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 A B S T R A C T

We present a normalized time-fractional Cahn–Hilliard (TFCH) equation by incorporating time-fractional 
derivatives to model memory effects in phase separation processes. We use a normalized time-fractional 
derivative, which is a form of the Caputo fractional derivative, to improve the flexibility and physical 
interpretation of the model. This normalization allows for a more consistent interpretation of fractional orders, 
which enables fair comparisons across different orders of the derivative. To solve the normalized TFCH 
equation, we use an efficient computational scheme based on the Fourier spectral method, which ensures high 
accuracy and computational efficiency. Furthermore, we conduct a thorough investigation into the dynamic 
behavior of the normalized TFCH equation and focus on how varying the fractional-order time derivative 
influences the evolution and morphology of phase domains. Numerical simulations demonstrate the versatility 
and effectiveness of the proposed method in modeling complex phase separation dynamics.
1. Introduction

The time-fractional Cahn–Hilliard (TFCH) equation is important 
as it incorporates time-fractional derivatives, which allows for the 
modeling of memory effects and anomalous diffusion in phase sep-
aration processes. This is particularly useful for systems where the 
evolution depends on past states, which classical Cahn–Hilliard (CH) 
equations cannot capture. Real-world applications where fractional-
order modeling may be relevant include digital image inpainting [1], 
phase separation in alloys [2], and tumor growth [3], among others. 
Sadaf and Akram [1] applied the time-fractional CH equation, which 
uses the nonlocal properties of fractional derivatives to provide a more 
flexible framework for applications such as digital image inpainting, 
where it aids in restoring degraded text and high-contrast images. 
Zhao et al. [2] observed that the energy follows a scaling behavior 
of approximately 𝑂(𝑡−

𝛼
3 ), which is consistent with the scaling 𝑂(𝑡−

1
3 )

observed for the integer-order CH equation with constant mobility. This 
result indicates that the exponent in the power-law scaling is linearly 
dependent on the fractional order 𝛼.

The classical CH equation was originally derived to describe spin-
odal decomposition, as detailed in the works of Cahn and Hilliard [4,5]. 
Extensions of the CH equation have enabled applications in multi-
component systems, as shown in studies involving advanced discretiza-
tion methods for multi-component CH systems [6]. Yang et al. [7] 
presented a temporally second-order, linearly implicit-explicit, and 
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energy-stable scheme for the ternary CH system coupled with NS 
equations based on the scalar auxiliary variable method. Furthermore, 
the CH equation has been extensively adapted to represent a variety of 
other physical processes [8]. In the study of liquid–liquid jets, energy-
stable schemes and phase-field methods were developed to simulate 
multi-phase dynamics [9]. Multi-phase modeling includes simulations 
of compound droplets on solid surfaces [10] and binary thermal fluids 
on arbitrary surfaces [11]. In the field of crystal growth, the CH 
equation was applied to study nucleation and crystalline transitions 
through the Lagrange multiplier framework [12]. It was also used for 
modeling anisotropic dendritic growth with orientation fields, which 
provides robust numerical methods for complex morphologies [13]. 
Recent developments integrated the CH-based models with the Swift–
Hohenberg equation for curved surfaces [14]. The CH equation was 
also applied in topology optimization, such as designing shell-infill 
structures using phase-field-based methods [15]. It was further used in 
thermal-fluid topology optimization for systems [16] and adapted for 
analyzing biological transport networks in complex domains [17]. In 
surface and volume reconstruction, it was extended to applications like 
multi-component volume reconstruction from slice data, which pro-
vides practical solutions for imaging and pattern recognition tasks [18]. 
Li and Yang [19] developed a novel diffuse interface model for the CH 
equation, which improves local volume conservation and accurately 
simulating Rayleigh–Plateau instability coupled with incompressible 
Navier–Stokes (NS) equations.
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Zheng and Jiang [20] developed the L1 Fourier spectral method by 
applying the Fourier spectral method in space and the L1 finite differ-
ence method to discretize the Caputo time-fractional derivative to solve 
the time-fractional NS equation with periodic boundary conditions. The 
authors conducted an analysis of the stability and convergence of the 
developed computational scheme and performed numerical simulations 
to verify its effectiveness.

Meanwhile, the TFCH equation, which accounts for nonlocal and 
history-dependent behavior, offered broader applications and more 
accurate phase evolution simulations, particularly for non-equilibrium 
systems.

Nonlocal effects inherently arise in time-fractional partial differen-
tial equations (PDEs), which have widespread uses owing to inher-
ent memory effects [21]. These include areas such as signal process-
ing [22], plasticity [23], image processing [24], viscoelasticity [25–27], 
and the mechanical properties of materials [28].

Fractional nonlocal elasticity models have also been used in the 
bending analysis of functionally graded nanobeams, where fractional 
operators effectively capture small-scale effects [29]. Sumelka et al.
[30] proposed the Fractional Euler–Bernoulli beam theory by refor-
mulating the classical Euler–Bernoulli beam theory using fractional 
calculus and conducted a numerical study and experimental validation. 
Lazopoulos and Lazopoulos [31] proposed a theory on the fractional 
bending of a beam using the Euler–Bernoulli bending principle. The 
authors introduced a fractional tangent space and analyzed the bend-
ing of a cantilever beam under distributed loading. Lazopoulos and 
Lazopoulos [32] proposed new fractional derivatives satisfying differ-
ential topology and introduced the 𝛬-space for localization. The authors 
discussed fractional axial stress and elastic bar deformation using these 
derivatives. Sidhardh et al. [33] formulated the analytical and finite 
element framework for a geometrically nonlinear fractional-order non-
local Euler–Bernoulli beam model and examined its behavior under 
different loading and boundary conditions. Stempin and Sumelka [34] 
improved the space-fractional Euler–Bernoulli beam theory by intro-
ducing new kinematics and a variable length scale. Furthermore, the 
authors developed a numerical algorithm to solve the bending problem.

