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A B S T R A C T

In this article, we investigate the temporal evolution of arbitrary, simple, closed two-dimensional (2D) and
three-dimensional (3D) interfaces under motion driven by mean curvature up to a singularity. To facilitate
this investigation, we propose a novel Allen–Cahn (AC) model with a time-dependent interfacial thickness
parameter. The original AC equation was developed to model the phase separation of a binary mixture.
It is well known that a level set or interface of the solution of the AC equation obeys the dynamics of
motion by curvature as the interfacial thickness parameter approaches zero. Generally, it is difficult to find
a closed-form analytic solution of the AC equation with any initial condition. Therefore, we need to estimate
the solution of the AC equation through computational approaches such as finite difference method (FDM),
finite element method (FEM), Fourier-spectral method (FSM), and finite volume method (FVM). Any simple,
closed curves and convex surfaces eventually shrink to a point due to motion by mean curvature. Therefore,
it becomes necessary to use adaptive mesh techniques to resolve this small size problem. However, even
though we use adaptive mesh techniques, we still confront the relatively thick interfacial transition layer
when the curves or interfaces become very small. To avoid this problem, we can start with a very small
mesh size for a small value of the interfacial parameter, which results in an extremely high computational
cost even when using adaptive mesh techniques. To resolve these issues, we present the AC equation with a
time-dependent interfacial parameter and develop an adaptive mesh refinement system. To show the superior
performance of the proposed mathematical equation and its computational algorithm, we present various
numerical experiments and investigate the motion by mean curvature up to the singularity of curves in 2D
space and interfaces in 3D space.
1. Introduction

We study the temporal evolution of arbitrary, simple, closed two-
dimensional (2D) and three-dimensional (3D) convex interfaces under
motion by mean curvature up to the singularity using the following
Allen–Cahn (AC) model with a time-dependent interfacial thickness
parameter:

𝜕𝜙
𝜕𝑡

= −
𝐹 ′(𝜙)
𝜖2(𝑡)

+ 𝛥𝜙, (1)

where 𝛺 ⊂ R2 or R3 is a domain. Here, the phase-field 𝜙(𝐱, 𝑡) is a phase
field, 𝐹 (𝜙) = (𝜙2 − 1)2∕4, and 𝜖(𝑡) is the time-dependent parameter
related to the thickness of the interfacial transition layer. For simplicity,
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we use the negative one Dirichlet boundary condition, i.e., 𝜙(𝐱, 𝑡) = −1
for 𝐱 ∈ 𝜕𝛺.

If 𝜖(𝑡) = 𝜖 is a time-independent constant in the proposed novel
AC equation (1), then it becomes the original AC equation [1], which
was proposed to model the phase separation of a binary mixture. It is
well recognized that as 𝜖 approaches zero, the level set or interface
of 𝜙 converges to motion by mean curvature at the boundary be-
tween phases, see [2–5] and references therein. Generally, it is difficult
to find a closed-form solution of the AC equation with an arbitrary
shaped initial interface except for some special initial conditions and
domains. Therefore, we need to approximate the solution of the AC
equation using numerical methods such as the finite difference method
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Fig. 1. Example of using a two-scale parameter: (a) the initial condition with a gray inpainting region, (b) the result after 50 temporal iterations with 𝜖 = 0.8, and (c) the result
after 700 temporal iterations with 𝜖 = 0.01.
Source: Reprinted from Jeong et al. [20] with permission from J. KSIAM.
Fig. 2. Schematic illustration of the adaptive mesh refinement for discrete domains.
(FDM) [6–9], Fourier spectral method (FSM) [10–12], finite volume
method (FVM) [13], and finite element method (FEM) [14–16].

Over time, any simple, closed curves and convex surfaces gradually
diminish in size and eventually shrink to a single point due to motion by
mean curvature [17]. Hence, the utilization of adaptive mesh strategies
becomes imperative to address the issue of diminishing sizes. However,
even with the application of these adaptive mesh techniques, we en-
counter a relatively thick interfacial transition layer as the curves or
interfaces reach exceedingly small sizes. To circumvent this issue, one
approach is to initiate the process with an exceedingly fine mesh size
for a small interfacial parameter value. Nevertheless, this choice leads
to an exceptionally steep increase in computational expenses, even
when employing adaptive mesh techniques and parallel computing. To
resolve these problems, we propose the above-mentioned AC equation
with a time-dependent interfacial parameter, Eq. (1) and develop an
adaptive mesh refinement algorithm. To validate the superior perfor-
mance of the proposed novel modified AC equation and its numerical
approach, we conduct various computational tests involving the inves-
tigation of curvature-driven motion right up to the point where curves
and interfaces reach singularities.

