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A B S T R A C T

We propose a novel phase-field model for simulating curvature-dependent and surface-limited tissue growth
on curved surfaces. The proposed mathematical model consists of a modified Allen–Cahn (AC) equation with
a non-standard variable mobility and a growth term that depends on curvature and surface limitations. To
solve the equations numerically, we use an operator splitting technique. We split the governing equation
into a modified AC equation, and curvature-dependent and surface limited growth equation. To validate
the high performance of the proposed mathematical model in realistic simulations, we conduct several
numerical simulations such as those with synthetic conditions and comparisons with real experimental data.
The computational results demonstrate the robustness and efficiency of the new phase-field model in accurately
capturing realistic tissue growth phenomena on curved surfaces.
1. Introduction

The development of mathematical models for tissue growth is very
important for understanding complex biological processes and the ad-
vancement of effective medical interventions. The process of tissue
growth is governed by a complex interplay of factors such as gradients
of mechanical stresses [1], initial cell seeding [2], mechanical stim-
uli [3], and biochemical signaling pathways [4]. These elements are
often difficult to examine experimentally due to their complexity and
the large scale at which they operate. Mathematical modeling provides
a systematic framework to analyze these diverse factors. Predictive
modeling allows researchers to simulate tissue development across
different conditions and provides a valuable opportunity to investigate
scenarios that are otherwise difficult to replicate in the laboratory.
Such modeling is essential for gaining deeper insights into advances in
fields such as tissue engineering techniques [5,6]. Furthermore, these
models are necessary for hypothesis testing and identifying key factors
that affect tissue growth. They help to refine experimental designs and
potentially reduce the reliance on extensive animal testing. In medical
applications, these models can help optimize the design of scaffolds
for tissue regeneration [7,8]. Ultimately, mathematical modeling is
an indispensable tool in bridging the gap between theoretical biology
and clinical practice, and it facilitates the development of innovative
solutions in regenerative medicine and other biomedical fields.
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Therefore, many researchers have actively conducted studies on
tissue growth using mathematical models. Huang et al. [9] conducted
a study on a mathematical model that simulates the growth of prostate
cancer and the effects of drugs. They proposed a second-order numer-
ical method to solve this model, which is represented by a phase-field
system. Alotaibi et al. [10] studied a breast tumor growth model using
a finite volume method. The presented mathematical model consists
of a system of ordinary differential equations and partial differential
equations, modeling the development of breast cancer. López-Agredo
et al. [11] considered a mathematical model of tumor growth in the
brain. The proposed system includes a nonlinear term that describes
chemoattraction. Han et al. [12] studied a tumor growth model un-
der immune surveillance using a differential equation derived from
a catalytic Michaelis–Menten reaction. Using unified colored noise
and small delay approximations, The study examined how time-delay
and noise intensity in non-Gaussian colored noise influence transitions
between tumor and tumor-free states, highlighting the dominant role of
noise intensity in altering the most probable trajectories. Ghanizadeh
et al. [13] investigated the dynamics of the immune system and cancer
using mathematical modeling, particularly focusing on immunoediting
through a system of two differential equations to analyze tumor fate
across three main phases. Wang et al. [14] presented a mathematical
model of tumor-immune interactions that focuses on estrogen’s role in
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cancer. The model uses Lyapunov stability analysis and AI-MCMC for
parameter evaluation and uncertainty assessment.

Numerous studies emphasize the role of curvature in the mathe-
matical modeling of tissue growth. In [15], the authors explore how
substrate geometry affects tissue growth in vitro. As shown in Fig. 1,
tissue growth varies with the curvature of the interface. They empha-
size that geometric structures play a critical role in both tissue growth
and bone remodeling processes.

As confirmed by the in vitro experimental result in Fig. 1, tissue
grows even when the curvature is less than 0. However, in [16], the
tissue was modeled not to grow when the curvature is less than 0. To
overcome this limitation, we propose a new phase-field model where
the tissue growth rate varies with the curvature.

The primary objective of this article is to propose a novel phase-field
equation for curvature-dependent and surface-limited tissue growth on
curved surfaces. The proposed mathematical model, based on a mod-
ified Allen–Cahn (AC) equation with variable mobility and curvature-
dependent, surface-limited growth, is solved numerically using an op-
erator splitting method. Numerical simulations, including synthetic and
experimental comparisons, demonstrate the model’s robustness and
efficiency in capturing realistic tissue growth on curved surfaces.

