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ARTICLE INFO ABSTRACT
Keywords: We propose an efficient computational algorithm for simulating incompressible fluid flows
Navier-Stokes equation on a virtual cubic surface. By neglecting the influence of gravitational force, we effectively

Finite difference method

eliminate its impact on the system. Therefore, the dynamics can be characterized as essentially
Virtual cubic surface

two-dimensional (2D) and confined to a plane. A projection method and a finite difference
method (FDM) are used to numerically solve the Navier-Stokes (NS) equations governing
the fluid flow. In the projection method, we need to solve the Poisson equation for the
pressure field, which is effectively solved using a multigrid method. The multigrid method is
a powerful computational approach that optimizes the solution process by using a hierarchical
grid structure. The multigrid method allows efficient and accurate calculations of pressure
values and increases the overall simulation accuracy and performance. The effectiveness of
the proposed numerical algorithm is demonstrated through computational results of the shear
flow and multi-vortex problems on a virtual cubic surface. These computational results validate
the reliability and efficiency of the proposed approach, and therefore demonstrate its potential
to contribute significantly to the field of computational analysis in fluid dynamics on a virtual
cubic surface.

1. Introduction

The Navier-Stokes (NS) equation is a system of partial differential equations that describe the movement of incompressible fluid
with viscosity [1]. As the complexity of fluid flow increases, the non-linearity of the NS equation intensifies, and makes analytical
solutions harder or even impossible to obtain. Analytical solutions are only applicable in certain special cases or under simple
assumptions [2-4]. Consequently, due to the limited applicability of analytical solutions, a wide range of numerical methods have
been developed and extensively used to solve the NS equation [5-13]. Furthermore, multiphase fluid flows have been analyzed
using the Navier-Stokes equation combined with the phase-field model [14-17]. Marynets [18] proposed a mathematical equation
for the equatorial current across the Pacific Ocean based on the rotating NS equation, which incorporates Coriolis effects and
mass conservation. However, many studies involving three-dimensional surface NS flow require heavy computations, which can
sometimes be inefficient. One approach is to simplify the problem by first considering a cubic surface where each individual face
has zero curvature, and then map it to the spherical surface with appropriate weighting. Weyn et al. [19] proposed a data-driven
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Fig. 1. (a) Schematic diagram of closet point method. Reprinted from [24] with permission from Elsevier. (b) Schematic diagram of finite volume lattice
Boltzmann method [25]. (¢) Gnomonic equiangular cubed-sphere grid. Reprinted from [26] with permission from Elsevier.

global weather forecasting framework that uses cubed-sphere remapping. Alternatively, a cubed sphere can also be considered as
an alternative option [20-23].

Numerically solving the NS equation on a three-dimensional (3D) surface requires a significant computational effort. Yang
et al. [24] solved the viscous incompressible flow on a 3D surface using narrow band domain and the closest point method,
as illustrated in Fig. 1(a). Yang et al. [25] proposed a finite volume lattice Boltzmann method (LBM) for computing flows on
curved surfaces in 3D space. Using unstructured triangular meshes for spatial discretization and the D3Q19 lattice for velocity
discretization, Fig. 1(b), the method efficiently computed distribution functions explicitly at each vertex per time iteration. Shashkin
et al. [26] applied the summation-by-parts finite difference (SBP-FD) approach to solve the shallow water equations on the gnomonic
equiangular cubed-sphere grid as shown in Fig. 1(c). However, this approach requires a thorough understanding and application of
the fundamental principles of grids in curvilinear coordinate systems. Specifically, the need to define covariant basis vectors and
the metric tensor adds complexity to the formulation. However, the above-mentioned approaches are computationally costly due to
the complexity of their solution algorithms.

In this study, we propose a mathematical equation and its numerical solution algorithm for approximating fluid flows on spherical
surfaces with small curvature which is embedded in a 3D space. The spherical surface is approximated by a virtual cubic domain
represented as a two-dimensional domain, on which the computation can be performed more efficiently and rapidly. Because the
finite difference method is combined with a multigrid method in our numerical approach, the computational cost or complexity of
the proposed algorithm scales linearly with the number of node points, denoted as N. This results in a computational complexity
of O(N) [27].

The rest of the paper is as follows. We first describe the governing equations and the numerical solution algorithm in Section 2.
Section 3 presents numerical experiments such as the shear flow and multi-vortex problems on a cubic surface. In Section 4,
conclusions are given.

