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In this study, we investigate the artificial pinning phenomena that emerge in numerical 
simulations of high-order Allen–Cahn (AC) equations. The AC equation is widely used to describe 
interface motion during phase separation processes. However, discretized numerical solutions 
may exhibit nonphysical behavior such as interface immobilization, or ``pinning,'' particularly 
when the ratio between the interfacial thickness model parameter (𝜖) and the spatial numerical 
mesh size (ℎ) is below a critical threshold. The present work systematically analyzes how this ratio, 
𝑃 = 𝜖∕ℎ, influences interface dynamics and determines the critical values at which pinning begins 
to occur for various nonlinearity degrees (𝛼) of the polynomial potential. A fully explicit finite 
difference method is used to simulate the AC equation in both two- and three-dimensional settings. 
A bisection algorithm is introduced to accurately identify the critical pinning threshold 𝑃 ∗ as a 
function of 𝛼. Numerical experiments demonstrate that as 𝛼 increases, 𝑃 ∗ decreases, indicating 
that the solution becomes more sensitive to spatial discretization and requires finer grids to 
avoid artificial pinning. Additionally, computational results show that higher values of 𝛼 yield 
thicker and smoother interface transitions, and the study also investigates the influence of these 
values on phase morphology under random initial conditions. The numerical results in this study 
provide quantitative guidance for selecting discretization parameters in phasefield simulations 
and emphasize the importance of balancing the interface resolution with model complexity. These 
insights contribute to the development of accurate and robust numerical schemes for simulating 
interfacial dynamics in complex physical systems.

1. Introduction

The phasefield method provides a powerful methodology for modeling interfacial dynamics in various scientific and engineering 
applications, such as materials science [1,2], fluid dynamics, and image processing [3]. By introducing a continuous order parameter to 
implicitly represent interfaces, it avoids the need for explicit interface tracking [4]. The temporal evolution of this phasefield variable 
is typically governed by a class of partial differential equations (PDEs), such as the Allen–Cahn (AC) or Cahn–Hilliard (CH) equations 
[5,6]. In particular, the AC equation is widely used to model interface motion driven by curvature without mass conservation. Despite 
its modeling advantages, numerical simulations of the AC equation face significant challenges [7], including accurately resolving 
interfaces, preserving energy dissipation properties, and avoiding nonphysical artifacts such as pinning. The pinning phenomenon 
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Fig. 1. 𝐹𝛼 (𝜓(𝐱, 𝑡)) =
(
(𝜓(𝐱, 𝑡))2𝛼 − 1

)2 ∕(4𝛼2) for the cases 𝛼 = 1,2, and 3. 

[8] refers to cases in numerical simulations or physical processes where an interface becomes ``stuck'' and unable to move freely. In 
numerical simulations, when 𝜖∕ℎ is small, which means that the interface is narrow relative to the mesh size, pinning phenomena 
often occur due to insufficient spatial resolution [9]. Alber [10] studied the dependence of interface velocity on interface energy and 
width in the AC model and pointed out that if the mesh resolution is insufficient, the interface may not propagate smoothly; therefore, 
the use of adaptive mesh and other advanced numerical methods is required. Nepomnyashchy [11] studied coarsening, which is a 
gradual growth of the characteristic scale with time, and pattern formation in physical systems using the AC and CH equations. The 
work also discussed factors that can slow down or arrest coarsening, such as wall pinning, oscillatory tails, and nonlocal interactions.

This study applies the bisection method to approximate the threshold value of 𝜖∕ℎ at which the pinning phenomenon occurs. The 
numerical scheme is an explicit finite difference method (FDM) of the AC equation with a high-order polynomial potential, given as 
follows:

𝜕𝜓(𝐱, 𝑡)
𝜕𝑡 

= −
𝐹 ′
𝛼
(𝜓(𝐱, 𝑡))
𝜖2

+ Δ𝜓(𝐱, 𝑡), 𝐱 ∈Ω, 𝑡 > 0. (1)

Here, 𝜓(𝐱, 𝑡) evolves over the spatial domain Ω ∈ ℝ𝑑 , where 𝑑 = 2 and 3. The function 𝐹𝛼(𝜓) represents the double-well potential, 
and 𝜖 denotes the interface thickness parameter. In this paper, the zero Neumann boundary condition is applied as 𝐧 ⋅∇𝜓(𝐱, 𝑡) = 0
on 𝜕Ω. Here, 𝐧 is normal to 𝜕Ω. The high-order polynomial free energy potential is as follows:

𝐹𝛼(𝜓(𝐱, 𝑡)) =
1 

4𝛼2
(
(𝜓(𝐱, 𝑡))2𝛼 − 1

)2
, (2)

where 𝛼 is a positive integer. Fig. 1 illustrates the high-order polynomial free energy profiles for different values of 𝛼. We observe 
that when 𝛼 = 1, Eq. (2) reduces to the canonical AC equation [12], which governs the temporal evolution of a scalar order parameter 
during phase separation. The AC equation is used in numerous fields, such as fluid dynamics [13], image processing [14,15], topology 
optimization [16,17], geometric flows [18,19], tumor growth [20], and data segmentation [21]. For 𝛼 > 1, which represents the high

order case, we observe that during temporal evolution the noise is effectively damped, as shown in Fig. 2. This property suggests 
potential applicability in practical tasks such as data classification. 

Considering the inherent nonlinearity and stiffness of the AC equation, the exact analytical solutions are generally unattainable. 
That is why numerical techniques are indispensable for obtaining approximate solutions. Hussain et al. [23] applied the variational 
iteration method to derive a convergent approximate analytical series solution of the AC equation and demonstrated its good agree

ment with hyperbolic, traveling-wave, and finite difference numerical solutions. Sohaib et al. [24] used the spectral method to solve 
the space fractional AC equation numerically and showed that varying fractional orders markedly affected solution stabilization 
rates, interface sharpness, and energy dissipation. Uzunca and Karasözen [25] developed two-step linearly implicit schemes for the 
AC model by polarizing the free-energy functional. These methods preserve energy dissipation and demonstrated accuracy through 
numerical experiments in one, two, and three dimensions. Haq et al. [26] formed a numerical method using non-polynomial spline 
functions combined with forward time differencing to approximate solutions of the PHI-Four and AC equations. They demonstrated 
unconditional stability and improved accuracy over existing methods through convergence analysis and numerical tests. Hu et al. [27] 
further extended energy-stable schemes to curved geometries and developed a second-order accurate method for the Lifshitz–Petrich 
equation on curved surfaces. Xia et al. [28] proposed an unconditionally energy-stable approach for solving the Swift–Hohenberg 
equation on arbitrarily curved surfaces. Numerical experiments have verified that certain computational schemes for the AC equation 
preserve key physical properties, such as the maximum principle and energy conservation. Additionally, conservative formulations 
and corresponding numerical methods have been developed to maintain mass conservation. Yang et al. [29] constructed a class of up 
to fourth-order temporal unconditionally structure-preserving methods for the AC equation and its conservative forms using mass

lumping finite element discretization combined with integrating-factor Runge–Kutta and stabilization techniques, and they verified 
high-order accuracy, maximum-principle preservation, mass conservation, and energy stability through numerical experiments. Cai et 
al. [30] developed a spatial finite-difference scheme that decoupled the updates into scalar nonlinear solves to yield highly efficient, 
linearly implicit energy-conservative or dissipative integrators for the sine-Gordon and AC equations, connected this framework to 
Itoh-Abe discrete-gradient and partitioned averaged-vectorfield techniques, and showed its natural parallelism and low complexity 
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Fig. 2. Temporal evolution of a traveling wave solution with noise. Figure reprinted from [22] under the Creative Commons Attribution License (CC BY). 

through numerical experiments. Li et al. [31] proposed stable schemes for surface CH systems an extended phasefield methods to 
complex geometries. Adopting polynomial free-energy functions of order greater than four enables precise control of interface sharp

ness and propagation speed, which leads to the formation of sharper phase boundaries and a reduction in numerical noise to improve 
application performance. Moreover, these high-order potentials permit multiple equilibrium states, which are essential for modeling 
complex interactions in materials science and biological systems. To approximate the resulting high-order AC equations, researchers 
have developed various numerical schemes, including unconditionally energy-stable algorithms [32--34], conservative formulations 
[35--37], and maximum-principle-preserving methods [29,38].