The structure of this article is organized as follows. Section 2
presents the proposed phase-field model for tissue growth that is
curvature-dependent and surface-limited on curved surfaces. Section 3
discusses the numerical methods and test results. Finally, Section 4
provides the conclusion.

2. Mathematical model

We present the proposed mathematical model for tissue growth on
a curved surface. We begin with a single layer of cells on a curved
surface, highlighted in red in Fig. 2(a), and allow the cells to grow
in a direction perpendicular to the surface. Here, the gray region
represents the substrate and the white area shows the growth region
where cells can grow. From the growth region perspective, the convex
curve is the black dashed line, and the concave curve is the blue
solid line in Fig. 2(a). In the convex region, the cells overlap, while
in the concave region, the cells are rarefied. Because the cells cannot
physically overlap each other, they push against each other and stack
up in the convex region, while in the concave region, they adhere to
one another, stick together, and settle down, resulting in an effectively
thinner layer of cells, as shown in Fig. 2(b). We model this uneven cell
growth by relating it to curvature of the surface. The surface curvature
is shown as arrows in Fig. 2(b). The curvature is assigned a sign
based on the surface geometry, with convex regions having positive
curvature and concave regions having negative curvature. We add some
constant growth rate in the direction of growth on the surface. Then,
the resulting direction of cell growth is shown in Fig. 2(c) and the
arrows show both the direction and magnitude of the growth. Fig. 2(d)
illustrates the position of the interface after cell growth.

The proposed phase-field model for curvature-dependent and
surface-limited tissue growth on curved surfaces is given as

𝜙𝑡(𝐱, 𝑡) = 𝑀(𝜙(𝐱, 𝑡))
[

−
𝐹 ′(𝜙(𝐱, 𝑡))

𝜖2
+ 𝛥𝜙(𝐱, 𝑡)

]

+𝐾 𝑆 𝐺(𝜙(𝐱, 𝑡)), 𝐱 ∈ 𝛺 , 𝑡 > 0,

(1)

where 𝜙(𝐱, 𝑡) is a normalized density at position 𝐱 and time 𝑡, 𝜖 is a
ositive coefficient related to the thickness of the interfacial transition
ayer, 𝑀(𝜙) = 4(𝜙− 0.5)2 is a non-standard phase-dependent mobility,
hich preserves interface position of tissue [17], see Fig. 3(a), and
(𝜙) = 0.25𝜙2(𝜙 − 1)2, which is a double-well potential [18] having

wo minima: 𝜙 = 0 is the empty region and 𝜙 = 1 represents the tissue
egion, including the substrates. Unlike the classical variable mobility

approach [19,20], we use a non-standard, phase-dependent mobility,
which keeps the interface location (𝜙 ≈ 0.5) where the mobility is
close to zero, 𝑀(𝜙) ≈ 0. This choice is motivated by the need to
2

Fig. 1. Reprinted from Bidan et al. [15] with permission from PLOS ONE.

odel the tissue growth phenomenon in a way that allows the tissue
nterfaces to grow according to the growth term, while maintaining a
mooth interfacial transition layer, such as a hyperbolic transition layer.
imultaneously, this approach minimizes the motion of the interface
riven by mean curvature, which is an intrinsic property of the AC
quation [21].

As schematically illustrated in Fig. 2, tissue growth occurs more
apidly in convex regions and at a slower rate in concave regions. Based
n this observation, we propose a curvature-dependent, surface-limited
issue growth model as follows:

 𝑆 𝐺(𝜙(𝐱, 𝑡)) = 𝜆(𝜙(𝐱, 𝑡))[1 + 𝛼 t anh(𝛽(𝜙(𝐱, 𝑡))𝜅(𝜙(𝐱, 𝑡)))], (2)

where

𝜆(𝜙(𝐱, 𝑡)) = 𝜆0𝜙(𝐱, 𝑡)(1 − 𝜙(𝐱, 𝑡)) and 𝛽(𝜙(𝐱, 𝑡)) = 𝛽0𝜙(𝐱, 𝑡)(1 − 𝜙(𝐱, 𝑡))
account for surface-limited tissue growth. Here, 𝜆0 and 𝛽0 are growth
and scaling constant parameters, and 𝜅(𝜙) = ∇ ⋅ (∇𝜙∕|∇𝜙|) is the
curvature of the interface, the coefficient, 0 ≤ 𝛼 ≤ 1, represents
the magnitude of the curvature effect, see Fig. 3(b) for the values of
[1 +𝛼 t anh(𝛽 𝜅)] plotted against 𝜅. The homogeneous Neumann boundary
conditions are used.

