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We propose an efficient numerical method for an incompressible fluid flow with variable viscosity on spherical
surface. The proposed computational scheme is based on a finite volume lattice Boltzmann method (FVLBM).
The spherical surface is triangulated and each point on the triangular mesh is assigned to one of two values
of variable viscosity. Simplified coastlines using interpolation makes our proposed method highly efficient

for solving fluid flows. Using the proposed algorithm, we simulate various fluid flows over inhomogeneous
domains, i.e., land and sea areas. We apply different viscosity values for each domain using different relaxation
times based on position of node points. Moreover, the progression of the storm is examined to demonstrate
the effectiveness of the proposed approach.

1. Introduction

In recent years, tropical storms have occurred in many places on
Earth, with some even developing into hurricanes, cyclones, and ty-
phoons. These natural disasters cause a catastrophic amount of damage,
particularly in coastal regions. Accordingly, there has been an urgent
quest for fast and accurate storm event models. In this paper, we
present a new method for analyzing storm behavior on the Earth’s
surface. Our method solves the incompressible surface Navier—Stokes
(NS) equation on surface .S using a finite volume lattice Boltzmann
method (LBM).

LBM is a highly effective tool in computational fluid dynamics (CFD)
technology. An earlier review of the application of LBM in fluid flow
can be tracked back to [1]. Later, Aidum and Clausen [2] introduced
developments of LBM on complex fluids before the year 2010. The
LBM was developed based on an earlier idea of Lattice-Gas Cellular
Automata; Wolf-Gladrow [3] reviewed these two methods in detail.
Similarly, Succi [4] also reviewed the fluid models of LBM and intro-
duced some potential applications. For the theories and engineering
practices of LBM, interested readers can refer to [5,6]. Huang et al. [7]
introduced practical LBM in multi-phase fluid simulations. As for a
recent review of phase-field LBM in multi-phase fluid applications,
please refer to [8] and references therein.

In recent years, some new progresses of LBM appears in fluid flow
problems and aerodynamics. The phase-field based LBM [8-10] for
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multiphase flows were studied. The study of the mixed convention of
nanofluids flow [11-13], garnered significant attention. Researchers
also investigated laminar flow in both two-dimensional (2D) [13] and
three-dimensional (3D) [14] domain. Furthermore, Mandzhieva and
Subhankulova [15] applied the lattice Boltzmann model to study the
pore-scale models. Babanezhad et al. [16] simulated the 3D cavity flow
of a large dataset for the build-up fluid flow using LBM. Li et al. [17]
introduced a LBM to describe interaction of waves and porous struc-
tures in 3D space. Hosseini et al. [18] reviewed various entropic LBMs
and presented their recent progress and important challenges in that
area.

The conventional LBM basically consists of two steps: moving the
particle and relaxing distribution functions towards equilibrium. This
coupling results restricts the LBM to Cartesian meshes [19-21]. Several
extensions of LBM have been developed to overcome such restrictions.
One of the pioneering work was done by He et al. [22], who added an
interpolation step to the conventional LBM. Another noteworthy study
is by Nannelli et al. [23], where Nannelli proposed a finite volume
scheme for LBM. Since then, many works have been done using the
finite volume scheme for LBM [24-26].

The above-mentioned studies only dealt with a fixed viscosity value.
When substituting Earth into the problem, viscosity on land and sea
has to be different. Therefore, we should solve LBM on a surface with
various viscosity values. Here are some studies that considered surfaces
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Fig. 1. (a) The world map in 2D space and (b) mapping on a spherical surface mesh. Here, green and blue colors denote land and sea regions, respectively.