2. Governing equations and numerical method

We present an efficient computational scheme for computing viscous incompressible fluid flows on a virtual cubic surface. Firstly,
we describe the fluid flow on the virtual cubic surface, and then we perform dimensionality reduction by considering the template
of the cube. The time-dependent non-dimensional NS equations for a two-dimensional incompressible fluid are expressed as follows:

u (3, y, 1) + u(x, y, Duy (x, y, 1) + 0(x, y, Dy (x, 3, 1) = —=p,(x, y,1) @
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Fig. 2. Computational domain: collocated grid for the unfolded cubic surface.
+LAu(x y,1)
Re RN
U(x, 3, 1) + u(x, y, UL (x, 3, 1) + 0(x, y, DU (x, ¥, 1) = —py(x, y,1) )

1
+—Av(x, y,1),
R At y.1)

ug(x, y,0) + vy(x,y,1) = 0, 3

where u(x, y,1) and v(x, y,t) represent the velocity field and p(x, y,t) is the pressure field of the incompressible viscous fluid. The
Reynolds number Re is a dimensionless constant that describes the fluid flow configuration, defined as the ratio between inertial
and viscous forces. The incompressibility condition is given by Eq. (3) [28]. We will extend the governing equation to investigate
multiphase flows on cubic surfaces by using the Allen-Cahn equations [29,30].

We consider a 2D unfolded cube as the representation of the cubic surface. Instead of solving the NS equation on a 3D cubic
surface, reducing the computational domain to a 2D unfolded cube offers improvements in efficiency and simplicity for solving the
NS equation. On the T-shaped unfolded cube, which represents the unit cubic surface, we introduce a uniformly discretized domain
with a mesh size of A for the discrete numerical scheme. Let Q,, k = 1,2, ...,6, denote the six faces of the unit cube. Each face is
discretized into an N, x N, grid. The coordinates of each grid’s center are given as (x; = (i — 0.5)h, y; = —0.5)h) for 1 <i <4N,
and 1 < j < 3N,. Discrete velocity field (. ) and pressure pj; are defined on the center of each cell. The schematic illustration
of discretization is shown in Fig. 2, and the same [I}; should be grouped together. This type of boundary condition is difficult to
implement using the Fourier spectral method [31], although its high computational efficiency.

We note that when doubly periodic boundary conditions are applied to a rectangular domain, a virtual torus is obtained, as shown
in Fig. 3(a) and (b), respectively. In the transformation process of a rectangular grid into a virtual torus, the rectangular grid squares
are mapped onto the toroidal surface, which leads to noticeable distortions. However, in the proposed method, the unfolded cubic
surface domain shown in Fig. 3(c) is transformed into a virtual cubic surface displayed in Fig. 3(d) without introducing distortions.

Applying the above-described discretization, Egs. (1), (2) and (3) can be written in discrete equations:

Wt 1
ij i n +1

- = —(uu, + U”y)ij -+ Re Agui, “4)

v;’j’fl - a1

— n 1 n
At = —(uvy, + UUy)ij - (py)ij + R_eAdU,'ja ()]
+1 +1 _

W+ ! = o. ®)

For each time step, the goal is to find (ufj“, v,f’j“) and p™*! from the previous time step’s velocity data (u; and - The numerical

algorithm of solving Egs. (4), (5), and (6) for one time step is as follows.
Step 1. We solve Egs. (4) and (5) without the pressure gradient term. By decoupling the pressure gradient term, we can efficiently
determine the intermediate velocity field and proceed with the subsequent stages of our numerical solution algorithm. We compute
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Fig. 3. (a) Rectangular domain with periodic boundary conditions and (b) the corresponding virtual torus. (c) Unfolded cubic surface domain and (d) the

corresponding virtual cubic surface.

an intermediate velocity field (i,;, 7;;) by solving the following equations:

ij
i —ul
J o _ n 1 n
yrE (uuy + vuy)ij + o Adul.j,
0;; — Ul
J o _ n 1 n
v = —(uv, + va)ij + e 4 Ui

where the advection terms are defined as follows:

no_ . n=n n =n n _ n=n n =n
(uu, + vuy)ij = ”ij”x,»j + U,.juy’_j, (uv, + va)ij uijUx,»] + U,.jl)y’_j,

By applying the upwind procedure, we compute the quantities #; and ity as follows:
ij ij

u"f_u:"—lj if u" 0 u:‘/.—u",'j?l if o 0
L= ifu" >0, L= if " >0,
- 1 = 1
i = h J and i = h J
ij Wy v_u;} : Yij W1~ ij :
+ otherwise = 7 otherwise.
Similarly, we compute quantities 57 and o) as follows:
1 1
U:'j—v;’_l . . U:ll AT )
TJ lfu;’j>0, Tf 1fu;'j>0,
" = and " =
Xij vl '_U?j . Yij ot '+1_U7/ X
+ otherwise /T otherwise.