3. Numerical method and tests

3.1. Computational solution algorithm

Now, let us split Eq. (1) as follows:

𝜙𝑡(𝐱, 𝑡) = 𝑀(𝜙(𝐱, 𝑡))
[

−
𝐹 ′(𝜙(𝐱, 𝑡))

𝜖2
+ 𝛥𝜙(𝐱, 𝑡)

]

, (3)

𝜙𝑡(𝐱, 𝑡) = 𝜆(𝜙(𝐱, 𝑡))[1 + 𝛼 t anh(𝛽(𝜙(𝐱, 𝑡))𝜅(𝜙(𝐱, 𝑡)))], (4)

Let 𝛺 = (𝐿𝑥, 𝑅𝑥) × (𝐿𝑦, 𝑅𝑦) be the computational domain in two-
dimensional space and 𝛺ℎ = {(𝑥𝑖, 𝑦𝑗 )|𝑥𝑖 = 𝐿𝑥 + ℎ(𝑖 − 0.5), 𝑦𝑗 = 𝐿𝑦 +
ℎ(𝑗 − 0.5), 1 ≤ 𝑖 ≤ 𝑁𝑥, 1 ≤ 𝑗 ≤ 𝑁𝑦} be its discretized domain with
the uniform spatial mesh ℎ. Let 𝜙𝑛

𝑖𝑗 = 𝜙(𝑥𝑖, 𝑦𝑗 , 𝑛𝛥𝑡). We use the operator
splitting method [23]. As the first step, we compute Eq. (3) by applying
the Euler’s scheme with the known value 𝜙𝑛:
𝜙∗
𝑖𝑗 − 𝜙𝑛

𝑖𝑗

𝛥𝑡
= 𝑀(𝜙𝑛

𝑖𝑗 )

[

−
𝐹 ′(𝜙𝑛

𝑖𝑗 )

𝜖2
+ 𝛥𝑑𝜙

𝑛
𝑖𝑗

]

, (5)

where 𝛥𝑑𝜙𝑖𝑗 is the standard five-point discrete Laplacian operator with

0𝑗 = 𝜙1𝑗 , 𝜙𝑁𝑥+1,𝑗 = 𝜙𝑁𝑥𝑗 , 𝜙𝑖0 = 𝜙𝑖1, 𝜙𝑖,𝑁𝑦+1 = 𝜙𝑖𝑁𝑦
.

Eq. (5) can be rewritten as

𝜙∗
𝑖𝑗 = 𝜙𝑛

𝑖𝑗 + 𝛥𝑡𝑀(𝜙𝑛
𝑖𝑗 )

[

−
𝐹 ′(𝜙𝑛

𝑖𝑗 )

𝜖2
+ 𝛥𝑑𝜙

𝑛
𝑖𝑗

]

, for (𝑥𝑖, 𝑦𝑗 ) ∈ 𝛺ℎ, (6)

The solution of Eq. (4) is obtained using the frozen coefficient
echnique as follows:

𝜙𝑛+1
𝑖𝑗 =

𝜙∗
𝑖𝑗

𝜙∗
𝑖𝑗 + (1 − 𝜙∗

𝑖𝑗 )𝑒
−𝜆0𝛥𝑡[1+𝛼 t anh(𝛽∗𝑖𝑗𝜅∗𝑖𝑗 )] . (7)
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Fig. 2. Illustration of the proposed model for cell growth on a curved surface. (a) Initial single layer of cells (in red) growing perpendicular to the curved surface. The gray area
represents the substrate and the white area shows the growth region where cells can grow. (b) Cells stack in convex regions and spread out in concave regions due to curvature
effects. Arrows indicate the curvature at different points on the surface. (c) Arrows represent the direction and magnitude of adjusted cell growth, showing the uneven growth
ehavior. (d) Final interface position of the cells after growth.
Fig. 3. (a) Schematic representation of the non-standard phase-dependent mobility 𝑀(𝜙) = 4(𝜙 − 0.5)2. (b) Plot of [1 + 𝛼 t anh(𝛽 𝜅)] against 𝜅 with 𝛼 = 0.1, and 𝛽(𝜙) = 𝛽0, where
0 = 1.
Fig. 4. Effect of 𝜆0 on the temporal evolution of 𝜙 for (a) 𝜆0 = 30 and (b) 𝜆0 = 100.
3