It is worth noting that prior research has explored changing model
parameter studies during simulations of image inpainting problems
[18]. Fig. 1 shows the inpainting of a double stripe using Bertozzi’s
scheme [18] based on the following phase-field model derived from
the Cahn–Hilliard equation [19]:
𝜕𝑐(𝐱, 𝑡)

𝜕𝑡
= 𝛥[𝐹 ′(𝑐(𝐱, 𝑡)) − 𝜖2𝛥𝑐(𝐱, 𝑡)] + 𝜆(𝐱)(𝑓 (𝐱) − 𝑐(𝐱, 𝑡)), (2)

where 𝐹 (𝑐) = 0.25𝑐2(1 − 𝑐)2, 𝑓 (𝐱) a given image, and 𝜆(𝐱) is a fidelity
parameter.
2

Fig. 1(a), (b), and (c) display the initial condition with a gray
inpainting region, the result after 50 temporal iterations with 𝜖 = 0.8,
and the result after 700 temporal iterations with 𝜖 = 0.01, respectively.
The computations were initiated using a relatively large 𝜖 = 0.8
value and then changed to a smaller 𝜖 = 0.01 value after completing
50 iterations. However, in the above-mentioned research, the model
parameters were changed only once, and there was no refinement in
grid resolution. The authors in [21] presented a mathematical model
with space-dependent parameters to simulate nonhomogeneous zebra
pattern formation.

The primary purpose of this study is to propose the AC equation
with a time-dependent interfacial parameter and develop an adaptive
mesh refinement system. As we reduce the numerical mesh size, we
concurrently decrease 𝜖(𝑡).

The organization of this paper is as follows. In Sections 2 and 3,
we present the 2D and 3D numerical solution algorithms and various
computational tests, such as motion by mean curvature flows up to
the singularity of interfaces to validate the superior performance of the
proposed novel AC model with a time-dependent interfacial parameter
and its efficient numerical algorithm. Finally, in Section 4, conclusions
are drawn.

2. Two-dimensional space

Now, we present a computational algorithm and perform numerical
experiments for the 2D AC equation with a time-dependent parameter
for motion by mean curvature up to the singularity.
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Fig. 3. Comparison of results for uniform mesh (first row, (a)–(c)) and adaptive refinement mesh with time-dependent interfacial parameter (second row, (d)–(f)). Temporal
evolution of the adaptive meshes is shown, with each mesh represented only by 20% visibility for clarity (third row, (g)–(i)). The temporal evolutions of the phase-field function
at times 𝑡 = 0, 0.4574, and 0.4969 are shown from left to right. Transition of ℎ𝑛 is depicted in (j), and the transition of 𝛥𝑡𝑛 is illustrated in (k).

Fig. 4. Temporal evolution of the phase-field function for adaptive refinement mesh with constant interfacial parameter at times (a) 𝑡 = 0, (b) 0.4574, and (c) 0.4969.
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Fig. 5. (a) and (b) are the temporal evolution of the shrinking circle due to the motion by mean curvature with uniform mesh; and adaptive refinement mesh and parameter. (c)
and (d) are enlarged figures of (a) and (b) within the boxed area. (e) is the temporal evolution of the radius of the shrinking circle due to the motion by mean curvature with
the exact solution. (f) is a magnified view of (e) within the boxed area.
2.1. Numerical solution algorithm