Applying advection terms (uu, + vuy)l’.; and (uv, + vv))
be expressed explicitly.

:’J., the finite difference equations without the pressure gradient term can

u

At
n n n n n n n
o= U At(uu, + U“Y)U + " Re (um’j +ul - 4”;,' tu g T ) ,

by

At
n n n u n n i
vy = At(uv, + UUy)ij + " Re (Ui+1,j ULy, _40,./. +U ui’j71> s

where we have used the finite difference method [32], which is particularly efficient for problems defined on rectangular domains.

Step 2. The pressure field at the (n + 1)th time step is determined by solving the equations given below.

un+l — ..

i vo_ —Vv n+1 (7)
a AP

Vy-ultt =0, (8)
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Fig. 4. From top to bottom, a sequence of coarse unfolded computational discrete domains: 2;, £,, and £,.

l _ l 1 . . . .
where ul’?j+ = (u;‘;r , vlf’j* ). By taking the divergence operator to Eq. (7) and applying Eq. (8), Eq. (7) can be reformulated as a Poisson
equation for the pressure field:

1 -
a0 = 5 Va Ty 9
Eq. (9) is solved using a multigrid algorithm with a Gauss-Seidel-type relaxation. The details of this algorithm will be described
later.
Step 3. Lastly, the divergence-free normal velocities «"*! and v"*! are defined by
1_ - _ At 1 1_ o~ A 1
”?j)r == E(p?:-rl,j _p:‘jl,j)’ v =10, - ﬂ(p?,}rﬂ _1’?;—1)'
We repeat these three steps for each time step to compute the incompressible flow on a virtual cubic surface.
Now, we will describe the multigrid algorithm for solving the Poisson Eq. (9) on a 2D unfolded cube. To provide a clear
explanation of the steps used in a single V-cycle, let us consider an 8 x 8 mesh on each side of the two-dimensional unfolded
cube. Let 25, 2,, 2, and Q, be four distinct discrete domains, where

Q= = (=05 yy ;= (= 05| < i j <25 hy =23Fn}
for k=0,1,2,3.

Each discrete domain 2, has a finer grid than ©,_,, with a half grid step. Fig. 4 illustrates the mesh coarsening of these discrete
domains. The multigrid algorithm incorporates discrete domains with different grid sizes. In the multigrid algorithm, we use the
pointwise Gauss-Seidel relaxation method as the smoother. The linear system of Eq. (9) is solved by defining the discrete Laplace
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operator [33] as
n+1 n+l  _ g n+l n+1 n+1
Al = Py TPy, 4p; TP TP
apy = 2
and the right-hand side of the equation

Uipr,; — Uiy, + Uij+1 — Vij-1

vV, i =
a W 2h 2h

Eq. (9) is solved using the following multigrid algorithm. Eq. (9) can be rewritten by

L3(ps,j) = f3,; on £2;, a0
where

1
+1y +1 _ ~
L3(pg'$ij )= Adpg"ij and 3= Evd .ug’yij.
An iteration step starts with an initial condition pg'“’o = pj. For each multigrid cycle, the initial guess is provided from the

previous time step.
Multigrid cycle

pz“v'"“ = MultigridCycle(k, uZ“‘”’,Lk,fk, V),

where pZ“"’" and pZH’MH are the approximations of pZ“ before and after a MultigridCycle. Here, v is the number of smoothing

relaxation sweeps. Now, we describe one MultigridCycle in detail.
Step (1) Presmoothing
— We compute ﬁzﬂ’m by applying v relaxation steps to uZ“"":

Bt = SMOOTH" (9™ L. f).