Liu et al. [35] investigated time-fractional Allen–Cahn (AC) and 
CH phase-field equations to study subdiffusive transport and memory 
effects in materials, developed efficient numerical schemes to han-
dle the computational challenges, and observed distinct energy decay 
behaviors for the two models based on the fractional order. Tang 
et al. [36] first validated that time-fractional phase-field equations 
satisfy an energy dissipation principle. Furthermore, they proposed 
finite difference methods for various phase-field equations such as the 
TFCH equation. Saleh et al. [37] applied the singular manifold method 
to derive exact solutions for nonlinear fractional PDEs. The authors 
employed this approach to solve the nonlinear TFCH equation and 
obtain its exact solutions. Ye et al. [38] investigated Cauchy problem 
for the Caputo-type TFCH equation in R3. The authors provided an 
analytic investigation of the TFCH equation, as well as its consistency 
with the mass conservation property of the traditional CH equation. 
Liao et al. [39] constructed a discrete gradient structure for the TFCH 
equation. Zhang et al. [40] presented an adaptive method for the 
TFCH equation, and provided theoretical proofs and numerical results 
validating its effectiveness and revealing insights into phase separation 
dynamics. Liu et al. [41] introduced two linear algorithms for the time-
fractional CH and AC models, and performed 2D and 3D numerical 
simulations. Ran and Zhou [42] presented an efficient finite difference 
scheme for TFCH equations, using the 𝐿1 formula for the Caputo 
derivative, proving stability and convergence in the discrete 𝐿2-norm, 
and demonstrating through numerical experiments that the solution 
approaches equilibrium over time, consistent with phase separation 
phenomena. Sadaf and Akram [1] investigated the effects of fractional 
order derivatives on the numerical solutions of the TFCH equation using 
a modified homotopy analysis, and demonstrated the accuracy and 
reliability of the results through numerical and graphical illustrations. 
2 
In [43], the authors investigated the front motion of the TFCH equation 
with two different types of diffusion mobilities and derive the corre-
sponding sharp interface models. As a result, they demonstrated that 
the TFCH equation could be used to model the coarsening process. Chen 
and Shujuan [44] investigated the numerical approximation of the 
TFCH equation and proved solvability, stability, and convergence of the 
solution. Furthermore, they validated the theoretical results through a 
numerical example. Huang et al. [45] developed a fully discrete semi-
implicit stabilized method for the TFCH equation, and demonstrated 
unconditional optimal error estimates, energy dissipation preservation, 
and validated theoretical convergence through numerical experiments.

Zhang and Jiang [46] developed a second-order numerical method 
based on the fractional backward difference formula for time-fractional 
phase field models, including the AC equation, the CH equation, and the 
time-fractional molecular beam epitaxy model. This developed method 
incorporates the extended scalar auxiliary variable scheme to han-
dle the nonlinear terms. Furthermore, the authors proved the energy 
dissipation property. Quan et al. [47] extended the classical energy def-
inition of phase-field equations by introducing a time-dependent weight 
function to average the classical energy, defining a nonlocal energy 
that satisfies the energy dissipation law for time-fractional phase-field 
models. Furthermore, in [48], the authors established two discrete 
energy laws, namely the time-fractional energy law and the weighted 
energy dissipation law. These laws were derived for three types of 
L1 schemes, which include the convex-splitting, the stabilization, and 
the scalar auxiliary variable schemes for time-fractional phase-field 
equations. Quan and Wang [49] analyzed the energy stability of high-
order L2-type methods for time-fractional phase-field equations and 
proved that the energy in the L2 scalar auxiliary variable method for 
time-fractional gradient flows is bounded by the initial energy.

Yu et al. [50] presented time-fractional phase-field equations such 
as the AC and CH equations using the exponential scalar auxiliary 
variable algorithm, which ensures energy dissipation on nonuniform 
meshes.

Karaa [51] established general criteria ensuring the positivity of 
quadratic forms of convolution type and applied them in numeri-
cal approximations of fractional integral and differential operators. 
The results provide a fundamental basis for analyzing the numerical 
stability of time-fractional phase-field models. Without relying on a 
fractional Grönwall inequality, the study demonstrated that several 
computational methods satisfy discrete energy dissipation laws through 
standard energy stability analysis.

Al-Maskari and Karaa [52] investigated the regularity of the so-
lution and derived error estimates of optimal order and proved the 
discrete energy dissipation characteristic of the proposed algorithm. 
In [53], the authors developed an efficient two-stage finite point-set 
scheme to solve the TFCH equation. Liang et al. [54] presented a 
lattice Boltzmann scheme for solving the TFCH equation. The proposed 
method transforms the TFCH equation into its standard form using 
the Caputo derivative. Khristenko and Wohlmuth [55] proposed a 
computational scheme for fractional differential equations based on 
the adaptive Antoulas–Anderson scheme. They applied this method 
to the TFCH equation. Qi et al. [56] developed two second-order 
computational methods with variable temporal steps for the TFCH 
model. Zhang and Liao [57] proposed second-order stable computa-
tional methods for the TFCH model. Kawarkhe et al. [58] discussed the 
reduced differential transform method and used this approach to obtain 
and analyze analytical approximate solutions for the one-dimensional 
homogeneous TFCH equation. In [59], the authors investigated the 
approximate solutions obtained by solving the TFCH equation using the 
least squares algorithm.