In the present study, we investigate the pinning of phase interfaces that can occur when numerically discretizing the high-order 
AC equation with polynomial free-energy potentials. We use an explicit method, noting that the high-order AC equation, compared 
with the classical AC equation, admits a slightly more restrictive time step limitation [39]. Although the frozen-coe�icient method 
[40] can be applied to relieve this restriction, the present work focuses instead on the pinning effects associated with the interface 
thickness parameter 𝜖 and the high-order parameter 𝛼 coupled with numerical discretization. Particular emphasis is placed on how 
the ratio of the spatial mesh size ℎ to the interfacial parameter 𝜀 governs the immobilization of interfaces in practice. Our objective is 
to establish quantitative criteria for choosing 𝜖 relative to ℎ, thereby precluding spurious pinning and ensuring faithful resolution of 
interface motion. These results provide actionable guidelines for designing stable and accurate computational methods in phasefield 
simulations.

This article is organized as follows: In Section 2, we present the numerical algorithm for the high-order AC equations. In Section 3, 
we present numerical tests. In Section 4, we summarize the findings.

2. Numerical solution algorithms

We introduce fully explicit FDMs for the AC equation and begin by examining the equation in a two-dimensional (2D) domain 
Ω = (𝐿𝑥,𝑅𝑥) × (𝐿𝑦,𝑅𝑦) with a number of spatial grid points 𝑁𝑥 and 𝑁𝑦. A uniform spatial grid size ℎ = (𝑅𝑥 − 𝐿𝑥)∕𝑁𝑥 is applied. 
The discretized domain is defined as Ωℎ = {(𝑥𝑝, 𝑦𝑞) | 𝑥𝑝 = 𝐿𝑥 + (𝑝 − 0.5)ℎ, 𝑦𝑞 = 𝐿𝑦 + (𝑞 − 0.5)ℎ, 𝑝 = 1,2,… ,𝑁𝑥, 𝑞 = 1,2,… ,𝑁𝑦}. 
On the computational domain, 𝜓(𝑥𝑝, 𝑦𝑞, 𝑛Δ𝑡) is approximated by 𝜓𝑛

𝑝𝑞
for 𝑛 = 1,2,… ,𝑁𝑡. Here, 𝑇 is the final time, 𝑁𝑡 is the number 

of time steps, and Δ𝑡 = 𝑇 ∕𝑁𝑡 is the time step. We use the explicit Euler method for temporal discretization as follows:

𝜓𝑛+1
𝑝𝑞

−𝜓𝑛
𝑝𝑞

Δ𝑡 
= −

(𝜓𝑛
𝑝𝑞
)2𝛼−1

(
(𝜓𝑛

𝑝𝑞
)2𝛼 − 1

)
𝛼𝜖2
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+
𝜓𝑛
𝑝−1,𝑞 +𝜓

𝑛
𝑝+1,𝑞 +𝜓

𝑛
𝑝,𝑞−1 +𝜓

𝑛
𝑝,𝑞+1 − 4𝜓𝑛

𝑝𝑞

ℎ2
.

For the 2D computational domain, the zero Neumann boundary condition is applied as follows:

𝜓0𝑞 = 𝜓1𝑞 and 𝜓𝑁𝑥+1,𝑞 = 𝜓𝑁𝑥𝑞, for 𝑞 = 1,2,… ,𝑁𝑦, (3)

𝜓𝑝0 = 𝜓𝑝1 and 𝜓𝑝,𝑁𝑦+1 = 𝜓𝑝𝑁𝑦 , for 𝑝 = 1,2,… ,𝑁𝑥. (4)

Then, we define the AC equation in the three-dimensional (3D) domain Ω = (𝐿𝑥, 𝑅𝑥) × (𝐿𝑦, 𝑅𝑦) × (𝐿𝑧, 𝑅𝑧) with number of 
spatial grid points 𝑁𝑥, 𝑁𝑦 and 𝑁𝑧. A uniform spatial grid size ℎ = (𝑅𝑥 −𝐿𝑥)∕𝑁𝑥 is applied. Let us consider the discretized domain 
Ωℎ = {(𝑥𝑝, 𝑦𝑞, 𝑧𝑟) | 𝑥𝑝 =𝐿𝑥+(𝑖−0.5)ℎ, 𝑦𝑞 =𝐿𝑦+(𝑗−0.5)ℎ, 𝑧𝑟 =𝐿𝑧+(𝑘−0.5)ℎ 𝑝 = 1,2,… ,𝑁𝑥, 𝑞 = 1,2,… ,𝑁𝑦, 𝑟 = 1,2,… ,𝑁𝑧}. On 
the discretized domain, 𝜓(𝑥𝑝, 𝑦𝑞, 𝑧𝑟, 𝑛Δ𝑡) is approximated as 𝜓𝑛