To calculate the approximate value of ﬁZ“"”, smoothing steps are performed v with source term f, and relaxation operator
SMOOTH. As the SMOOT H relaxation operator, we use the Gauss-Seidel iterative method. First, we rewrite Eq. (10) as
L) = fraj on 2 an
pn+1 + pn+] +pn+1 + pn+]
ntl A i+1,j i-1,j ij—1 ij-1 i 12)
Prij = kiij % )
pZ*;'ﬁ in Eq. (12) is replaced with pzzlﬂ”’ if (@« > i) or (¢ =i and g > j), otherwise ﬁz*;lﬂ‘m, ie.,
n+1,m —n+1,m n+1,m —n+1,m
L Py TPy TP TP 4
pk’ij = _fk,ij + h2 ﬁ . (13)

Solving Eq. (13) for 2N, x 2¥=3 N grid completes one smooth relaxation operator step in a MultigridCycle.
Step (2) Correction of coarse grid

+ Defect computation: d" = f, — L, (5;*""™).

« Defect and jy restriction: " | = I;~'dy"

k-level functions are mapped to (k — 1)-level functions using the restriction operator I ,’c‘".

dk71(xivyj') = ],I{(_ldk(xi,y]‘)

1
Z[dk(x[_%,yj_%)+dk(xl._%,yﬁ%)+dk(xi%,yj_%)+dk(x[+%,yj+%)].

An+1,m

+ On the coarse grid £2,_;, compute an approximate solutionp,” ", i.e.,
L _
L™ =4y . a4)

Eq. (14) is solved with an iterative solver. If k > 1, we use the zero grid function as an initial guess and perform k-grid cycles for
an approximation, i.e.,

0" = Multigrid Cycle(k — 1,0, Ly_;.d?" |, v).

Lt sy : . .
« Interpolate the correction: ¢, " = If_ 4" ™. That is q.(x;,y;) = I} qp_1(x;,y)) = qk—l(xi+%’ yj+%) when i and j are odd
numbers.

« Computation of corrected approximation on £,

m, after ccc _ ﬁn+l,m

An+1,m
k k .

+4,
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Step (3) Postsmoothing: p}*'"*! = SMOOT H"(p}" after CEC Ly f0)-

Following these three steps completes one MultigridCycle.

The Poisson equation (9) is unique up to a constant with the periodic boundary condition. Applying a Dirichlet condition at a
single point or fixing the total sum of pressure to be a constant can make a solution unique [34]. In our proposed method, the latter
is chosen. The pressure field is corrected so that the total sum is zero.

1 Ny N
I(lJ‘H = p?jﬂ - W Zi:l ijylp;«;rl. s)
The pressure correction is applied after each multigrid method.

Note that most numerical methods for the NS equations on two-dimensional domains can also be applied to virtual cubic surfaces.
However, when solving the NS equations on real cubic surfaces, the application of numerical methods is limited due to the presence
of singularities at the edges and corners of the cubic surfaces.

p

3. Numerical results

We perform various simulations of incompressible fluid flows on a cubic surface with different initial conditions to verify the
performance and capability of the proposed model and its numerical method. Recall that the fluid flow on the cubic surface is solved
in a 2D space. Therefore, a template for the unit cube as shown in Fig. 2 is the computational domain for the numerical tests.

3.1. Parabolic-type flow and stability analysis

We start with a parabolic type fluid flow to demonstrate the capability of the proposed method. A 1 x 1 x 1 cube is considered.
First example is fluid flow along the sides of the cube without an z-directional flow. Initial velocities u(x, y,0) and v(x, y,0) are given
as follows:

-y-DHy-2) for1<y<2,
u(x, y,0) = ;
otherwise,
u(x,y,0) = 0.

The mesh size is h = 1/32 and we can construct the computational domain £, = Ule ;. Reynolds number Re = 50 is applied
for this example. Based on the previously determined parameter values, we can define the time step size to achieve stability of the
numerical scheme and avoid blow ups and oscillations. Time step restriction is determined by two factors [35]: advective Courant—
Friedrichs-Lewy (CFL) condition and stability condition involving viscosity. The CFL condition is based on the ideal that every fluid
particle’s travel distance is bounded by the mesh size i [36]. Therefore, we have

At < h and At < h . (16)
maxy, e, [u(x;, y;,0) maxy, e, [o(x;, v, 0)
The other stability condition that involves viscosity is given as
2
ar< Re, 17)
4
Incorporating Egs. (16) and (17), we obtain
2
At < Atpay = min( h s h s w)
max, e, [4(x;, ;0 max( yyeq, 00x;, ;0 4

Now that 4t,, is the maximum time step restriction, we multiply a safety factor = € (0, 1] for a stable time step At = At ,,,.