Let 𝛺0 = (𝐿0
𝑥, 𝑅0

𝑥) × (𝐿0
𝑦, 𝑅0

𝑦) be the initial computational do-
main, and 𝛺0

𝑑 = {(𝑥𝑖, 𝑦𝑗 )|𝑥𝑖 = 𝐿0
𝑥 + 𝑖ℎ0, 𝑦𝑗 = 𝐿0

𝑦 + 𝑗ℎ0, 𝑖 =
0,… , 𝑁0

𝑥 and 𝑗 = 0,… , 𝑁0
𝑦 } be its discrete domain, where 𝑁0

𝑥 and
𝑁0

𝑦 are integers. Here, ℎ0 = (𝑅0
𝑥 − 𝐿0

𝑥)∕𝑁
0
𝑥 is the space step. Let

𝜙𝑛
𝑖𝑗 = 𝜙(𝑥𝑖, 𝑦𝑗 , 𝑡𝑛), where 𝑡𝑛 is the time. Let 𝛥𝑡𝑛 = 𝑡𝑛+1 − 𝑡𝑛 be the

adaptive time step at time 𝑡 = 𝑡𝑛. Other adaptive time step methods
are discussed in [22]. From now on, we use the superscript 𝑛 for 𝑛th
time variables: 𝛺𝑛, 𝐿𝑛

𝑥, 𝑅𝑛
𝑥, 𝐿𝑛

𝑦, 𝑅𝑛
𝑦, 𝛺𝑛

𝑑 , 𝑁𝑛
𝑥 , 𝑁𝑛

𝑦 , ℎ𝑛, and 𝛥𝑡𝑛. Many
numerical methods for the AC equation exist, such as the operator
splitting method [23] and stable explicit method [24]. For simplicity
of exposition, we use the explicit Euler scheme for the two-dimensional
4

AC model with the time-dependent interfacial parameter:

𝜙𝑛+1
𝑖𝑗 − 𝜙𝑛

𝑖𝑗

𝛥𝑡𝑛
= −

𝐹 ′(𝜙𝑛
𝑖𝑗 )

𝜖2(𝑡𝑛)
+ 𝛥𝑑𝜙

𝑛
𝑖𝑗 , (3)

where 𝛥𝑑𝜙𝑛
𝑖𝑗 = [𝜙𝑛

𝑖−1,𝑗+1 +𝜙𝑛
𝑖+1,𝑗+1 +𝜙𝑛

𝑖−1,𝑗−1 +𝜙𝑛
𝑖+1,𝑗−1 +4(𝜙𝑛

𝑖−1,𝑗 +𝜙𝑛
𝑖+1,𝑗 +

𝜙𝑛
𝑖,𝑗−1 + 𝜙𝑛

𝑖,𝑗+1) − 20𝜙𝑛
𝑖𝑗 ]∕[6(ℎ

𝑛)2] is the two-dimensional isotropic nine-
point discretization for the Laplace operator. If we rewrite Eq. (3), then
we obtain the following update scheme: For 𝑖 = 1,… , 𝑁𝑛

𝑥 − 1 and 𝑗 =
1,… , 𝑁𝑛

𝑦 − 1,

𝜙𝑛+1
𝑖𝑗 = 𝜙𝑛

𝑖𝑗 + 𝛥𝑡𝑛
(

−
𝐹 ′(𝜙𝑛

𝑖𝑗 )
2 𝑛

+ 𝛥𝑑𝜙
𝑛
𝑖𝑗

)

, (4)

𝜖 (𝑡 )
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Fig. 6. (a)–(d) represent the temporal evolution of a star-shaped initial condition at 𝑡 = 0, 0.2230, 0.2794, and 0.2935. (e) depicts the zero-level contour of the temporal evolution.
(f) represents the change in area over time.
where we use the negative one Dirichlet boundary condition for sim-
plicity. That is, 𝜙𝑛

𝑖0 = −1, 𝜙𝑛
𝑖𝑁𝑛

𝑦
= −1, for 𝑖 = 0,… , 𝑁𝑛

𝑥 and 𝜙𝑛
0𝑗 =

−1, 𝜙𝑛
𝑁𝑛

𝑥 𝑗
= −1, for 𝑗 = 0,… , 𝑁𝑛

𝑦 .

It should be noted that the proposed AC model with a time-
dependent parameter can be discretized with more stable and accurate
numerical methods, as discussed in [25].

Curve shortening flow of any closed curve develops a singularity
in finite time [17]. To numerically capture the evolution of the inter-
face as it approaches singularity, we need infinitesimally small spatial
and temporal steps. Furthermore, we need to reduce the interfacial
transition parameter 𝜖 to zero simultaneously. Assuming the phase-
field 𝜙 changes from −0.9 to 0.9 over the interfacial region with 𝑚
space grid points, the 𝜖 value at time 𝑡 = 𝑡𝑛 is defined by 𝜖(𝑡𝑛) =
𝜖𝑚(𝑡𝑛) = ℎ𝑛𝑚∕(2

√

2 tanh−1(0.9)), where ℎ𝑛 is the uniform mesh size at
time 𝑡 = 𝑡𝑛 [26].