𝑝𝑞𝑟
for 𝑛 = 1,2,… ,𝑁𝑡. We use the explicit Euler method for temporal 

discretization. Therefore, we have the following equation using the 7-point stencil discrete Laplacian operator.

𝜓𝑛+1
𝑝𝑞𝑟

−𝜓𝑛
𝑝𝑞𝑟

Δ𝑡 
= −

(𝜓𝑛
𝑝𝑞𝑟

)2𝛼−1
(
(𝜓𝑛

𝑝𝑞𝑟
)2𝛼 − 1

)
𝛼𝜖2

+
𝜓𝑛
𝑝+1,𝑞𝑟 +𝜓

𝑛
𝑝−1,𝑞𝑟 +𝜓

𝑛
𝑝,𝑞+1,𝑟 +𝜓

𝑛
𝑝,𝑞−1,𝑟 +𝜓

𝑛
𝑝𝑞,𝑟+1 +𝜓

𝑛
𝑝𝑞,𝑟−1 − 6𝜓𝑛

𝑝𝑞𝑟

ℎ2
.

For the 3D numerical domain, the zero Neumann boundary condition is applied as follows:

𝜓0𝑞𝑟 = 𝜓1𝑞𝑟 and 𝜓𝑁𝑥+1,𝑞𝑟 = 𝜓𝑁𝑥,𝑞𝑟, for 𝑞 = 1,2,… ,𝑁𝑦, 𝑟 = 1,2,… ,𝑁𝑧, (5)

𝜓𝑝0𝑟 = 𝜓𝑝1𝑟 and 𝜓𝑝,𝑁𝑦+1,𝑟 = 𝜓𝑝𝑁𝑦𝑟, for 𝑝 = 1,2,… ,𝑁𝑥, 𝑟 = 1,2,… ,𝑁𝑧, (6)

𝜓𝑝𝑞0 = 𝜓𝑝𝑞1 and 𝜓𝑝𝑞,𝑁𝑧+1 = 𝜓𝑝𝑞𝑁𝑧 , for 𝑝 = 1,2,… ,𝑁𝑥, 𝑞 = 1,2,… ,𝑁𝑦. (7)

We apply explicit difference schemes. Therefore, the following stability condition must be satisfied to ensure reliability of the numer

ical solution:

Δ𝑡 ≤ 𝜖2ℎ2

2(ℎ2 + 𝑑𝜖2)
, for 𝑑 = 2,3, (8)

where 𝑑 denotes the spatial dimension. The corresponding proofs for the 2D and 3D cases can be found in [39] and [41], respectively.

In our proposed method, we use the bisection method to find the critical point 𝑃 ∗ such that the pinning phenomenon would 
start to occur. The 𝑃 value is defined as 𝑃 = 𝜖∕ℎ. Below, we illustrate this algorithm in pseudo-code Algorithm 1. We note that all 
numerical experiments in this study are conducted using MATLAB R2024b in double precision arithmetic (float64). In the case where 
computations are performed in single precision arithmetic (float32), the criterion for detecting the pinning phenomenon should be 
adjusted, and the tolerance 10−6 can be used instead of 10−10.

Algorithm 1: Bisection algorithm to approximate 𝑃 ∗.