Applying a stable time step size Ar = 0.01, we perform the numerical test until time ¢+ = 30. Fig. 5 displays both the initial
condition and snapshot images of the fluid flow on cubic surfaces at = 30 for both the 2D template and 3D cubic surface. As the
simulation progresses, the flow on the sides of the cube transitions to the top and bottom faces, as expected. The fluid flow on the
top and bottom is shown as a circular swirling shape.

We consider the convergence of the numerical scheme on the virtual cubic surface. To perform a convergence test with respect
to time, we used the parameters Ar = 0.0005, N = 128, Re = 20, and the final time ¢ = 0.002. The initial velocities are identical to
those used in the previous simulation. The reference solution #;; for the velocity u was generated using 47,,, = 6.25e—5 and N = 128.
The numerical error with the temporal step size Ar for the velocity u on £, is defined as eiAj’ = uf;.]’ — fi;;, where N, = t/At. The [,-
and /,-norms of the error for the temporal step size are defined as

e, 2, 4 L (e, 2, )

(x;,9,)ELy (xj.9,)€LQy

respectively. Numerical errors and temporal convergence rates are given in Table 1. We can see that the temporal convergence rate
is approximately 1 for both /; and /, errors.

The spatial convergence test is also performed in a similar manner using a reference solution #; that has a fine spatial step size
hyep = 1/256 with At = 10~* and N, = 17. To calculate the convergence rate, a set of decreasing spatial step sizes h, h/2 and h/4 are
applied where h = 1.56e-2. For a computational result under a particular time step A, the error between the reference solution is
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Fig. 5. Snapshot images of the parabolic-type flow at initial state (a) 2D and (b) 3D; (c) 2D and (d) 3D at time ¢ = 30.

Table 1

Numerical errors and convergence rates of the proposed numerical algorithm for temporal step size.
Case At Rate At)2 Rate At/4
[,-norm 1.0609e-5 1.10 4.9660e—6 1.28 2.0508e—6
[,-norm 2.9180e-6 0.94 1.5166e—6 1.19 6.6418e-7

Table 2

Numerical errors and convergence rates of the proposed numerical algorithm for spatial step size.
Case h Rate h/2 Rate h/4
[,-norm 1.3936e—4 2.03 3.4215e-5 1.82 9.658%e—-6
[,-norm 4.5733e-5 1.67 1.4485e-5 1.56 4.8823e-6

defined in the following way:

ho_ ~ ~
€ = Uy — (”2#:‘—21’,211/—211 +Uppiopy120j-2p

+ipi_gpopj_ops1 Flopiori100j-0041 )/4=

where p = 8,4 and 2 for tests using A, h/2 and h/4, respectively. Therefore, the /,- and /,-norms of the error for the spatial step size
are defined as

1 1 2
[ - 2, e KL= aww 2, ()"

respectively. Numerical errors and spatial convergence rates are given in Table 2. The spatial convergence rates exceed one, although
some remain below two. This is one of the limitations of current numerical schemes, and we will develop higher-order numerical
schemes to overcome it. In this study, we focus on a new mathematical model for fluid flows on virtual cubic surfaces.

Next, the following example demonstrates the importance of time step restriction by applying an unstable time step 4t =
1.014z,,,. Fig. 6(a), (b) and (c) illustrate the snapshot images at initial state, + = 504r and ¢ = 1004z, respectively. We can observe
that the numerical solution at Fig. 6(c) does not agree with the stable solution shown in Fig. 5. It is also worth mentioning that the
numerical solution blows up at finite time, 7 = 1044¢.
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Fig. 6. 3D Snapshot images of the parabolic-type flow with unstable condition at (a) initial state, (b) =504 and (c) r = 1004t.
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Fig. 7. Schematic illustration of the initial flow configuration.

3.2. Shear flow

We move on to the next problem, where we test the shear flow on a 1 x 1 x 1 cube. Shear flow is fluid motion that arises
between two superposed fluids with a relative horizontal velocity. In this study, the shear flow is simulated between two vertically
separated fluids. The problem is defined on the unit cubic domain as follows: Initially, two fluids are separated vertically with a
sinusoidal interface.

0.2tanh(2 —y) for y— 1.5 —0.05sin(2zx) > 0,

u(x, y,0) = .
0.2tanh(y — 1) otherwise,

v(x,y,0) = 0.

The velocity of each flow is zero at the top and bottom faces and increases as it gets closer to the sinusoidal interface. Fig. 7
shows a schematic illustration of the initial flow configuration, where we can observe a velocity shear across the sinusoidal interface
between the two fluids.