The main purpose of this article is to present the following normal-
ized TFCH equation in two-dimensional (2D) space, which is based on 
a normalized time-fractional derivative [60–62]: 
𝜕𝛼𝜙(𝐱, 𝑡)

= 𝛥[𝐹 ′(𝜙(𝐱, 𝑡)) − 𝜖2𝛥𝜙(𝐱, 𝑡)],  for (𝐱, 𝑡) ∈ 𝛺 × (0, 𝑇 ), (1)

𝜕𝑡𝛼
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Fig. 1. Exponentially decreasing spatial errors.

where 𝐹 (𝜙) = 0.25(𝜙2 − 1)2 and 
𝜕𝛼𝜙(𝐱, 𝑡)

𝜕𝑡𝛼
= 1 − 𝛼

𝑡1−𝛼 ∫

𝑡

0

𝜕𝜙(𝐱, 𝑠)
𝜕𝑠

𝑑𝑠
(𝑡 − 𝑠)𝛼

, 0 ≤ 𝛼 < 1, (2)

where the following identity is satisfied for any 𝛼 and 𝑡: 
1 − 𝛼
𝑡1−𝛼 ∫

𝑡

0

𝑑𝑠
(𝑡 − 𝑠)𝛼

= 1, 0 ≤ 𝛼 < 1. (3)

The normalized time-fractional derivative is not necessarily supe-
rior in all aspects compared to other definitions of fractional deriva-
tives such as the classical Caputo, Riemann–Liouville [63], Atangana–
Baleanu–Caputo [64] formulations. However, one of the key merits 
of the normalized time-fractional derivative is that it allows a fair 
comparison between different fractional orders. This normalization 
ensures that variations in the fractional order directly reflect changes 
in the physical behavior of the system, rather than being influenced 
by scaling artifacts. As a result, researchers can compare the effects of 
fractional orders on system dynamics in a consistent and meaningful 
way, which makes it easier to evaluate the impact of fractional behavior 
across different fractional order values. This property is particularly 
valuable for studying systems where fractional order plays a crucial role 
in phenomena such as subdiffusion, memory effects, and anomalous 
transport, which ensures that the comparisons are both rigorous and 
insightful.

The organization of this article is as follows. Section 2 introduces the 
computational algorithm for the normalized TFCH equation. Section 3 
presents numerical experiments to validate the proposed approach. 
Lastly, Section 4 provides conclusions.

2. Numerical solutions

Let 𝛺 = (𝐿𝑥, 𝑅𝑥) × (𝐿𝑦, 𝑅𝑦) be the numerical domain and be 
discretized as 𝛺ℎ = {(𝑥𝑚, 𝑦𝑛)|𝑥𝑚 = 𝐿𝑥 + (𝑚−0.5)ℎ, 1 ≤ 𝑚 ≤ 𝑁𝑥 and 𝑦𝑛 =
𝐿𝑦 + (𝑛−0.5)ℎ, 1 ≤ 𝑛 ≤ 𝑁𝑦}, where ℎ = (𝑅𝑥 −𝐿𝑥)∕𝑁𝑥 for some positive 
integer 𝑁𝑥. Let 𝜙𝑘

𝑚𝑛 = 𝜙
(

𝑥𝑚, 𝑦𝑛, 𝑡𝑘
) and 𝑡𝑘 = (𝑘 − 1)𝛥𝑡. Then, we have

𝜕𝛼𝜙(𝑥𝑚, 𝑦𝑛, 𝑡𝑘+1)
𝜕𝑡𝛼

= 1 − 𝛼
𝑡1−𝛼𝑘+1

𝑘
∑

𝑟=1
∫

𝑡𝑟+1

𝑡𝑟

𝜕𝜙(𝑥𝑚, 𝑦𝑛, 𝑠)
𝜕𝑠

𝑑𝑠
(𝑡𝑘+1 − 𝑠)𝛼

(4)

≈
𝑘
∑

𝑟=1

1 − 𝛼
𝑡1−𝛼𝑘+1

∫

𝑡𝑟+1

𝑡𝑟

𝑑𝑠
(𝑡𝑘+1 − 𝑠)𝛼

𝜙𝑟+1
𝑚𝑛 − 𝜙𝑟

𝑚𝑛
𝛥𝑡

=
𝑘
∑

𝑟=1

(𝑛 + 1 − 𝑟)1−𝛼 − (𝑛 − 𝑟)1−𝛼

𝑛1−𝛼
𝜙𝑟+1
𝑚𝑛 − 𝜙𝑟

𝑚𝑛
𝛥𝑡

=
𝑘
∑

𝑟=1
𝑤𝑘

𝑟
𝜙𝑟+1
𝑚𝑛 − 𝜙𝑟

𝑚𝑛
𝛥𝑡

= 𝑤𝑘
𝑛
𝜙𝑘+1
𝑚𝑛 − 𝜙𝑘

𝑚𝑛 +
𝑘−1
∑

𝑤𝑘
𝑟
𝜙𝑟+1
𝑚𝑛 − 𝜙𝑟

𝑚𝑛 ,

𝛥𝑡 𝑟=1 𝛥𝑡

3 
where 𝑤𝑘
𝑟 = [(𝑘+1−𝑟)1−𝛼−(𝑘−𝑟)1−𝛼]∕𝑘1−𝛼 , which satisfies ∑𝑘

𝑟=1 𝑤
𝑘
𝑟 = 1.