Input: 𝐿𝑃 : Lower bound; 𝑈𝑃 : Upper bound; 𝜓0(𝐱): Initial state; 𝑡𝑜𝑙: Tolerance

Output: An approximation 𝑃 ∗ satisfying the given tolerance

while 𝑈𝑃 −𝐿𝑃 > 𝑡𝑜𝑙 do

𝑃 =
𝐿𝑃 +𝑈𝑃

2 ; 
Solve the AC equation with 𝜖 = 𝑃ℎ to observe the behavior of 𝜓 ; 
if max𝜓𝑛+1 < 0 then ⊳ Determine whether 𝜓 would undergo finite-time extinction

𝑈𝑃 = 𝑃 ; 
break

end 
else if ‖𝜓𝑛+1 −𝜓𝑛‖∞ < 10−10 then ⊳ Determine whether 𝜓 would undergo pinning phenomenon

𝐿𝑃 = 𝑃 ; 
break

end 
end 
return 𝑃 ∗ =𝐿𝑃

We note that, in this study, the bisection method is used because of its robustness and simplicity. Although the critical value 𝑃 ∗

can, in principle, be approximated by higher-order methods such as the secant method, we adopt the bisection approach to guarantee 
reliability and ease of implementation.

3. Numerical tests

This section presents a series of computational experiments designed to determine the critical value of the parameter ratio 𝑃 = 𝜖∕ℎ
at which numerical interface pinning arises in the discretized AC equations governed by the high-order polynomial energy functionals. 
The numerical tests are conducted in both 2D and 3D domains to validate the robustness of the proposed criteria. Unless otherwise 
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Table 1
The critical values of 𝑃 .

𝛼 1 2 3 4 5 6

𝑃 ∗ 0.550000 0.334375 0.296875 0.287500 0.278125 0.259375

Fig. 3. The region of 𝑃 values in which the pinning phase occurs. 

stated, the 2D numerical tests are performed with the homogeneous Neumann boundary conditions given in Eqs. (3) and (4), and the 
3D numerical tests are conducted with the zero Neumann boundary conditions specified in Eqs. (5)--(7).

3.1. Two-dimensional test

We conduct a set of numerical tests to obtain the critical point of 𝑃 for different values of 𝛼. To impose a sharp interface at the 
initial stage, we prescribe a stiff initial condition of the order parameter 𝜓(𝑥, 𝑦,0) as follows:

𝜓(𝑥, 𝑦,0) =

{
1 if 

√
𝑥2 + 𝑦2 < 0.5

−1 otherwise,

which corresponds to a circular inclusion of radius 0.5 centered at the origin, embedded in a background phase of value −1. The 
computational domain is chosen as Ω = (−0.7,0.7)×(−0.7,0.7), which provides sufficient space for the evolution of the phase interface 
without the influence of boundary effects. The simulation parameters are set as 𝑁𝑥 =𝑁𝑦 = 140 and Δ𝑡 = 0.9Δ𝑡max, where Δ𝑡max =
0.5(𝜖ℎ)2∕(ℎ2 + 2𝜖2) denotes the maximum stable time step which guarantees numerical stability under the adopted discretization 
scheme [39].

Table 1 summarizes the critical values of the parameter 𝑃 ∗ for different values of 𝛼. These values correspond to the threshold 
ratio 𝜖∕ℎ at which the phase interface of 𝜓 becomes pinned and ceases to propagate. The pinning phenomenon indicates the balance 
between interfacial energy and discretization resolution. As shown in Table 1, 𝑃 ∗ decreases monotonically as 𝛼 increases, which 
indicates that the critical resolution requirement becomes less stringent for larger 𝛼. This trend reflects the strong dependence of 
the interface pinning threshold on 𝛼, and demonstrates that the discretization must be sufficiently fine to capture accurate dynamics 
when 𝛼 is small.

Fig. 3 illustrates the region of 𝑃 values for which pinning occurs. The shaded region indicates the values of 𝜖 that result in the 
phase of 𝜓 remaining pinned under all tested conditions.

Figs. 4(a) and 4(c) show the pinned interface of 𝜓 at the corresponding critical values listed in Table 1. Figs. 4(b) and 4(d) provide 
a further indication of the shape of the solutions under the pinning state. By extracting the level contours at −0.9 and 0.9, we are 
able to compare the morphology of the solution under different values of 𝛼. Figs. 4(c) and 4(f) show the number of spatial grid points 
located between the −0.9 and 0.9 level contours of 𝜓 . This observation suggests that the thickness of the interface governed by the 
pinning condition increases for larger values of 𝛼.

Fig. 5 shows the values of the discrete Laplacian Δℎ𝜓 . As the value of 𝛼 increases, the interface thickness becomes thicker, which 
in turn results in smaller values of the discrete Laplacian of the pinned 𝜓 . This implies that the interface becomes smoother for larger 
values of 𝛼.