The proposed numerical algorithm for investigating motion by mean
curvature flow up to the singularity of curves is as follows: First, we
solve the discrete AC equation (4) on the initial discrete domain 𝛺0

𝑑 us-
ing the initial parameter values of 𝜙0, 𝛥𝑡0, and 𝜖 = 𝜖(𝑡0). Second, during
the temporal updating process, if 𝜙𝑛 satisfies some given conditions,
then we adjust computational and model parameters by halving the
space step and 𝜖. For example, one of the criteria can be a change in the
area enclosed by the zero-level contour of the order parameter. If the
area is less than half of the area at the previous checkpoint time, then
we will adjust the computational and model parameters. Fig. 2 shows
a schematic illustration of the adaptive mesh refinement for discrete
domains: (a) is 𝛺𝑝

𝑑 and 𝜙𝑝, (b) is 𝜙𝑞 satisfying the adjustment criterion,
(c) 𝛺𝑞

𝑑 and 𝜙𝑞 , and (d) 𝛺𝑟
𝑑 and 𝜙𝑟. Here, 𝑝 < 𝑞 < 𝑟.

2.2. Numerical experiments

2.2.1. Circular initial condition
A circular initial condition on the domain 𝛺 = (−1.2, 1.2) ×

(−1.2, 1.2) is given as follows:

𝜙(𝑥, 𝑦, 0) = tanh

(

1 −
√

𝑥2 + 𝑦2
√

)

. (5)
5

2𝜖
Then, the zero-level contour of the phase-field 𝜙 corresponds to a circle
𝛾. The radius 𝑅(𝑡) of 𝛾 evolves according to the following differential
equation
𝑑𝑅(𝑡)
𝑑𝑡

= − 1
𝑅(𝑡)

with initial radius 𝑅(0) = 𝑅0 = 1. (6)

The solution of Eq. (6) is given by 𝑅(𝑡) =
√

𝑅2
0 − 2𝑡. We know that

𝑅(𝑡) → 0 as 𝑡 → 𝑅2
0∕2. That is, the circle shrinks to a point in finite

time and develops a singularity at a specific time 𝑡 = 𝑅2
0∕2. The first

row and the second row in Fig. 3 display the temporal evolutions of the
phase-field function using uniform and adaptive refinement of both the
grid and the parameter 𝜖, respectively. In the third row of Fig. 3, the
temporal evolution of the adaptive meshes is shown at 20% visibility
for clarity. The times are 𝑡 = 0, 0.4574, and 0.4969, from left to right
columns. Fig. 3(j) and (k) show temporal evolutions of ℎ𝑛 and 𝛥𝑡𝑛,
respectively. Note that we use an adaptive time-stepping technique to
improve computational efficiency [27]. Fig. 4 displays the temporal
evolution of the phase-field function for an adaptive refinement mesh
with a constant interfacial parameter at times 𝑡 = 0, 0.4574, and 0.4969.
Here, we use 𝜖(𝑡) =

√

3ℎ0 for the constant interfacial parameter and
𝛥𝑡 = 0.1(ℎ0)2 for the time step. From the results of Figs. 3 and 4, both
the adaptive refinement mesh and the corresponding time-dependent
interfacial parameter are necessary to resolve small-sized problems
effectively.

Fig. 5(a) is the zero-level contour of the first row of Fig. 3, which
is the result for a uniform mesh. Fig. 5(b) is the zero-level contour
of the second row of Fig. 3, which is the result for an adaptive
refinement mesh and parameter. Fig. 5(a) and (b) are plotted every
300𝛥𝑡0. Fig. 5(c) and (d) are enlarged views of (a) and (b) in the boxed
area, respectively. In Fig. 5, we can confirm that as time progresses,
the uniform mesh solution does not have the shape of a circle due
to insufficient grid resolution. Fig. 5(e) displays the evolutions of the
radius of the shrinking circle due to the motion by mean curvature
with the exact solution, the uniform mesh result, and the adaptive
refinement mesh result, and (f) is a magnified view of (e) in the boxed
area. Here, 𝑁 = 𝑁 = 100, ℎ0 = 2.4∕𝑁 , 𝛥𝑡0 = 0.1(ℎ0)2, and 𝜖0 =