with multiple viscosity values. Hussain et al. [27] demonstrated the
flow behavior of a Casson fluid with variable viscosity that exhibits
steady-state flow in 2D. The system is converted to an ODE, and nu-
merical solutions are proposed. Chen et al. [28] presented an immersed
boundary-simplified LBM for simulations of incompressible viscous
flows. In this study, the relation between the relaxation parameter r and
viscosity v is given as v = cf(r—%)&,. Guan and Novosselov [29] studied
a numerical investigation of electroconvection phenomena between
two parallel plates and proposed a two-relaxation time. The LBM is ap-
plied to fluids in porous media [30,31]. He et al. [30] studied the heat
and mass transfer characteristics of a fluid with temperature-dependent
viscosity using LBM. Li and Dimitrienko [31] studied the generalized
Newtonian fluid in porous media using the homogenization method.
After developing numerical methods, Li and Dimitrienko demonstrated
the effects of viscosity on local problems. There are application of LBM
to Navier-Stokes and convection-diffusion equations [32,33]. Chai and
Baochang [32] presented a unified framework of multiple-relaxation-
time LBM. Their model is depicted with a matrix that allows decoupled
relaxation. Zhao et al. [33] proposed a block triple-relaxation-time
LBM. One of the striking features of this model is that the model
is partitioned into three relaxation parameter blocks. The relation
between relaxation parameters is determined based on the analysis of
the half-way bounce-back scheme.

In the previous work, we developed a finite volume scheme for
the LBM on curved surfaces in 3D space [34], which used a constant
viscosity. The main aim of this paper is to suggest an efficient numerical
method for an incompressible fluid flow with variable viscosity on
spherical surface so that we can simulate real-world scenarios where
fluid viscosity changes with temperature or other fields.

The paper is organized as follows. In Section 2, we introduce the
discretization of coastlines, which are simplified for calculation pur-
pose. In Section 3, we present numerical results using LBM. Finally, in
Section 4, we provide a brief conclusion.

2. Numerical method
2.1. Discretization of the computational domain

Fig. 1(a) and (b) illustrate the world map in 2D space and mapping
on a spherical surface mesh, respectively. Green and blue colors denote
land and sea regions, respectively. We use the ‘load coastlines’ com-
mand in the Mapping Toolbox to create a world map in Marias [35].
The ‘load coastlines’ command returns the coastline data in latitude
(‘coastlat’) and longitude (‘coastlon’). See Fig. 2(a) for the plot of
coastlines, where the horizontal and vertical axes represent longitude
¢ and latitude 0, respectively.

For simplicity, we exclude small islands by removing coastlines
with fewer than 100 points and coastlines that lie within another
coastline. As shown in Fig. 2(b), this process results in only nine large
coastlines. We further simplify the coastlines using an interpolation
method and reduce the number of points for each coastline by a factor

90 Longitude(¢)180

(¢)

of five. Smooth interpolated coastlines are shown in Fig. 2(c). The
spherical surface is discretized using a triangular mesh, as illustrated in
Fig. 2(d). At each vertex point (x, y, z) of the triangular mesh, we find
the corresponding angles (6, ¢) = (arcsin(z/R), arctan(y/x)), where 6, ¢,
and R are schematically illustrated in Fig. 2(e). Next, we find whether
(0, ¢) is in a land or sea area. We define an indicator function 1, such
that if (x, y,z) is in land, 1.(x,y,z) =1 and 1.(x,y,z) = 0 when (x, y, z)
is in the sea. Figs. 2(f) and (g) illustrate (x, y, z) points in green when
1.(x,y,z) = 1 and in blue when 1.(x,y,z) = 0, on 2D space and the
spherical surface, respectively.

2.2. Finite volume lattice Boltzmann method

In this paper, we simulate variable viscous and incompressible fluid
flow on a spherical surface by modifying the finite volume lattice
Boltzmann equation proposed by Yang et al. [34]. Among the various
methods for solving the lattice Boltzmann equation, we choose the
finite volume method due to its applicability to arbitrarily shaped
domains and irregular meshes [36]. In particular, we apply this method
to a curved spherical surface. A disadvantage is its increased complex
compared to the conventional LBM.

The governing equation of finite volume lattice Boltzmann method
(FVLBM) is given as follows [37]:

af[ __L _ req .
Shxn e VS0 = T(X)(f,.(x,t) / (x,z)),z_l,z,,,.,w. ¢))

For x = (x,y,z) and time ¢, f,(x,7) and f/(x,1) are particle dis-
tribution function and local equilibrium distribution, respectively. ith
directional velocity is ¢;. For f;(x,7) and ¢;, index i varies from 1 to 19.
7(x) is the relaxation time at space x. Values of ¢; are given as follows:

¢; =(1,0,0),¢; = (=1,0,0),¢53 = (0,1,0),¢4, = (0,-1,0),

¢;5 =(0,0,1),¢5 =(0,0,-1),¢; =(1,1,0), ¢g = (1,-1,0),

¢y =(1,0,1),¢;9=(1,0,-1),¢y; =(=1,1,0),¢yp = (=1,-1,0),
c;3=(-1,0,1),¢;4 =(=1,0,-1),¢;5 =(0,1,1),¢;6 = (0, 1, 1),
¢7 =(00,-1,1),¢;3 = (0,-1,-1),¢;9 = (0,0,0).