For the sake of completeness in presenting the numerical solution 
algorithm using the Fourier spectral method, we briefly outline the 
procedure here. Further details can be found in [35,65]. Let {𝜙𝑘

𝑚𝑛|1 ≤
𝑚 ≤ 𝑁𝑥 and 1 ≤ 𝑛 ≤ 𝑁𝑦} be the given data, and define the discrete 
Fourier transform as follows: 

𝜙̂𝑘
𝑝𝑞 =

𝑁𝑥
∑

𝑚=1

𝑁𝑦
∑

𝑛=1
𝜙𝑘
𝑚𝑛𝑒

−𝑖(𝜉𝑝𝑥𝑚+𝜂𝑞𝑦𝑛), −
𝑁𝑥
2

+ 1 ≤ 𝑝 ≤
𝑁𝑥
2

, −
𝑁𝑦

2
+ 1 ≤ 𝑞 ≤

𝑁𝑦

2
,

(5)

where 𝜉𝑝 = 2𝜋𝑝∕𝐿𝑥 and 𝜂𝑞 = 2𝜋𝑞∕𝐿𝑦. Then, the inverse discrete Fourier 
transform can be defined as follows: 

𝜙𝑘
𝑚𝑛 =

1
𝑁𝑥𝑁𝑦

𝑁𝑥∕2
∑

𝑝=−𝑁𝑥∕2+1

𝑁𝑦∕2
∑

𝑞=−𝑁𝑦∕2+1
𝜙̂𝑘
𝑝𝑞𝑒

𝑖(𝜉𝑝𝑥𝑚+𝜂𝑞𝑦𝑛). (6)

𝜕
𝜕𝑥

𝜙(𝑥, 𝑦, 𝑡) = 1
𝑁𝑥𝑁𝑦

𝑁𝑥∕2
∑

𝑝=−𝑁𝑥∕2+1

𝑁𝑦∕2
∑

𝑞=−𝑁𝑦∕2+1
(𝑖𝜉𝑝)𝜙̂(𝜉𝑝, 𝜂𝑞 , 𝑡)𝑒

𝑖(𝜉𝑝𝑥+𝜂𝑞𝑦),

𝜕
𝜕𝑦

𝜙(𝑥, 𝑦, 𝑡) = 1
𝑁𝑥𝑁𝑦

𝑁𝑥∕2
∑

𝑝=−𝑁𝑥∕2+1

𝑁𝑦∕2
∑

𝑞=−𝑁𝑦∕2+1
(𝑖𝜂𝑞)𝜙̂(𝜉𝑝, 𝜂𝑞 , 𝑡)𝑒

𝑖(𝜉𝑝𝑥+𝜂𝑞𝑦),

(7)

where 𝜙(𝑥, 𝑦, 𝑡) is a continuous extension of 𝜙𝑘
𝑚𝑛. Then, we can obtain 

𝛥𝜙(𝑥, 𝑦, 𝑡) = 1
𝑁𝑥𝑁𝑦

𝑁𝑥∕2
∑

𝑝=−𝑁𝑥∕2+1

𝑁𝑦∕2
∑

𝑞=−𝑁𝑦∕2+1
𝛥𝜙(𝜉𝑝, 𝜂𝑞 , 𝑡)𝑒

𝑖(𝜉𝑝𝑥+𝜂𝑞𝑦)

= 1
𝑁𝑥𝑁𝑦

𝑁𝑥∕2
∑

𝑝=−𝑁𝑥∕2+1

𝑁𝑦∕2
∑

𝑞=−𝑁𝑦∕2+1
−(𝜉2𝑝 + 𝜂2𝑞 )𝜙̂(𝜉𝑝, 𝜂𝑞 , 𝑡)𝑒

𝑖(𝜉𝑝𝑥+𝜂𝑞𝑦).

(8)

Then, we get the computational solution of the normalized TFCH equa-
tion. We use the well-known linearly stabilized splitting method [66] 
to Eq. (1). 

𝑤𝑘
𝑘
𝜙𝑘+1
𝑚𝑛 − 𝜙𝑘

𝑚𝑛
𝛥𝑡

= [𝛥
(

2𝜙𝑘+1
𝑚𝑛 − 𝜖2(𝛥𝜙𝑘+1)𝑚𝑛 + 𝑓 (𝜙𝑘

𝑚𝑛)
)

]𝑚𝑛 − 𝑠𝑘𝑚𝑛, (9)

where 𝑓 (𝜙) = 𝜙3 − 3𝜙 and 𝑠𝑘𝑚𝑛 =
∑𝑘−1

𝑟=1 𝑤
𝑘
𝑟 (𝜙

𝑟+1
𝑚𝑛 − 𝜙𝑟

𝑚𝑛)∕𝛥𝑡. Thus, we 
transform Eq. (9) into the following form: 