√

3ℎ0
𝑥 𝑦 𝑥
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Fig. 7. (a)–(d) represent the temporal evolution of a winding-shaped initial condition at 𝑡 = 0, 0.2292, 0.2860, and 0.3002. (e) depicts the zero-level contour of the temporal
evolution. (f) represents the change in area over time.
are used. We can visually confirm that the computational solution is in
an excellent agreement with the analytic solution 𝑅(𝑡) =

√

1 − 2𝑡 until
the singular time 𝑡 = 0.5. However, as shown in the magnified view,
Fig. 5(f), the numerical solution deviates from the exact solution. The
calculated value of 𝜖 used as the minimum value is 7.31106606e−17.

2.2.2. Complex initial conditions
Numerical experiments are conducted not only on symmetric circu-

lar initial conditions but also on complex initial conditions. First, we
consider the evolution over time of the star-shaped initial condition:

𝜙(𝑥, 𝑦, 0) = tanh

(

0.75 + 0.25 cos 9𝜃 −
√

𝑥2 + 𝑦2
√

2𝜖

)

,

where 𝜃 is the angle between the line passing through the origin and
the point (𝑥, 𝑦) and the 𝑥-axis. Here are the parameters used on 𝛺0 =
(−1.2, 1.2)×(−1.2, 1.2): 𝑁0

𝑥 = 𝑁0
𝑦 = 100, 𝜖(0) = 2ℎ, 𝛥𝑡 = 0.1ℎ2. Fig. 6(a)–

(d) capture the phase of 𝜙 each time the mesh is refined. Fig. 6(e) shows
the zero-level contour of 𝜙 over time. Fig. 6(f) compares the area of
𝜙 with the analytically computed area, which indicates that the area
enclosed by a simple closed curve decreases by 2𝜋 [28]. The numerical
area of 𝜙 is calculated from the zero-level contour of 𝜙.

Furthermore, we consider a winding-shaped initial condition on
𝛺0 = (−1.2, 1.2)×(−1.2, 1.2). The parameters used here are 𝑁0

𝑥 = 𝑁0
𝑦 =

240, 𝜖(0) =
√

7ℎ, and 𝛥𝑡 = 0.2ℎ2. Fig. 7(a) is a winding-shaped initial
condition. Fig. 7(b)–(d) show the phase of 𝜙 at 𝑡 = 0, 0.2292, 0.2860,
and 0.3002 which correspond to the times when the mesh is refined.
Fig. 7(e) is the temporal evolution as represented by the zero-level
contour of 𝜙. We can observe the change in the area matches well with
the theoretical prediction.

Next, we numerically justify that the proposed scheme for the time-
dependent interfacial transition parameter is optimal. As shown in
Fig. 8, when the spatial step is halved at 𝑛 = 𝑁𝑙 with 𝑙 = 1, 2,… , the
time-dependent interface parameter 𝜖(𝑡) decreases. It is noted that 𝑁0 =
0. Let us define the time-dependent interfacial transition parameter as
𝜖𝑛 = (

√

3ℎ0)∕𝑎𝑙 for 𝑁 ≤ 𝑛 < 𝑁 . Fig. 9 shows temporal evolutions
6

𝑙 𝑙+1
Fig. 8. Schematic illustration for the temporal evolution of ℎ𝑛 at 𝑡 = 𝑁1, 𝑁2, and 𝑁3.

of the numerical solutions for various time-dependent interfacial pa-
rameters with 𝑎 = 1.5, 𝑎 = 2, and 𝑎 = 3.3. In Fig. 9, we consider
the circular initial condition in Eq. (6) on a computational domain
(−1.2, 1.2) × (−1.2, 1.2). Here, we use 𝑁0

𝑥 = 𝑁0
𝑦 = 100 and 𝜖0 =

√

3ℎ0.
In the result shown in Fig. 9(a), the interfacial thickness increases and
becomes too diffusive relative to the space step size as time evolves.
In Fig. 9(c), the solution is pinned and does not evolve due to the
relatively small value of 𝜖 as we refine the space step. In the case
of Fig. 9(b), the solution maintains a constant interfacial thickness as
the space step decreases in size. Therefore, we can justify that the
time-dependent interfacial parameter is optimal with 𝑎 = 2.