We set h = 1/32 and 4Ar = 0.01. A large Reynolds number, Re = 1000, is used for this section to observe the vortex flow at the
final time 7 = 30. The computational results are illustrated in Fig. 8.

3.3. One rotating vortex

We consider the evolution of one rotating vortex on a (0,2) x (0,2) x (0,2) cubic domain. The initial conditions of velocity
components are as follows:

u(x, 3,0) = —4(y — 530D and v(x, y,0) = 4(x — 107D,
where I, = /(x — 1)2 + (y—5)2/0.08. We set h = 1/32, At = 0.1, and Re = 10000. The vorticity on the two-dimensional plane is

calculated by @ = v, —u,. The vorticity snapshots and streamlines at 7 = 0,20, 40, and 60 are shown in Fig. 9. Vortex separation is
not observed in this case.



J. Yang et al. Communications in Nonlinear Science and Numerical Simulation 144 (2025) 108676

(a)

_—
q

———

)

———

() (d)

Fig. 8. Snapshot images of shear flow at initial state (a) 2D, (b) 3D and 7 =30 (c) 2D, (d) 3D.

Fig. 9. Evolution of single vortex on a cube. Vorticity snapshots (a)-(d) and streamlines (e)-(h) are at = 0,20, 40, and 60.

3.4. Co-rotating vortex pairs

For an initially co-rotating vortex pair, the low viscosity leads to the vortex separation over time. By adopting a practical closest
point-based FDM, Yang et al. [24] conducted the computation of vortex separation on a sphere. In this subsection, we simulate this
benchmark test on the top surface of a cube. The domain size of a cube is (0,2) x (0,2) x (0,2). The initial conditions of velocity
components are as follows:

10
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Fig. 10. Evolution of co-rotating vortex pair on a cube. Vorticity snapshots (a)-(d) and streamlines (e)-(h) are at ¢ = 0,20, 40, 60.

—4(y =473 if y <5,
u(x, 1,00 = 4 _4(y—53)*3070)  if y> 5,

0 otherwise
40 = DD if ) <5,

and  v(x,5.0) = 14(x - D30 if y > 5,

0 otherwise,

where I, = \/(x = 1)2 4+ (y —4.7)2/0.08 and I, = \/(x — 1)2 + (y — 5.3)2/0.08. The other conditions and parameter values are the same
as the one vortex simulation. Fig. 10(a)—(d) show the vorticity at different moments. It can be observed that the vortices rotate away
from each other in time. In Fig. 10(e)-(h), streamlines at ¢ = 0, 20,40, and 60 are plotted.

Next, we consider the case where co-rotating vortex pair has unequal strengths, i.e., unequal velocities. One vortex has twice the
velocity of the other. In order to simulate this benchmark test, the following initial conditions of velocity components are applied:

—4(y — 4.7)e0'3(1_1%> if y <5,
u(x,y,0) = 3 _g(y — 5.3)e0'3(]_15) if y>5,
0 otherwise

4= 1D y <5,
and  0(x,5,0) = 18(x — 1)) if y > 5,
0 otherwise.

Other conditions are the same as former tests. Fig. 11 illustrates the computational results of velocity and streamline in different
times. In Fig. 11, the stronger vortex is on the upper-right side and the weak vortex is on the lower-left side. The results show that
vortices move away from each other in a manner consistent with the former test. However, the stronger vortex tends to transform
and rotate more widely than the weak vortex. The trajectories in Figs. 10 and 11 match with the figures given in [37].

3.5. Counter-rotating vortex pairs

When studying vortex pair flows, interpreting the vorticity dynamics of the counter-rotating vortex model is as important as the
co-rotating vortex model. Here, we consider counter-rotating equal and unequal vortex pairs with a simple adjustment in initial
velocity components. Counter-rotating equal vortex pairs are simulated using the following initial condition:

—4(y — 4.7)e0’3(]_1%) if y <35,
u(x,3.0) = 14y - 53)e30D if > 5,
0 otherwise

11
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Fig. 12. Evolution of counter-rotating vortex pair on a cube. Vorticity snapshots (a)-(d) and streamlines (e)-(h) are at ¢ = 0,20, 40, and 60.

4(x — 1)e0'3(1_l%) if y <35,

and  u(x,5.0) = §—4(x - 1?30 if y > 5,
0 otherwise.