𝑤𝑘
𝑘

𝜙̂𝑘+1
𝑝𝑞 − 𝜙̂𝑘

𝑝𝑞

𝛥𝑡
= −

(

𝜉2𝑝 + 𝜂2𝑞
)(

2𝜙̂𝑘+1
𝑝𝑞 + 𝜖2(𝜉2𝑝 + 𝜂2𝑞 )𝜙̂

𝑘+1
𝑝𝑞 + 𝑓𝑘

𝑝𝑞

)

− 𝑠̂𝑘𝑝𝑞 , (10)

which is rewritten as 

𝜙̂𝑘+1
𝑝𝑞 =

𝑤𝑘
𝑘𝜙̂

𝑘
𝑝𝑞 − (𝜉2𝑝 + 𝜂2𝑞 )𝛥𝑡𝑓

𝑘
𝑝𝑞 − 𝛥𝑡𝑠̂𝑘𝑝𝑞

𝑤𝑘
𝑘 + 𝛥𝑡[2(𝜉2𝑝 + 𝜂2𝑞 ) + 𝜖2(𝜉2𝑝 + 𝜂2𝑞 )2]

. (11)

Finally, we have 𝜙𝑘+1
𝑚𝑛  using Eq. (6) as follows: 

𝜙𝑘+1
𝑚𝑛 = 1

𝑁𝑥𝑁𝑦

𝑁𝑥∕2
∑

𝑝=−𝑁𝑥∕2+1

𝑁𝑦∕2
∑

𝑞=−𝑁𝑦∕2+1
𝜙̂𝑘+1
𝑝𝑞 𝑒𝑖(𝜉𝑝𝑥𝑚+𝜂𝑞𝑦𝑛). (12)

3. Computational tests

To verify the convergence of the numerical method used, the initial 
condition is considered:
𝜙(𝑥, 𝑦, 0) = 0.25 sin(2𝜋𝑥) cos(2𝜋𝑦), (𝑥, 𝑦) ∈ 𝛺,

where 𝛺 = (0, 1) × (0, 1). For the convergence test, we commonly set 
𝜖 = 0.05, and 𝑇 = 0.2. The relative 𝑙2-norm error is defined as follows:

𝐸(ℎ, 𝛥𝑡) =
‖𝜙𝑛 − 𝜙𝑛

𝑟𝑒𝑓‖2

‖𝜙𝑛
‖2

,

where 𝜙𝑟𝑒𝑓  denotes the reference solution, and ‖𝜙𝑛
‖2 =

√

1∕(𝑁𝑥𝑁𝑦)
∑𝑁𝑦

𝑗=1
∑𝑁𝑥

𝑖=1(𝜙
𝑛
𝑖𝑗 )2. The temporal error is investigated by 

progressively halving the time step size as 𝛥𝑡 = 0.2∕25, 0.2∕26, 0.2∕27, 
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Fig. 2. (a), (b), and (c) are the numerical results for the normalized TFCH equation at times 𝑡 = 40𝛥𝑡, 200𝛥𝑡, and 1240𝛥𝑡, respectively. The solutions are arranged in rows, with 
the top, middle, and bottom rows corresponding to 𝛼 = 1, 𝛼 = 0.5, and 𝛼 = 0.1, respectively.
Table 1
The temporal errors and convergence rates.
 𝛥𝑡 0.2∕25 Rate 0.2∕26 Rate 0.2∕27 Rate 0.2∕28  
 𝑙2-error 2.4969e−3 1.33 9.9291e−4 1.14 4.5001e−4 1.10 2.0963e−4 

and 0.2∕28. The number of grid points is fixed at 256, and 𝜙𝑟𝑒𝑓  is 
obtained using 𝛥𝑡 = 0.2∕212. Table  1 provides the temporal errors and 
convergence rates for each time step size.

We investigate the spatial error and use 𝛥𝑡 = 0.2∕28, which provides 
sufficient accuracy in time. The spatial error is computed for the 
number of grid points 𝑁𝑥×𝑁𝑦 = 2𝑁 ×2𝑁  with 𝑁 = 3, 4, … , 8, and 𝜙𝑟𝑒𝑓
is obtained using 211 ×211. Fig.  1 shows that the spatial error decreases 
exponentially.

We perform a set of computational tests to validate the performance 
of the proposed normalized TFCH equation and investigate its dynamic 
behavior under various conditions. The computational tests focus on 
the influence of the fractional order parameter 𝛼 on evolutions. Let 
us take into account the following initial profile defined within 𝛺 =
(0, 2) × (0, 1): 
𝜙(𝐱, 0) = 0.05 cos(0.5𝜋𝑥4) cos(4𝜋𝑦3). (13)

We use 𝑁𝑥 = 100, 𝑁𝑦 = 50, 𝜖 = ℎ, and 𝛥 = ℎ2. Fig.  2(a), (b), and 
(c) illustrate the numerical solutions of the normalized TFCH equation 
at various times 𝑡 = 40𝛥𝑡, 200𝛥𝑡, and 1240𝛥𝑡, respectively, for various 
values of the fractional order 𝛼. Each column demonstrates how the 
system evolves over time. The rows correspond to various values of 
𝛼, with the top row for 𝛼 = 1, the middle row for 𝛼 = 0.5, and 
the bottom row for 𝛼 = 0.1. The evolution of the phase separation 
process varies with 𝛼. For 𝛼 = 1, which represents the classical CH 
equation, the system evolves more slowly toward equilibrium. As 𝛼
decreases (0.5 and 0.1), the dynamics becomes faster, indicating that 
the memory effects introduced by the time-fractional derivative lead 
to a faster phase separation process. This shows how 𝛼 influences the 
rate and nature of phase evolution in the system, with smaller 𝛼 values 
yielding faster transitions.
4 
Then, we consider a square spiral as an initial condition as shown 
in the first column of Fig.  3 with 𝛼 = 1 and 𝛼 = 0.1. We use 𝑁𝑥 = 100, 
𝑁𝑦 = 100, ℎ = 1∕100, 𝜖 = ℎ, and 𝛥𝑡 = ℎ2 on 𝛺 = (0, 1) × (0, 1). Fig. 
3 illustrates the time evolution of the computational solutions for two 
values of 𝛼: (a) 𝛼 = 1 and (b) 𝛼 = 0.1. The evolution progresses faster 
as 𝛼 decreases.