Eq. (1) is solved on surface S by discretizing the surface into a
triangular mesh, shown in Fig. 3(a). Consider a point P on the mesh
and points P;, i = 1,2, ..., which are one-ring neighboring points of P.
In case of Fig. 3(a), i ranges from 1 to 6. Let M be the center of edge

PP, and G be the centroid of triangle A PP, P,. Integrating Eq. (1) over
triangle A PM G, we obtain the following equation:

/ %(x, tdo +/ ¢ - Vfikx,do
APMG Ot APMG
_ _/ 1 (fi(x’ 1) — fl_eq(x, I))do‘.

pmc T(X)
We approximate and calculate each term of Eq. (2). The first term
of left hand side can be approximated using %(x, 1 ~ %(P, 1) for
X €A PMG. A,py is the area of triangle A PM G at time 7.

af; af; af;
/ i .o ~ / % p.1yao = 2Lip.p do 3
aPMG Ot aPMG Ot ot APMG

@
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Fig. 2. (a) World Map using Mapping Toolbox. (b) Excluding small islands. (c) Applying an interpolation method for simplicity. (d) Discretizing the spherical surface using a
triangular mesh. (e) Schematic illustration of # and ¢. (f) Illustration of (x,y,z) points in 2D space. (g) Illustration of (x, y, z) points on a spherical surface.

Fig. 3. Schematic diagram of (a) Triangular mesh. (b) Integration over triangle A PMG. (c) velocity field correction.

of; fi®,t+ 4t) — fi(P,1)
= a—;(P’ DAspmG = %AAPMG’

The second term of left hand side of Eq. (2) is the flux, which can
be calculated using the divergence theorem. np,;, ny; and ngp are
outward normal vectors of edge PM, MG, and GP, respectively. See
Fig. 3(b) for schematic diagram of n. /p,;, I, and I;p are length of
PM, MG, and GP, respectively.

/ ¢; - Vfix,t)do = / V- [fix,0)e¢ldo = / Jix,0¢; -ndl
APMG APMG 0APMG

= / fix,De; -npydl +/ fi(x,0)¢; -y qdl +/ fi(x,0)¢; - ngpdl
PM MG GP
_ fi®, 0+ f;(M, 1) c [ + f(G, 1) c

5 i Mpplpy + ) i Myclyue 4
(G, 1)+ fi(P,t
+f,( )2f,( )ci'nGPlGP'

n,; can be calculated using edges of triangle A PMG. Other
outward normal vectors can be calculated in the same way.

PG-PG-MGME

Ny = —
— — —— 0

PG—-PG-MG—

Due to the fact that M is the center of PP, and G is centroid of

triangle A PM G, values of f;(M,1) and f;(G,1) can be calculated using
interpolation.

(P, (P,

fi( t)+2f( 1 t)’ ®)
(P, (P, (P,

fi( t)+f(31t)+f(zt). ©)

fiM, 1) =
fi(G, 1) =
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On right hand side of Eq. (2), collision is approximated using
interpolation similar to Eq. (6).

- / €L (fix. = f(x,0) do

pymc T(X)
__Aspmg [ L®D+ LMD+ £GP RD+ VD + (G0
T (P 3 3 ’
@

Here, the local equilibrium f; is defined in the following way.

2
¢, - u(x, 1) +l<c,-~u(x,t)) un P

2 2 2
c? 2 c? 2¢2

A = wpx,0[ 1+ )]

where w; is the lattice weight as following:

2
=, =1,...,6,
36

w, = %, i=7,..,18,
12
—, =19,
36

In this paper, the value of lattice speed of sound is ¢, = 1/\/5 for the
triangular mesh. Density p(x, ) and velocity u(x, t) are calculated in the
following way using f;(x,7) and c;.