We observe the phase separation phenomenon for various high-order values of 𝛼. The initial condition in Ω = (−1,1) × (−1,1) is 
given by

𝜓(𝑥, 𝑦,0) = 0.5 sin(3𝜋𝑥) sin(3𝜋𝑦) + 0.5rand(𝑥, 𝑦),

where rand(𝑥, 𝑦) denotes a random value drawn from a normal distribution within the interval (−1,1). The grid step size ℎ is set to 
0.01, and time step size Δ𝑡 is set to 0.9Δ𝑡max. For each value of 𝛼, we use 𝜖 = 0.8𝑃 ∗ℎ.
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Fig. 4. (a) and (d): Solutions of 𝜓 with the critical value of 𝑃 . (b) and (e): The −0.9 and 0.9 level contours of 𝜓 at the critical value 𝑃 ∗ . (c) and (f): Detailed views of 
the contour in (b) and (e), respectively. The top and bottom rows correspond to 𝛼 = 1 and 6, respectively.

Fig. 5. The solution of Laplace operator Δℎ𝜓 with the critical value of 𝑃 ∗ . (a) and (b) correspond to 𝛼 = 1 and 6, respectively. 

Fig. 6 illustrates the phase separation phenomenon for various values of the nonlinearity parameter 𝛼. The initial condition consists 
of a trigonometric function combined with spatial randomness, which serves to promote symmetry breaking. As 𝛼 increases, the 
resulting phase structures present a significant difference in interfacial smoothness and geometric complexity. For 𝛼 = 1, the interface 
between the two phases is highly irregular, with many small-scale features and curved boundaries. This reflects the dominance of 
the diffusive term relative to the nonlinear term in driving the evolution. At 𝛼 = 3, the interfaces begin to form more regular and 
orthogonal patterns. This behavior reflects the increased influence of the nonlinear potential that favors sharper separation between 
the two phases. When 𝛼 = 6, the interface geometry becomes markedly simplified and smoother, with fewer, larger domains and 
minimal curvature. This result indicates that strong nonlinearity suppresses fine-scale features and promotes stabilization of coarser 
structures. Overall, the results demonstrate that the parameter 𝛼, which controls the intensity of the nonlinear term, affects the 
morphology of the phase separated pattern.

We observe the pinning effect for arbitrarily complex initial conditions as 𝛼 varies. The numerical domain is set as Ω =
(−1,1)×(−1,1) with a mesh resolution of 50×50. Numerical computational tests are conducted for three different values of 𝛼 = 1,3,6. 
All other parameters are used equally in the previous test. Fig. 7 illustrates the pinned phases observed during temporal evolution 
starting from an arbitrary initial condition for three representative values of the parameter 𝛼. The first row displays the correspond

ing two-dimensional contour plots, which show distinct phase interfaces and clearly indicate interface pinning through stationary 
boundaries. In the second row, the number of spatial grid points between the interfaces where −0.9 < 𝜓 < 0.9 can be observed. The 
third row presents three-dimensional mesh plots, where the interface transition becomes thicker and interface complexity decreases 
as 𝛼 increases from 1 to 6.
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Fig. 6. Phase separation phenomenon with various values of 𝛼. 

Fig. 7. Pinned phase evolution from an arbitrary initial condition for 𝛼 = 1,3, and 6. Larger 𝛼 values yield thicker interfaces and smoother pinned structures, as seen 
in contour and surface plots.

3.2. Three-dimensional test

We perform numerical experiments to determine the critical point of 𝑃 at which pinning occurs. The system is initialized with a 
sharp phase boundary given by

𝜓(𝑥, 𝑦,0) =

{
1 if 

√
𝑥2 + 𝑦2 + 𝑧2 < 0.5

−1 otherwise
,
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Table 2
The critical value of 𝑃 .

𝛼 1 2 3 4 5 6

𝑃 ∗ 0.409375 0.240625 0.212500 0.193750 0.184375 0.175000

Fig. 8. The region of 𝑃 values in which the pinning phase occurs. 