3. Three-dimensional space

Next, we present a computational algorithm and perform numerical
experiments for the 3D AC equation with a time-dependent parameter
for motion by mean curvature up to the singularity.
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Fig. 9. Temporal evolutions of the numerical solutions for various time-dependent interfacial parameters with (a) 𝑎 = 1.5, (b) 𝑎 = 2, and (c) 𝑎 = 3.3.
3.1. Numerical solution algorithm

Let 𝛺0 = (𝐿0
𝑥, 𝑅

0
𝑥) × (𝐿0

𝑦, 𝑅
0
𝑦) × (𝐿0

𝑧, 𝑅
0
𝑧) be the initial computational

domain and 𝛺0
𝑑 = {(𝑥𝑖, 𝑦𝑗 , 𝑧𝑘)|𝑥𝑖 = 𝐿0

𝑥 + 𝑖ℎ0, 𝑦𝑗 = 𝐿0
𝑦 + 𝑗ℎ0, 𝑧𝑘 =

𝐿0
𝑧 + 𝑘ℎ0, 𝑖 = 0,… , 𝑁0

𝑥 , 𝑗 = 0,… , 𝑁0
𝑦 , and 𝑘 = 0,… , 𝑁0

𝑧 } be its discrete
domain, where 𝑁0

𝑥 , 𝑁0
𝑦 , 𝑁0

𝑧 are integers. Here, ℎ0 = (𝑅0
𝑥−𝐿0

𝑥)∕𝑁
0
𝑥 is the

space step. Let 𝜙𝑛
𝑖𝑗𝑘 = 𝜙(𝑥𝑖, 𝑦𝑗 , 𝑧𝑘, 𝑡𝑛). From now on, we use the super-

script 𝑛 for 𝑛th time variables: 𝛺𝑛, 𝐿𝑛
𝑥, 𝑅𝑛

𝑥, 𝐿𝑛
𝑦, 𝑅𝑛

𝑦, 𝐿𝑛
𝑧, 𝑅𝑛

𝑧, 𝛺𝑛
𝑑 , 𝑁𝑛

𝑥 ,
𝑁𝑛

𝑦 , 𝑁𝑛
𝑧 , ℎ𝑛, and 𝛥𝑡𝑛. For simplicity of exposition, let us use the

explicit Euler method for the three-dimensional AC model with the
time-dependent interfacial parameter:

𝜙𝑛+1
𝑖𝑗𝑘 − 𝜙𝑛

𝑖𝑗𝑘

𝛥𝑡𝑛
= −

𝐹 ′(𝜙𝑛
𝑖𝑗𝑘)

𝜖2(𝑡𝑛)
+ 𝛥𝑑𝜙

𝑛
𝑖𝑗𝑘, (7)

where 𝛥𝑑𝜙𝑛
𝑖𝑗𝑘 =

[

20(𝜙𝑛
𝑖+1,𝑗𝑘+𝜙𝑛

𝑖−1,𝑗𝑘+𝜙𝑛
𝑖,𝑗−1,𝑘+𝜙𝑛

𝑖𝑗,𝑘−1+𝜙𝑛
𝑖,𝑗+1,𝑘+𝜙𝑛

𝑖𝑗,𝑘+1)+
6(𝜙𝑛

𝑖−1,𝑗+1,𝑘 + 𝜙𝑛
𝑖−1,𝑗−1,𝑘 + 𝜙𝑛

𝑖+1,𝑗+1,𝑘𝜙
𝑛
𝑖+1,𝑗−1,𝑘 + +𝜙𝑛

𝑖,𝑗−1,𝑘+1 + 𝜙𝑛
𝑖,𝑗−1,𝑘−1 +

𝜙𝑛
𝑖,𝑗+1,𝑘+1 + 𝜙𝑛

𝑖,𝑗+1,𝑘−1 + 𝜙𝑛
𝑖−1,𝑗,𝑘+1 + 𝜙𝑛

𝑖−1,𝑗,𝑘−1 + 𝜙𝑛
𝑖+1,𝑗,𝑘+1 + 𝜙𝑛

𝑖+1,𝑗,𝑘−1)
+𝜙𝑛

𝑖−1,𝑗−1,𝑘−1 +𝜙𝑛
𝑖−1,𝑗+1,𝑘−1 + 𝜙𝑛

𝑖−1,𝑗−1,𝑘+1 + 𝜙𝑛
𝑖+1,𝑗−1,𝑘−1 + 𝜙𝑛

𝑖−1,𝑗+1,𝑘+1 +
𝜙𝑛
𝑖+1,𝑗+1,𝑘−1 +𝜙𝑛

𝑖+1,𝑗+1,𝑘+1 + 𝜙𝑛
𝑖+1,𝑗−1,𝑘+1 − 200𝜙𝑛

𝑖𝑗𝑘
]