19

px1) = Y fi(%0), ©

i=1
1 19
ux,t) = ) Z‘ fix,ne;. (10)

Substituting Egs. (3), (4) and (7) to Eq. (2), we get
[Pt + A = f,(P.1) + % (Collisionp — Fluxp) an
P

which is the value of f; on P for the next time step. Here Ap is the
total area, Collisionp is the sum of Eq. (7), and Fluxp is the sum of
Eq. (4), respectively. In other words, let f;(x,n4t) be denoted by f/,
fl."+1 is obtained. Egs. (9) and (10) allow us to calculate u"+!. We
add a correction step for velocity u"*!' to eliminate outward normal
vector components of u"+!. The outward unit normal vector n" can be
calculated as

v_ Zgerm Wqlg
| Xgerm wWony |

where I(P) is the indexed set of one-ring neighboring points of P, n,
is the outward directional unit normal vector of neighboring triangle
T, and w, is the square inverse of distance between P and centroid
G, ie, w, = 1/|-P-§|2. See [34,38,39] for further information about
velocity correction. The velocity field is corrected by vector projec-
tion, Eq. (13). Fig. 3(c) shows the schematic illustration of velocity
correction.

(12)

n+l _ n+l

u ut! — @' - n")n". 13)

Finally, we update /*" to f**"*' using Eq. (8) with the updated density
and corrected velocity field. Repeat this entire section for the next time
step.

3. Numerical results

In this section, various experiments of fluid flows on curved 3D sur-
faces are demonstrated to illustrate the proposed method. Two layers
of vortices are placed on a sphere to demonstrate Kelvin-Helmholtz
instability (KHI) and storm behavior. Numerical experiments are con-
ducted using various relaxation values, and the computational results
are illustrated accordingly.

Engineering Analysis with Boundary Elements 165 (2024) 105781
3.1. Kelvin—Helmholtz instability on discretized coastlines

Now, we consider the KHI which consists of two layers of vortices
on a sphere with a radius of R = 10. The marker function is defined as
follows:

tanh < R9—12,57r/3—cos(10u/)> if z> 0,
0.25v2

a4
tanh < —R€+17A57r/3+cos(10w)> otherwise,

¢ (x) =
0.25v2

where 6 = cos™!(z/r), w = tanh™!(y,x), and r = \/x2 + y2 + z2. For the
two layers of vortices, the initial velocity field is defined as follows:

u(x,0) = (0.01y¢;, —0.01x¢;, 0). 15)

We use Ar = 0.01 to conduct simulations until # = 10. We use 7;,,; = 1
and 7,,, = 1, 10 to confirm the effect of the variable relaxation time
value for the KHI on a sphere. Figs. 4(a) and (b) show snapshots of
KHI on a sphere for 7,,,; = 7, = 1 and 7;,,4 = 1, 7., = 10, at time
t = 0, 6, 10 from left to right. The relation between the relaxation
parameter = and the kinematic viscosity v in NS equation is given as
v = cf(r — 1/2)5,, where ¢, is speed of sound. The kinematic viscosity
is the ratio of dynamic viscosity to the density of the fluid defined as
v = n/p, where n is dynamic viscosity and p is density. Fig. 4 shows
temporal evolution of maximum velocity max |lul| for 7;,,; = 7., = 1
and 7;,,;, = 1, 7., = 10. From the result of Fig. 4(c), we can observe
a gradual decrease in the velocity field overall after the occurrence of
KHI within the same relaxation time 7,,,, = 7., = 1. On the other hand,
when 7,,,, = 1 and 7, = 10, localized turbulence occurs in areas with
relatively high kinematic viscosity, such as the sea.

3.2. Storm behavior at 7;,,; = Ty,

Storm behaviors and evolution in different phases are popular sub-
jects of study. Wang et al. [40] provided a dynamic model consisting
of a gaseous and particle phases to describe flow in a dust storm.
Bousso et al. [41] also proposed a model for mixed flows in stormwater
systems, using multiple phases such as air and water. Hession et al. [42]
presented a two-phase Monte Carlo method to understand the evolution
and propagation of hydrological and water quality models. Guardado-
France et al. [43] studied storms from andesite sea cliffs on Isla San Luis
Gonzaga, considering numerous phases depending on the geological
location.