Fig. 5. Effect of 𝛼 on the temporal evolution of 𝜙 with (a) 𝛼 = 0.05, (b) 𝛼 = 0.5, and
(c) 𝛼 = 1.
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Fig. 6. The first column is the result of evolution for 𝑡 = 10 000𝛥𝑡 on different scaffolds. The second column is the result of evolution for 𝑡 = 20 000𝛥𝑡 on different scaffolds. The
hird column is the result of evolution for 𝑡 = 30 000𝛥𝑡 on different scaffolds. The fourth column is reprinted from Rumpler et al. [22].
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Fig. 7. (a) Reprinted from Bidan et al. [15] with permission from PLOS ONE. (b)
Result of the proposed model.

For the stability of the proposed computational scheme is as follows.
n the first step, if the time step satisfies 𝛥𝑡 ≤ 4𝜖2ℎ2∕(ℎ2 + 16𝜖2), then

Eq. (6) is stable [24]. In the second step, Eq. (7) is unconditionally
table. Therefore, if 𝛥𝑡 ≤ 4𝜖2ℎ2∕(ℎ2 + 16𝜖2), then the overall numerical
olution is stable.

.2. Computational tests

.2.1. Convergence test
Let us set an initial condition

𝜙(𝑥, 𝑦, 0) = 1
2

[

1 + t anh
(

0.5 − 𝑦 + 0.1 cos(2𝜋 𝑥)
2
√

2𝜖

)]

, (𝑥, 𝑦) ∈ 𝛺 (8)

where 𝛺 = (0, 1) × (0, 1). We define the convergence error as following:

𝑒𝑟𝑟ℎ∕ ℎ
2
=

√

√

√

√

√

1 1
𝑁𝑥
∑

𝑁𝑦
∑

(

𝜙ℎ𝑖𝑗
−

𝜙 ℎ
2 2𝑖,2𝑗

+ 𝜙 ℎ
2 2𝑖−1,2𝑗

+ 𝜙 ℎ
2 2𝑖,2𝑗−1

+ 𝜙 ℎ
2 2𝑖−1,2𝑗−1

)2

.

4

𝑁𝑥 𝑁𝑦 𝑖=1 𝑗=1 4 o
Table 1
The convergence error and rate.
(ℎ, 𝛥𝑡) (2−5 , 𝛥𝑡max) Rate (2−6 , 𝛥𝑡max∕4) rate (2−7 , 𝛥𝑡max∕42)

𝑒𝑟𝑟ℎ∕ ℎ
2

1.9620e−03 1.90 5.2752e−04 1.99 1.3265e−04

The convergence rate is defined as log2(𝑒𝑟𝑟ℎ∕ ℎ
2
∕𝑒𝑟𝑟 ℎ

2 ∕
ℎ
4
). To investigate

the convergence, the following parameters are used ℎmax = 2−5, ℎmin =
2−8, 𝜖 = 8ℎmax∕(4

√

2 t anh−1(0.9)), 𝛥𝑡max = 4𝜖2ℎ2max∕(ℎ
2
max + 16𝜖2), total

ime 𝑇 = 100𝛥𝑡max, 𝛼 = 0.1, 𝛽0 = 0.1, and 𝜆0 = 10.
As shown in Table 1, the method is confirmed to have second-order

accuracy in space and first-order accuracy in time.

3.2.2. Effect of 𝜆0
We investigate the effect of the tissue growth parameter 𝜆0 using

the parameters 𝜖 = 𝜖5, ℎ = 0.01, 𝛥𝑡 = 4𝜖2ℎ2∕(ℎ2 + 16𝜖2), 𝑇 = 20 000𝛥𝑡,
𝛼 = 0.5, and 𝛽0 = 0.1, with the initial condition

𝜙(𝑥, 𝑦, 0) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
2
+ 1

2
t anh

⎛

⎜

⎜

⎝

0.4 − 𝑦 + 0.3 cos( 23𝜋 𝑥)
2
√

2𝜖

⎞

⎟

⎟

⎠

, if (𝑥 < 3)

1
2
+ 1

2
t anh

(

0.4 + 𝑦 + 0.3 cos(2𝜋 𝑥)
2
√

2𝜖

)

, others,

(9)

(𝑥, 𝑦) ∈ 𝛺, where 𝛺 = (0, 4) × (0, 1.5). Here, 𝜖𝑚 = 𝑚ℎ∕[4
√

2 t anh−1(0.9)].
e also use two different values of 𝜆0 = 30 and 𝜆0 = 100. The time

volution of 𝜙 for 𝜆0 = 30 and 𝜆0 = 100 are displayed in Fig. 4(a) and
(b), respectively.