Fig. 9. Snapshots of the −0.9 and 0.9 level isosurfaces of the solution 𝜓 at the critical value of 𝑃 . (a)--(f) correspond to 𝛼 = 1, …, 6, respectively. 

within Ω = (−0.7,0.7) × (−0.7,0.7) × (−0.7,0.7). The mesh resolution is specified as 𝑁𝑥 =𝑁𝑦 =𝑁𝑧 = 70, with a time step of Δ𝑡 =
0.9Δ𝑡max, where Δ𝑡max = 0.5(𝜖ℎ)2∕(ℎ2 + 3𝜖2). The critical values of 𝑃 , corresponding to the onset of pinning for different values of 
𝛼, are summarized in Table 2. 

Fig. 8 presents the range of 𝑃 values within which pinning is observed. The shaded region denotes the corresponding values of 𝜖
that consistently result in the phase field 𝜓 remaining pinned under all examined conditions. 

Fig. 9 illustrates the isosurface configurations of the solution 𝜓 at the critical values of 𝑃 identified in Table 2, where pinning 
occurs. Figs. 9(a)--(f) corresponds to 𝛼 = 1,… ,6. The visualization presents two surfaces: the inner surface represents the 𝜓 = 0.9 level, 
while the outer surface corresponds to the 𝜓 = −0.9 level. The nearly concentric and stable spherical layers demonstrate that the 
pinned phase remains well confined within the domain across all tested values of 𝛼, with the interface thickness gradually increasing 
as 𝛼 becomes larger.

We consider an arbitrary random initial condition for three different values of 𝛼 = 1, 3, 6. The simulation is conducted on 
Ω = (0,1) × (0,1) × (0,1), using ℎ = 0.02 and Δ𝑡 = 0.9Δ𝑡max. The parameter 𝜖 is chosen based on the critical pinning value 𝑃 ∗ , such 
that 𝜖 = 0.8𝑃 ∗ℎ. Fig. 10 presents the steady state configurations of 𝜓 for 𝛼 = 1, 3, and 6. As 𝛼 increases, the interface evolves from a 
highly fragmented, noise-preserving pattern (𝛼 = 1) to a more organized, coarser structure with reduced geometric complexity (𝛼 = 6). 
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Fig. 10. The pinned interface profiles for three different values of 𝛼, with an arbitrary initial condition. Top row: isosurfaces of the computed phase fields. Bottom 
row: corresponding contour representations extracted from the top row configurations.

This behavior indicates that higher nonlinearity causes thicker, smoother transitions and promotes interface pinning by reducing the 
motion of fine-scale structures. 

Finally, to briefly summarize the results of both 2D and 3D simulations, we observe that increasing 𝛼 results in smoother and 
coarser interfaces. This behavior is particularly evident when the initial condition contains spatial randomness. In such cases, low 
values of 𝛼 result in noise-sensitive structures, whereas high values of 𝛼 produce smooth interfaces. Our results also indicate that the 
critical value 𝑃 ∗ at which interface pinning occurs decreases as 𝛼 increases, signifying that higher-order potentials are more sensitive 
to discretization effects and thus require finer spatial resolution to prevent artificial pinning. Furthermore, the thickness of the pinned 
interface, characterized by the number of grid points between 𝜓 = −0.9 and 𝜓 = 0.9, is observed to grow with increasing 𝛼, which 
confirms that stronger nonlinearity promotes the formation of thicker transition layers.

4. Conclusions

This study examined the occurrence of artificial pinning phenomena in numerical solutions of the high-order AC equations. The 
study focused on the relationship between the interfacial parameter 𝜖 and the spatial discretization size ℎ, showing how their ratio 
significantly influences interface immobilization. Numerical experiments conducted in both two-dimensional and three-dimensional 
settings demonstrated that the critical threshold 𝑃 ∗ = 𝜖∕ℎ decreases as the order 𝛼 of the potential increases. This indicates that higher

order nonlinearities increase sensitivity to discretization and demand finer spatial resolution to prevent artificial pinning. The results 
also showed that the interface thickness at the critical pinning threshold increases with larger values of 𝛼, which produces smoother 
and broader phase boundaries. When initial conditions include spatial randomness, lower values of 𝛼 result in more complex and 
noise-sensitive patterns, whereas higher values yield simpler and more stable morphologies. These findings provide practical guidance 
for choosing model parameters in numerical simulations and contribute to the development of robust computational schemes that 
can accurately capture interfacial dynamics without introducing spurious numerical artifacts.
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