Using the same triangular mesh and coastline data, we added a
storm to our globe model with a radius of 10. The center of the storm
is located at (—2.7063, —9.0583,3.2593) and the storm has a radius of 4.
The two layers of vortices introduced in Section 3.1 are substituted for
the numerical demonstration of storm behaviors. Fig. 5 illustrates the
initial state of the globe model.

In this section, we test the storm model with the same relaxation
time value 7 on all points. i.e., t = 7;,,; = 7,,, and we do not distinguish
whether a point is on land or sea. We calculated the results for = = 1
and 10 until the final time T = 10. Fig. 6(a) and (b) shows the snapshots
of the numerical solution on a sphere at times + = 0.5, 5, and 10.
Fig. 6(c) shows that the maximum of the ||lu||. We observe that at = = 10,
compared to 7 = 1, kinematic viscosity increases, leading to accelerated
fluid flow, which causes velocities to cancel out and merge, resulting in
relatively large oscillations. Additionally, when 7 = 1, lower kinematic
viscosity compared to 7 = 10 causes velocities to monotonic decrease
over time due to viscosity effects, particularly after a certain point in
time.

3.3. Storm behavior at 7;,,; # Ty,

In this section, we test the storm model with land and sea having

different r values. We fix ;,,, = 1 and change 7, values to 1 and 10.
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Fig. 4. Snapshots of KHI on a sphere for (a) 7,,,, = 7,,, = 1 and (b) 7,,,, =1, 7, = 10, at time =0, 6, 10 from left to right. (¢) max |lu]|.

sea

Fig. 5. Initial state after adding a storm.

Fig. 7(a) and (b) shows the snapshots of the numerical solution on a
sphere at times ¢+ = 0.5, 5, and 10. Fig. 7(c) shows that the maximum
of the |lu]l. We can observe that the numerical simulation results are
similar to those in Fig. 4. However, the width of the oscillations is larger
due to the influence of the storm.

Finally, we consider a storm landing at the southwest of North
America. The two layers of vortices are not included for this exper-
iment. The initial state is shown in the left column of Fig. 8. The
parameters are unchanged as in previous simulations. In the first sim-
ulation, we set 7,,,; = 7,,, = 1 and display the results in the top row of
Fig. 8. The bottom row shows the results with respect to 7;,,;, = 3.5 and
T, = 1. With the increase in 7,,,,, we observe that the velocity field
dissipates faster on land.

4. Conclusions

In this paper, we presented an efficient numerical method for sim-
ulating incompressible fluid flow with variable viscosity on a spherical
surface. We triangulated the spherical surface and simplified the coast-
lines using an interpolation. Therefore, it reduced calculation and
achieved high efficiency. Then, the finite volume LBM was applied to
solve incompressible fluid flows. The velocity field remains tangential
to the surface through the velocity correction technique at each time
step in the numerical method. Validation of the proposed method was
conducted through various numerical tests, such as the evolution of
a two-layer vortex and a storm. Computational results showed that
our method is efficient for simulating incompressible fluid flow with
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Fig. 6. Snapshots of the numerical solution on a sphere at times 1 = 0.5, 5, and 10 from left to right. (a) =1 and (b) r = 10 on both land and sea areas. (¢) max |[ul|.

(b)

0.12
max [|u]| —©—Tland = Tsea = 1 A .
011 P - Tignd = 1, Tgea = 10

0.1¢

(C) 0.09
0.08

0.07

0.06 :

Fig. 7. Snapshots of the numerical solution on a sphere at times r = 0.5, 5, and 10 from left to right. (a) 7,,,, = 7, = 1 and (b) 7,,, = 1, 7,,, = 10. (¢) max [[ul|.
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t=20 t=1

Fig. 8. Effect of 7,,,, on a storm landing at the southwest of North America. The top and bottom rows show the results with 7,,,, = 3.5 and 1, respectively. Here, 7,

variable viscosity. For future work, we will extend the current method
to include multiphase fluid flows [44-47] and data assimilation for
weather modeling [48].
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