To compare the numerical results of the classical Caputo derivative 
and the proposed normalized model, we consider the following initial 
condition for the CH equation, which leads to growth and phase 
separation.

𝜙(𝑥, 𝑦, 0) = 0.1 cos
( 𝜋
50

𝑥
)

cos
( 𝜋
50

𝑦
)

, (𝑥, 𝑦) ∈ (0, 100) × (0, 100).

A large-scale domain is used to observe the effects of the fractional 
order over time. We use the parameters as ℎ = 1, 𝛥𝑡 = 1, and 𝜖 = ℎ
for the numerical tests. Fig.  4 illustrates the temporal evolution of the 
solution for two different fractional derivative formulations applied to 
the CH equation with fractional order 𝛼 = 0.9: (a) the classical Caputo 
fractional derivative and (b) the normalized fractional derivative. The 
evolution is presented at three distinct time steps, 𝑡 = 60𝛥𝑡, 84𝛥𝑡, 
and 120𝛥𝑡. For the fractional order of 𝛼 = 0.9, the solution obtained 
using the normalized fractional derivative exhibits faster separation 
compared to the results obtained with the Caputo derivative.

Fig.  5 illustrates the temporal evolution of the solution for two 
different fractional derivative formulations applied to the CH equation: 
(a) the classical Caputo fractional derivative and (b) the normalized 
fractional derivative. The evolution is presented at three distinct time 
steps, 𝑡 = 40𝛥𝑡, 64𝛥𝑡, and 80𝛥𝑡. In the case of the normalized fractional 
derivative, the evolution is significantly faster for 𝛼 = 0.1 compared to 
𝛼 = 0.9. In contrast, for the classical Caputo derivative, the solution 
becomes pinned, exhibiting no further evolution.

Next, we investigate the temporal evolution of two droplets in 
contact with the following initial condition:

𝜙(𝑥, 𝑦, 0) =

{

1, if (𝑥 + 1)2 + 𝑦2 ≤ 1 or (𝑥 − 1)2 + 𝑦2 ≤ 1,

−1, otherwise,
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Fig. 3. Time evolutions of the computational results for (a) 𝛼 = 1 and (b) 𝛼 = 0.1. The time is indicated below each figure.
Fig. 4. Temporal evolution of the solution for (a) the classical Caputo fractional derivative and (b) the normalized fractional derivative applied to the CH equation with fractional 
order 𝛼 = 0.9. The columns correspond to different time steps, 𝑡 = 60𝛥𝑡, 84𝛥𝑡, and 120𝛥𝑡.
on a computational domain 𝛺 = (−𝜋, 𝜋) × (−𝜋, 𝜋). 𝑁𝑥 = 𝑁𝑦 = 128, 
𝛥𝑡 = 0.01, and 𝜖 = 0.1 are used. Fig.  6 displays the temporal evolution 
of the two droplets with four different values of 𝛼 = 0, 0.1, 0.5, and 1. 
In Fig.  6, the snapshots, from the left column, are taken at 𝑡 = 0, 100𝛥𝑡, 
1000𝛥𝑡, 4000𝛥𝑡. When the value of 𝛼 decreases, the merging process 
leading to a single circular droplet is delayed.

Next, we consider the deformation of a droplet under the influence 
of a specified background flow, which is defined by swirling velocity 
fields that introduce complex advective effects on the droplet’s evolu-
tion. We consider the following governing equation with an advection 
term: 
𝜕𝛼𝜙(𝐱, 𝑡)

+ ∇ ⋅
(

𝜙(𝐱, 𝑡)𝐮(𝐱, 𝑡)
)

= 𝛥[𝐹 ′(𝜙(𝐱, 𝑡)) − 𝜖2𝛥𝜙(𝐱, 𝑡)], (14)

𝜕𝑡𝛼

5 
where 𝐮(𝐱, 𝑡) is the background flow. Here, the convection term in 
Eq. (14) is numerically solved by the conservative finite difference 
method:

∇ℎ ⋅
(

𝜙𝑛
𝑖𝑗𝐮

𝑛
𝑖𝑗
)

=
(𝜙𝑛

𝑖+1,𝑗 + 𝜙𝑛
𝑖𝑗 )𝑢

𝑛
𝑖+ 1

2 ,𝑗
− (𝜙𝑛

𝑖𝑗 + 𝜙𝑛
𝑖−1,𝑗 )𝑢

𝑛
𝑖− 1

2 ,𝑗

2ℎ

+
(𝜙𝑛

𝑖,𝑗+1 + 𝜙𝑛
𝑖𝑗 )𝑢

𝑛
𝑖,𝑗+ 1

2

− (𝜙𝑛
𝑖𝑗 + 𝜙𝑛

𝑖,𝑗−1)𝑢
𝑛
𝑖,𝑗− 1

2

2ℎ
.

