, we use a = 20000. The other
parameters and initial conditions are the same as those used in the nu-
merical experiments above.

Fig. 6 shows the temporal evolution of numerical solutions for the
previous and proposed models. In Figs. 6(a) and (b), we use the previous
models with « = 3800 and a = 3600, respectively, and in Fig. 6(c), we
use the proposed model with a =20000. We observed that the growth
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at non-interfaces when « = 3800, and the total number of iterations
required to reach the numerical equilibrium state using the previous
model is greater than the total number of iterations using the proposed
model. Furthermore, we observed that the numerical solution using the
proposed model grows more accurately to the target shape than the nu-
merical solution using the previous model. We define the total number
of iterations required to reach the equilibrium state as N,. Table 1 lists
the CPU times and the total number of iterations required to reach the
equilibrium state using the previous and proposed models. We observed
that the CPU time and N, using the proposed model are both less than
those using the previous model.

3.2. Effect of parameters

In this section, we investigate the parameters «, p, and ¢ in the pro-
posed model (1). For the numerical tests, we consider two cubes in
three-dimensional computational domain Q = (—1,1) x(=1,1) x (=1, 1),
with one designated as the source and the other as the target. The source
and target cubes are illustrated in the first column of Fig. 7. Here, the pa-
rameters for discretization in space and time are N, = N, = N, =100,
h=1/50, and At =0.12h>.

First, we investigate the effect of the parameter « in the fidelity term.
Fig. 7 shows the temporal evolutions of numerical results for a = 10%,
a=10%, and a = 10°. Here, we fix the other parameters as € = 5h and
p = 2. From the results shown in Fig. 7, as a increases, we can ob-
serve that the rate of shape evolution accelerates. However, when «
becomes excessively large, the interface of the shape becomes irregu-
lar and jagged. Therefore, an appropriate value for a should be chosen
based on the considerations of evolution speed and efficiency.

Next, we investigate the effect of the parameter p in the fidelity term.
Fig. 8 shows the temporal evolutions of numerical results for p = 2,
p=75, and p = 10. Here, we fix the other parameters as ¢ = 5h and
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(c) Proposed model with o = 20000

t = 500A¢ t = 550At t = 210A¢

t = 900A¢ t = 980At t = 375At
-’

t = 1055At t = 1458At t = 554At

Fig. 6. Temporal evolutions to numerical solutions of the model in (a) previous model with & =3800, (b) previous model with @ = 3600, and (c) proposed model

with a =20000.

Table 1

CPU times and the total number of iterations that reach the equilibrium state using the previous

and proposed models.

Case Previous model (@ = 3800) Previous model (a« = 3600) Proposed model (a =20000)
N, 1157 1458 554
CPU time(s)  95.4186 121.3859 39.4573

a = 10°. As the parameter p increases, it increasingly inhibits shape
transformation on the non-interfaces (¢ # 0). However, as evidenced
by the results in Fig. 8, larger values of p lead to a slower rate of shape
evolution, and when p becomes excessively large, the interface of the
shape becomes irregular and distorted.

Finally, to investigate the effect of the parameter ¢, we consider cubic
source and u-shaped target as shown in the first column of Fig. 9. Since
the parameter e affects the time step constraint, we take the time step
At = 5x107° to ensure the stability of the numerical solutions. This time
step satisfies the constraint in Eq. (14) for € = 5h, e = 10h, and € = 20h.
Here, we fix the other parameters as « = 10° and p = 2. Fig. 9 shows
the temporal evolutions of shape transformation for € = 5h, ¢ = 10h,
and € = 20h. In the phase-field model, the parameter ¢ influences the
interface transition length. Consequently, if epsilon becomes excessively
large, the interface transition length surpasses the spacing of the target
shape, resulting in growth occurring in the non-interface region.

3.3. Computational experiments with various source and target shapes

3.3.1. Oval to bunny

For the simple case of shape transformation within Q = (—1,1) X
(—=1,1) X (=1,1), we chose a three-dimensional ellipsoid as the source
shape and the Stanford bunny as the target shape (refer to Fig. 10(a)).
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The equation for the ellipsoidal shape, centered at (—0.55,—0.58,0.2), is
defined as follows:

[/ x4055\5 , 740585 , 2=02.,
$(x.y.2,0) = tanh 1 \/( 028 ) T (16 ) (T

V2e

where the semi-axes lengths in the x-, y-, and z-directions are 0.28,
0.16, and 0.18, respectively. To facilitate the transformation of three-
dimensional shapes, we assign the following parameter values: N, =
N,=N,=200, h=1/N,, e=5h, At =0.12A2, and a = 100000. From
this experiment, we found that as the time increases from ¢t = 5Af to
t = 175At¢, the source shape starts to transform into the target shape.
Within a very small number of time steps, the target shape acquired
the source shape, as depicted in Figs. 10(b)-(h). Here we choose the
value of fidelity parameter to be very high, @ = 100000, which allows
source shape to transform into the target shape more accurately without
growing in non-interfaces. Additionally, the total number of iterations
required to reach the equilibrium state is very low.