Unequal vortex pairs with twice different velocities are simulated using the following initial conditions:

—4(y— 47N ify<s,
u(x,3,0) = 180y~ 5.3)3 0B ify> 5,
0 otherwise

40— DD if <5,
and 0(x,5,0) = 3 _g(x — D) if y> 5,

0 otherwise.
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Fig. 13. Evolution of counter-rotating unequal vortex pair on a cube. Vorticity snapshots (a)-(d) and streamlines (e)-(h) are at ¢ = 0,20, 40, and 60.

The other conditions are the same as the test done in Section 3.4. Figs. 12 and 13 show the vorticity results at 7 = 0,20, 40, and
60 for counter-rotating equal vortex pairs and counter-rotating unequal pairs, respectively. We can see that counter-rotating is more
unstable and promotes vorticity decay during destruction. The trajectories in Figs. 12 and 13 match with the figures given in [37].

3.6. Three pairs of rotating vortices

Next, we study the dynamics at three pairs of rotating vortices. The following initial conditions are used

—A(y— 4.7)eo.3(1—/]2>
—4(y — 5.3)e"30-1)
—A(y— 5)80.3(1—%)
0

u(x, y,0) =

4(x — 0.7)e*30-
40x — 0.7)30-1)
4(x — 145)e"30-1)
0

and ov(x,y,0) = 3

if y<5, x<1.1,
ify>5, x<1.1,
if x> 1.1,
otherwise

ify<5, x<1.1,
ify>5, x<1.1,

if x > 1.1,
otherwise,

where I; = V(x —0.7)2 + (y — 47)2/0.08, I, = v/(x —0.7)2 + (y — 5.3)2/0.08, and I3 = V/(x — 1.45)2 + (y — 5)2/0.08. Other parameters
keep unchanged. The vorticities and streamlines at 7 = 0, 20, 40, and 60 are shown in the top and bottom rows in Fig. 14, respectively.
We can clearly see vortex separation. These simulations indicate that the initial vortex pairs are essential to lead to the evolution

of vortex separation.
The case involving a counter-rotating vortex is also tested. In this case, the values of /,,/,, and /; are identical to the previous

test and the initial conditions are given as follows:

u(x, y,0) = <

—4(y— 470D
—4(y— 5.3)30.3(1715)
4y— S)eos(lflg)

if y<5, x<1.1,
ify>5, x<1.1,
if x> 1.1,

0 otherwise

2

4(x — 0.7)e%301D ify<s, x<1.1,

4(x = 0.7)e"305)
2

—4(x — 1.45)*3071if x> 1.1,

0 otherwise.

and  o(x,,0) = if y>5, x<1.1,

Vorticity and streamline snapshots at = 0, 20,40, and 60 are illustrated in Fig. 15. The computational results are similar to the
case where two vortices are counter-rotating. The vorticity is smaller and the results are unstable.

13
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Fig. 15. Evolution of three rotating vortex pair with one counter-rotating vortex on a cube. Vorticity snapshots (a)-(d) and streamlines (e)-(h) are at ¢ = 0, 20,
40, and 60.

3.7. Flow past a circular cylinder

In this subsection, we investigate the flow past a circular cylinder on the surface of a cube. The cube size is (0, 1)x (0, 1)x(0, 1). To
simulate the incompressible flow in the presence of a solid obstacle, we adopt the penalty treatment approach as outlined in [38].

This involves a reformulation of the NS equations and we can effectively account for the interaction between the fluid and the
obstacle as follows:

u (X, p, 1) + u(x, y, Duy(x, y, 1) + v(x, y, Duy(x, y, 1)

= —pCe )+ e 0+ £+ P () = ute ) as)
0,06, 3, 1)+ UCE, 3, 00,5, 9, ) + D, 3, D0, 9.1)

= =, o 0,30+ 25 (o)~ w31 (19)
Uy (x,y,1) + v, (x, y,1) =0, (20)

14
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(b) (©

Fig. 16. (a) is an initial state of velocity field for the flow past a circular cylinder. (b) and (c) are 2D and 3D snapshots of flow past a circular cylinder at
t = 6, respectively.

where ¢(x,y) is an indicator function which takes the value 0 or 1 in the exterior or interior of the solid, x is a small positive
constant.