First, we consider the background swirling flow 𝐮(𝐱, 𝑡) = (𝑢(𝐱, 𝑡), 𝑣(𝐱, 𝑡))
defined as

𝑢(𝐱, 𝑡) = −2.5 sin2(𝜋𝑥) sin(2𝜋𝑦) and 𝑣(𝐱, 𝑡) = 2.5 sin2(𝜋𝑦) sin(2𝜋𝑥).
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Fig. 5. Temporal evolution of the solution for (a) the classical Caputo fractional derivative and (b) the normalized fractional derivative applied to the CH equation with fractional 
order 𝛼 = 0.1. The columns correspond to different time steps, 𝑡 = 40𝛥𝑡, 64𝛥𝑡, and 80𝛥𝑡.

Fig. 6. Temporal evolution of two droplets with (a) 𝛼 = 0, (b) 𝛼 = 0.1, (c) 𝛼 = 0.5, and (d) 𝛼 = 1.

Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 198 (2025) 116450 

6 



H.G. Lee et al. Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 198 (2025) 116450 
Fig. 7. Time evolution of the zero-level set of the computational solutions for 𝛼 = 1, 𝛼 = 0.8, and 𝛼 = 0.5 at (a) 𝑡 = 1000𝛥𝑡, (b) 𝑡 = 1500𝛥𝑡, (c) 𝑡 = 2000𝛥𝑡, and (d) 𝑡 = 3000𝛥𝑡.
Fig. 8. Time evolutions of the filled contour at 𝑡 = 525𝛥𝑡, 𝑡 = 1050𝛥𝑡, 𝑡 = 1575𝛥𝑡, and 𝑡 = 2100𝛥𝑡 from the first to the fourth row, respectively. Each column corresponds to various 
values of the parameter (a) 𝛼 = 1, (b) 𝛼 = 0.5, and (c) 𝛼 = 0.1.
We use the following initial profile:

𝜙(𝑥, 𝑦, 0) = tanh

(

0.2 −
√

(𝑥 − 0.5)2 + (𝑦 − 0.7)2
√

2𝜖

)

on a unit domain. We use the parameters ℎ = 1∕100, 𝜖 = ℎ, and 𝛥𝑡 = ℎ2.
Fig.  7 displays the evolution of the zero-level set of the computa-

tional solutions for 𝛼 = 1, 𝛼 = 0.8, and 𝛼 = 0.5. The contours for 
lower fractional orders (𝛼 = 0.5 and 𝛼 = 0.8) show faster deformation 
and evolution compared to the classical case (𝛼 = 1). This indicates 
that memory effects associated with fractional derivatives significantly 
accelerate phase evolution. As time progresses from 𝑡 = 1000𝛥𝑡, where 
the contours are relatively smooth with moderate deformation, to 𝑡 =
1500𝛥𝑡 and 𝑡 = 2000𝛥𝑡, where increasing complexity and noticeable 
deviations emerge based on the fractional order, the contours at 𝑡 =
3000𝛥𝑡 show the most pronounced deformation for 𝛼 = 1, while 𝛼 =
0.5 maintains a simpler circular shape. Lower values of 𝛼 introduce 
stronger memory effects and lead to faster transitions. The influence 
7 
of 𝛼 becomes more obvious as time progresses, which highlights the 
role of fractional derivatives in governing the system’s dynamics. This 
computational result effectively demonstrates how the fractional order 
parameter (𝛼) influences the phase separation process. Smaller 𝛼 values 
result in more dynamic and rapid changes, which emphasizes the use 
of fractional models for capturing temporal behaviors in phase-field 
equations with memory effects.

Next, let us consider the following time-periodic background flow 
in the 𝑥-direction over time, with no velocity component in the 𝑦-
direction: 𝑢(𝐱, 𝑡) = cos(30𝑡) and 𝑣(𝐱, 𝑡) = 0. We consider the following 
initial profile on 𝛺 = (0, 0.8) × (0, 0.5):

𝜙(𝐱, 0) = tanh

(

0.15 −
√

(𝑥 − 0.4)2 + (𝑦 − 0.25)2
√

2𝜖

)

.

In the following test, we take numerical parameters as ℎ = 1∕100, 𝜖 = ℎ, 
and 𝛥𝑡 = ℎ2. Fig.  8 shows the changes in the filled contour over time for 
various values of the parameter (a) 𝛼 = 1, (b) 𝛼 = 0.5, and (c) 𝛼 = 0.1. 
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Fig. 9. Time evolution of the zero-level set of the computational solutions for 𝛼 = 1, 𝛼 = 0.5, and 𝛼 = 0.1 at (a) 𝑡 = 525𝛥𝑡, (b) 𝑡 = 1050𝛥𝑡, (c) 𝑡 = 1575𝛥𝑡, and (d) 𝑡 = 2100𝛥𝑡. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Each row represents a specific time 𝑡 = 525𝛥𝑡, 𝑡 = 1050𝛥𝑡, 𝑡 = 1575𝛥𝑡, 
and 𝑡 = 2100𝛥𝑡, while each column shows the effect of varying 𝛼 on 
the contour’s shape. Because of the memory effect of time-fractional 
derivatives, the evolution over time increases as 𝛼 decreases.