∕(48(ℎ𝑛)2) is a three-
dimensional isotropic 27-point discretization for the Laplace opera-
tor [29]. If we rewrite Eq. (7), then we have the following update
method: For 𝑖 = 1,… , 𝑁𝑥 − 1, 𝑗 = 1,… , 𝑁𝑦 − 1, and 𝑘 = 1,… , 𝑁𝑧 − 1,

𝜙𝑛+1
𝑖𝑗𝑘 = 𝜙𝑛

𝑖𝑗𝑘 + 𝛥𝑡𝑛
(

−
𝐹 ′(𝜙𝑛

𝑖𝑗𝑘)

𝜖2(𝑡𝑛)
+ 𝛥𝑑𝜙

𝑛
𝑖𝑗𝑘

)

, (8)

where we use the negative one Dirichlet boundary condition.

3.2. Numerical experiments

A spherical initial profile on a domain 𝛺 = (−1.2, 1.2)×(−1.2, 1.2)×
(−1.2, 1.2) is given as follows:

𝜙(𝑥, 𝑦, 𝑧, 0) = tanh

(

1 −
√

𝑥2 + 𝑦2 + 𝑧2
√

)

. (9)
7

2𝜖
Here, 𝑁𝑥 = 𝑁𝑦 = 𝑁𝑧 = 100, ℎ = 2.4∕𝑁𝑥, and 𝛥𝑡 = 0.1ℎ2 are used. The
zero-level isosurface of the phase-field 𝜙 represents a spherical surface
𝛾. The radius 𝑅(𝑡) of 𝛾 evolves according to the differential equation

𝑑𝑅(𝑡)
𝑑𝑡

= − 2
𝑅(𝑡)

with initial radius 𝑅(0) = 𝑅0 = 1. (10)

The analytic solution of Eq. (10) is given by 𝑅(𝑡) =
√

𝑅2
0 − 4𝑡. We know

that 𝑅(𝑡) → 0 as 𝑡 → 𝑅2
0∕4. That is, the spherical surface shrinks to

a point in finite time and develops a singularity at time 𝑡 = 𝑅2
0∕4.

Numerical parameters 𝑁𝑥 = 𝑁𝑦 = 100, ℎ0 = 2.4∕100, 𝛥𝑡0 = 0.1(ℎ0)2,
and 𝜖0 =

√

3ℎ0 are used for the following numerical experiments.
Fig. 10(a)–(c) display the evolution of the zero-level isosurface of

the phase field and the adaptive refinement domain at times 𝑡 = 0,
0.2397, and 0.2514, from left to right, respectively. In Fig. 10(d)–(f),
the temporal evolution of the 3D adaptive meshes is represented with
each mesh shown at only 10% visibility for clarity. Fig. 10(g) and (h)
show the temporal transition of ℎ𝑛 and 𝛥𝑡𝑛, respectively.

Fig. 11(a) and (b) are snapshots of the zero-level isosurface of phase-
field functions at 𝑡 = 0.2431, 𝑡 = 0.2463, and = 0.2490 with uniform and
adaptive refinement mesh, respectively. Fig. 5(c) shows the evolutions
of the radii of the shrinking circle as a result of the motion by mean
curvature. The results of the analytic solution, uniform mesh, and
adaptive refinement mesh are shown. The numerical results of both
uniform mesh and adaptive refinement mesh agree with the analytic
solution 𝑅(𝑡) =

√

1 − 4𝑡 before the radius is less than about 𝑅 = 0.2.
However, as shown in the magnified view, Fig. 11(d), the numerical
result of the uniform mesh deviates from the analytic solution. We
can observe that the result of the adaptive refinement shows good
agreement with the analytic solution until just before time 𝑡 = 0.25. The
minimum value of the calculated time-dependent interfacial parameter
𝜖(𝑡𝑛) is 7.31106606e−17.