We observed that tissue grows rapidly in areas with high positive
curvature and relatively slowly in areas with high negative curvature.
Additionally, when 𝜆0 is small, the tissue growth is slow as illus-
trated in Fig. 4(a). However, as 𝜆0 increases, the rate of tissue growth
accelerates, as illustrated in Fig. 4(b).

3.2.3. Effect of 𝛼
To examine the effects of other parameters, we investigate the effect
f 𝛼 with the initial condition (9). The parameters 𝛽0 = 0.5, 𝑇 =
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40 000𝛥𝑡, and 𝜆0 = 30 are used, and the other parameter values used
re the same as in the previous test. We observe the parameter effects
or three different values of 𝛼 = 0.05, 𝛼 = 0.5 and 1. Fig. 5 shows the

numerical test results for three different 𝛼 values.
As a result, the effect of 𝛼 was minimal with small |𝜅|. However,

with large curvature 𝜅, as shown in Fig. 5, the closer 𝛼 is to 1, the
slower the growth in regions with negative curvature 𝜅 and the faster
the growth in regions with positive curvature 𝜅.

3.2.4. Comparison test with a real experiment
We investigate the process of tissue growth on different scaffolds

and compare it with experimental results by Rumpler et al. [22]. The
ifferent scaffolds have triangular pores in the first row, square pores in

the second row, and hexagonal pores in the third row. Fig. 6 represents
he evolution process up to 𝑇 = 30 000𝛥𝑡 is divided into 𝑡 = 10 000𝛥𝑡,
0 000𝛥𝑡, and 30 000𝛥𝑡 for analysis. The domain is set as 𝛺 = (0, 1) × (0, 1),
ith parameters ℎ = 0.01, 𝜖 = 𝜖5, 𝛥𝑡 = 4𝜖2ℎ2∕(ℎ2+ 16𝜖2), 𝜆0 = 5, 𝛼 = 0.9,
nd 𝛽 = 1.

To validate our model, we compare the result of another in vitro
xperiment with that of our proposed model. Fig. 7(a) shows the in
itro experimental results from Bidan et al. [15]. Overall, tissue grows,
ut it was observed that the growth rate is higher in convex regions
ompared to concave regions. The result of our proposed model, using
he following parameters, is shown in Fig. 7(b). Here the parameters
sed are 𝜆0 = 95, 𝛼 = 0.85, 𝛽0 = 4, ℎ = 0.005, 𝜖 = 𝜖10, 𝛥𝑡 =

4𝜖2ℎ2∕(ℎ2 + 16𝜖2), and 𝑇 = 22 000𝛥𝑡. As a result, we confirmed that
the obtained result closely matches the actual experimental result.

4. Conclusion

In this study, we introduced a novel phase-field model designed
o simulate curvature-dependent and surface-limited tissue growth on
urved surfaces using an advanced modification of the AC equation.
y incorporating non-standard variable mobility and growth terms, our
odel effectively captures complex growth behaviors. The implemen-

ation of an operator splitting method allows for efficient numerical
olutions by decomposing the governing equation into several compo-
ents. The efficacy and robustness of the proposed model are demon-
trated through a series of numerical simulations such as synthetic
nitial conditions and comparisons with real experimental data. These
esults validated the model’s potential for advancing simulations in
rowth phenomena and provided a valuable tool for further research

and practical applications. The numerical tests in the paper validated
he performance of a novel phase-field model for tissue growth in-
luenced by curvature. The convergence test confirmed second-order
patial accuracy and first-order temporal accuracy. The impact of the
rowth parameter 𝜆0 and curvature sensitivity parameter 𝛼 was studied,
hich showed that increased 𝜆0 accelerates growth, while larger 𝛼

nhances growth in positively curved regions and suppresses it in
egatively curved ones. Qualitative comparisons with experimental
esults validated the model’s ability to simulate realistic growth pat-
erns, particularly the higher growth rate in convex regions. These
umerical tests highlighted the model’s robustness and efficiency in
imulating curvature-dependent tissue growth on curved surfaces. For
uture research, we plan to investigate three-dimensional tissue growth
n complex bio-scaffold surfaces [25,26] using a multi-dimensional AC
quation [27].
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