Fig.  9 illustrates the time evolution of the zero-level set of the 
computational solutions for 𝛼 = 1, 𝛼 = 0.5, and 𝛼 = 0.1. These 
results are compared with the reference profile derived from simple 
advection under the background flow at four time steps: (a) 𝑡 = 525𝛥𝑡, 
(b) 𝑡 = 1050𝛥𝑡, (c) 𝑡 = 1575𝛥𝑡, and (d) 𝑡 = 2100𝛥𝑡. The black dotted line 
represents the initial contour, while the blue, red, and magenta dashed 
lines correspond to numerical solutions for 𝛼 = 1, 𝛼 = 0.5, and 𝛼 = 0.1, 
respectively. The green solid line indicates the reference solution. For 
𝛼 = 1, the numerical solution closely matches the reference solution 
across all time steps. For 𝛼 = 0.5, minor deviations appear and grow 
over time, which reflects a memory effect. In the case of 𝛼 = 0.1, 
substantial deviations from the reference solution occur, especially at 
later time steps, which indicates a significant memory effect. The time 
evolution of zero-level contours demonstrates that the computational 
results show varying degrees of deviation from the reference solution 
depending on the value of 𝛼. For 𝛼 = 1, the solutions agree with the 
reference profile, which indicates negligible memory effects. However, 
as 𝛼 decreases, memory effects become increasingly significant, with 
𝛼 = 0.1 showing substantial deviations, particularly at later time steps. 
This highlights the influence of 𝛼 on the time evolution of the numerical 
solutions over time.

4. Conclusions

In this paper, we presented a normalized TFCH equation by in-
corporating time-fractional derivatives to more effectively account for 
memory effects in phase separation processes. By using a normalized 
time-fractional derivative, we were able to generalize the CH equation 
and capture complex temporal behaviors. To solve the normalized 
TFCH equation, we used an efficient Fourier spectral method, which 
provided high accuracy and computational efficiency. Our investigation 
into the dynamic behavior of the proposed model showed that the 
fractional-order time derivative plays a significant role in influenc-
ing the evolution of phase domains. Extensive numerical simulations 
demonstrated the capability of the normalized TFCH equation in accu-
rately modeling phase separation dynamics over time. These numerical 
results confirm the versatility and robustness of our approach. In this 
8 
paper, we numerically investigated the dynamics of the normalized 
TFCH equation; however, the well-posedness, stability, and uniqueness 
of solutions and mass conservation and energy dissipation properties 
of the normalized TFCH would require further investigation. And, the 
effect of the fractional parameter on the evolution speed of phase 
domains and the characteristic length scale of phase-separated regions 
also require further study. In future work, instead of considering the 
entire history, we will adopt the short-memory approach, which applies 
the short-memory principle to retain only a finite past interval [67,68]. 
This approach will improve computational efficiency and increase the 
calculation speed.
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Appendix

The following listing 1 is MATLAB code for the normalized TFCH 
equation. 

Listing 1: MATLAB code for a normalized TFCH equation
c l ea r a l l ;
x = 100; Ny=50; Lx=0; Rx=2; Ly=0; Ry=1; h=(Rx−Lx )/Nx ;
x=l in space ( Lx+h/2 ,Rx−h/2 ,Nx ) ; y=l in space ( Ly+h/2 ,Ry−h/2 ,Ny ) ;
dt = 100.0∗h ^ 2 ; T=30; Nt = round (T/dt ) ; dt=T/Nt ;
v (1 :Nx , 1 :Ny, 1 ) = rand (Nx ,Ny)−0.5;
k=2∗pi /(Rx−Lx )∗[0 :Nx/2 −Nx/2+1:−1]; p=2∗pi /(Ry−Ly )∗[0 :Ny/2 −Ny/2+1:−1];
k2=k . ^ 2 ; p2=p . ^ 2 ; [kk2 , pp2]=meshgrid (k2 , p2 ) ;
kp=kk2 ’+pp2 ’ ; kp2=kp . ^ 2 ; t =0; eps2=1∗h ^ 2 ;
u ( : , : , 1 )= rea l ( v ) ;
f l a g =2; % f l a g=1 i s alpha=1
alp =0.5;
fo r n = 1:Nt
deno = n^(1−alp ) ;

f o r p = 1:n
w(p) = ( ( n+1−p)^(1− alp )−(n−p)^(1− alp ) ) / deno ;

end
F = 0∗v ;
i f n > 1

fo r p = 1:n−1
F = F+w(p)∗(u ( : , : , p+1)−u ( : , : , p ) ) / dt ;

end
end
i f f l a g==1

w(n)=1; F=0∗v ;
end

f=u ( : , : , n).^3−3∗u ( : , : , n ) ;
v _hat = f f t 2 (w(n)∗u ( : , : , n)−dt∗F)−dt∗kp .∗ f f t 2 ( f ) ; %Converts to f ou r i e r space
v_hat = v_hat . / (w(n)+dt∗(2.0∗kp+eps2∗kp2 ) ) ; %Backwards Euler t imestepping
u ( : , : , n+1) = rea l ( i f f t 2 ( v_hat ) ) ; %Converts back to r ea l Space
t=t+dt ;
i f (mod(n,20)==0)
c l f ; s u r f ( x , y , u ( : , : , n+1) ’ ) ; shading in t e rp
ax i s ( [ Lx Rx Ly Ry −1.1 1 . 1 ] ) ; view (0 ,90) ; ax i s image ; pause (0 .01)
end
end
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