Next, we consider complex initial conditions in 3D space. On a com-
putational domain (−1, 1) × (−1, 1) × (−1, 1), we consider the following
initial condition: a sphere with the center at the origin and radius 0.7,
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Fig. 10. (a)–(c) Evolution of the zero-level isosurface of the phase-field function and adaptive mesh refinement discrete domain. (d)–(f) Temporal evolution of the 3D adaptive
mesh is displayed, with each mesh represented at only 10% visibility for clarity. The temporal evolutions of the first and second row are shown at times 𝑡 = 0, 𝑡 = 0.2397, and
𝑡 = 0.2514. Temporal transition of (g) ℎ𝑛 and (h) 𝛥𝑡.
perturbed by a spherical harmonic 𝑌𝑙,𝑚 [30].

𝜙(𝑥, 𝑦, 𝑧, 0) = tanh

(

0.7 −
√

𝑥2 + 𝑦2 + 𝑧2 + 0.7𝑌𝑙,𝑚(𝜃, 𝜑)
√

2𝜖0

)

,

where 𝜃 is the polar angle and 𝜑 is the azimuthal angle. Here, we use
𝑁0

𝑥 = 99, 𝜖(0) =
√

3ℎ0, and 𝛥𝑡0 = 0.1(ℎ0)2. Fig. 12 shows the snapshots
at 𝑡 = 0, 𝑡 = 0.0846, 𝑡 = 0.1128, and 𝑡 = 0.1208.

We consider winding-shaped initial condition as shown in Fig. 13(a)
with parameters 𝑁0

𝑥 = 𝑁0
𝑦 = 𝑁0

𝑧 = 99, 𝜖0 =
√

3ℎ0, and 𝛥𝑡0 = 0.1(ℎ0)2 on
(−1, 1) × (−1, 1) × (−1, 1). Fig. 13 displays the temporal evolution of the
zero-level isosurface of the computational solutions. The results for the
complex initial conditions indicate that the temporal evolution follows
the motion by mean curvature.

4. Conclusions

In this article, we presented the novel AC model with a time-
dependent interfacial thickness parameter to study the temporal evo-
lution of 2D and 3D interfaces under motion driven by mean curvature
up to singularities. To show the high performance of the proposed
8

mathematical equation and its computational algorithm, we presented
various numerical experiments and studied motion by mean curva-
ture up to the singularities of curves and interfaces. The numerical
experiments validated the superior performance of the proposed model
and its numerical method. The proposed time-dependent parameter
methodology and its adaptive mesh scheme can be successfully applied
to other similar mathematical models [31] and curved surfaces [32] for
investigating singularities. Furthermore, the proposed novel AC model
can be used as a benchmark for solving partial differential equations
with changing model parameters using adaptive physics informed neu-
ral networks [33]. There is interesting future work in extending the
proposed methodology to the multidimensional AC equation [34,35].
In this study, we focused on presenting a novel AC model with a time-
dependent interfacial thickness parameter and its numerical method.
We numerically validate that this time-dependent parameter enables
the corresponding limiting motion to coincide with the motion by mean
curvature. As another future research direction, it would be valuable
to theoretically prove the numerical findings, such as the motion by
mean curvature of the modified AC equation with a time-dependent
interfacial parameter.
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Fig. 11. (a) and (b) Evolutions of zero-level isosurface of phase-field function at times 𝑡 = 0.2431, 𝑡 = 0.2463, and 𝑡 = 0.2490 with uniform and adaptive refinement mesh. (c)
Temporal evolution of the radii of the shrinking sphere due to motion by mean curvature with the exact solution. (d) Magnified view of (c) in the boxed area.

Fig. 12. In 3D space, the temporal evolution of a perturbed spherical harmonic initial condition at (a) 𝑡 = 0, (b) 𝑡 = 0.0846, (c) 𝑡 = 0.1128, and (d) 𝑡 = 0.1208.

Fig. 13. In 3D space, the temporal evolution of a winding-shaped initial condition at (a) 𝑡 = 0, (b) 𝑡 = 0.0564, (c) 𝑡 = 0.0761, and (d) 𝑡 = 0.082.
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