3.3.2. Cuboid to complex 3D shape

Similarly for a more complex scenario, we utilize a three-dimensional
cuboid as the source shape and a complex 3D shape as the target shape
(refer to Fig. 11(a)) within Q= (-1.1,1.1) X (-=1.1,1.1) X (-1.1, 1.1). To
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t = 100At

t = 150A¢

Fig. 7. Temporal evolutions of numerical results for (a) a = 10*, (b) = 10°, and (c) a = 100.

t = 10At

| /)/)i
—

t = 100A¢ t = 150At

Fig. 8. Temporal evolutions of numerical results for (a) p=2, (b) p=5, and (c¢) p = 10.

facilitate the transformation of these three-dimensional shapes, we set
the following parameters: N, = N, = N, =44, h=1/N,, ¢ = 1.5h,
At =0.12h2, and a = 3500.

Here, we used a relatively small value for the fidelity parameter,
a = 3500, and observed that the source shape starts transforming into
the complex target shape without any intermediate growth at non-
interfaces. Over a brief series of time steps, from 7 = 30A¢ to t = 345A¢,
the source shape gradually evolves into the target shape with high accu-
racy. Consequently, the proposed model significantly reduces the num-
ber of iterations needed to reach equilibrium, and within a short time

73

interval, the target shape closely aligns with the source shape, as illus-
trated in Figs. 11(b)—(h).

3.3.3. Spheroid to 2-torus

To perform shape transformation for different topological structures
in Q=(-1,1) x(-1.5,1.5) x (0, 1), we set the source shape ¢(x, y, z,0)
as a spheroid and the target shape w(x, y, z) as a 2-torus:

0.15 - \/0.2 ((x+0.25)% + (¥ = 0.8)?) + (z = 0.5)>
@(x,y,z,0)=tanh )

V2e
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t = 300At

t = 480At t = 510At

Fig. 9. Temporal evolutions of numerical results for (a) € = 5h, (b) € = 10h, and (c) ¢ = 20A.

(b)

e &

©

(€]

(h)

Fig. 10. (a) Initial models for oval as source ¢(x, y, z,0) and bunny as target y(x, y, z). (b)—(h) are the snapshots of ¢(x, y, z,1) at t = 5At, 20At, 40At, 60At, 100At,

130At, and 175At¢, respectively.

0.15— \/d2(x, y,2)+(z—0.5)
w(x,y,z) = tanh >

V2e

where d(x, y,z) = ((x - 0.075) + (y — 0.1)2)2 +(x=0.25)2=(y—0.15)%
In this test, we use the following parameter values: N, = 100, N, =
200, N, =50, h = 1/50, At =0.1h%, ¢ = 2h, and a = 5000000. With a
high fidelity parameter value of a = 5000000, the initial source spheroid
¢(x,y,z,0) transitions smoothly into the 2-torus target shape w(x, y, z),
as shown in Fig. 12(b)—(h). This transformation occurs within a few time
steps, ranging from ¢ = At to t = 120At. As illustrated in Fig. 12, the
use of non-standard variable mobility significantly reduces the mean
curvature effect, enabling the target shape to closely match the source
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shape in a very short time interval without any intermediate growth at
non-interfaces.

4. Conclusions

In this study, we have presented a robust numerical algorithm for
a novel phase-field model that enables efficient and accurate 3D shape
transformation. Previous phase-field models suffered from drawbacks
such as shrinkage and unwanted growth, which we have successfully ad-
dressed in our proposed mathematical model. Our approach is based on
the AC equation with nonstandard mobility and a nonlinear source term.
By incorporating these modifications, we effectively reduced the effects
of mean curvature and localized growth near the interface, resulting
in improved and robust shape transformations. Numerical experiments
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Fig. 11. (a) Initial models for cuboid as source ¢(x, y, z,0) and complex 3D as target y(x, y, z). (b)—(h) are snapshots of ¢(x, y, z,7) at t = 30At, 60At, 110A¢, 195A¢,

250At, 300At and 345At¢, respectively.

(d)
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®

Fig. 12. (a) Initial model for spheroid as source ¢(x, y, z,0) and 2-torus as target y(x, y, z). (b)—(f) are snapshots of ¢(x, y, z,1) at t = At, 2At, 20At, 60At, and 120A¢,

respectively.

with various 3D sources and target shapes demonstrate the robustness
and efficacy of our proposed mathematical model and numerical so-
lution algorithm. The computational results validate our approach to
achieving smooth and accurate 3D shape transformations, overcom-
ing the limitations of previous models. In conclusion, our work offers
a simple and reliable solution for 3D shape transformation using the
phase-field approach. The proposed mathematical model and numeri-
cal method have promising applications in fields requiring precise and
efficient 3D shape transformations.
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