The circular solid with radius 0.1 is located at (0.25, 1.5). The velocities of the solid are u(x, y) and v,(x, y). To simulate the flow
past a fixed cylinder, we set uy(x, y) = v,(x, y) = 0. Inspired by [39], we adopt f; = 0.5v(x, y,1) as a force term which drives the fluid
flow. In numerical calculation, the last terms in Egs. (18) and (19) are implicitly treated. The initial state is shown in Fig. 16(a).
We perform simulations with 2 = 1/64, At = 0.01, k = 1e-38, and Re = 500. In Fig. 16(b) and (c), a snapshot at = 6 is plotted,
it can be observed that the small vortex appears behind the solid cylinder. By referring Fig. 17, we can observe the formation and
progression of a shedding vortex phenomenon as time progresses.

3.8. Comparison with other methodology

Fluid flow on spherical surfaces has been studied by numerous researchers over the past decades. For a comparison study,
we consider a recent study [25] in which the authors proposed a finite volume lattice Boltzmann method for fluid flow on 3D
curved surfaces. The reason for choosing the comparison between the LBM and the current method is that this study proposes a
mathematical equation and its numerical solution algorithm designed to approximate fluid flows on spherical surfaces with small
curvature embedded in a three-dimensional space. The spherical surface is approximated by a virtual cubic domain represented as a
two-dimensional domain, on which the computation can be performed more efficiently and rapidly. For example, the Earth’s surface
can be locally approximated as flat for simulations due to its large radius, which results in a small curvature. This approximation
is valid because the local deviation from a flat plane over relatively small areas is negligible compared to the scale of the Earth.
Mathematically, the curvature of a sphere with a large radius approaches zero. As a result, the error introduced by approximating
the surface as flat is negligible for many practical applications, particularly when the region of interest in the simulation is small
relative to the Earth’s overall size.

The authors in [25] used triangular meshes for spatial discretization and a fully explicit form for calculation, which improves the
efficiency of the algorithm. We compare the CPU time between the previous method and the present method. Because the previous
method and present method are solved on a spherical surface and a cubic surface, respectively, we set up a similar environment for
an unbiased comparison. The spherical flow is simulated with 2562 points, 5120 triangular faces, a radius of R = 1, 4t = 0.001, and an
initial velocity field u(x, 0) = (0.1y, —0.1x,0). The cubic flow is simulated with 24 576 points, a 1 x 1 x 1 cubic surface, a time step of
At = 0.01, and an initial velocity field defined as u(x, y,0) = 0.1(1-2|1.5— y|) for 1 < y < 2, u(x, y,0) = 0 otherwise, with v(x, y,0) = 0.
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Fig. 17. Snapshots of flow past a circular cylinder at (a) =9, (b) =15, and (¢) 1 = 18.

Both simulations are performed until the final time, 7 = 1. Fig. 18(a) and (b) illustrate the initial and computational results of the

previous method, respectively. Fig. 18(c) and (d)

display the initial and numerical results of the present method, respectively. The

CPU times for the previous method and the present proposed scheme are 122.09 and 12.41, respectively. Despite the fact that the

proposed method calculates 10 times more grid p

oints compared to the previous method, its CPU time is significantly reduced due

to the capability of using larger time steps and its superior computational efficiency.
We successfully conducted numerical experiments on virtual cubic surfaces, which serve as a good approximation of spherical

surfaces when the surface curvature is small. He

nce, there is a natural limitation when the domain size is small and the surface

curvature is large, and the approximated spherical surface has a large curvature.

4. Conclusion

In conclusion, this study has successfully introduced a numerical method for simulating incompressible fluid flows on a cubic

surface. By omitting the influence of gravitationa

1 force, we have achieved the elimination of its impact on the system. As a result,
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(a)

Fig. 18. Snapshot images of the simulations. (a) Initial condition of the previous method, (b) result at ¢+ = 1 for the previous method, (c) initial condition of
the proposed method, and (d) result at =1 for the proposed method.

the dynamics of the fluid flow can be accurately characterized as primarily two-dimensional and confined to a specific plane. The
combination of a projection method and an FDM has proven effective in numerically solving the governing equation that describes
the fluid flow on the cubic surface. This innovative approach contributes to the field by providing a robust numerical framework for
analyzing and understanding incompressible fluid flows on cubic surfaces. The findings from this study have significant implications
for various applications such as engineering design, medical devices, and animation. By enabling reliable simulations, this numerical
method opens doors for further advancements in these areas and contributes to a deeper understanding of fluid dynamics in complex
systems. For future research, we will extend the current algorithm to investigate multiphase flows on cubic surfaces by using the
Allen—-Cahn equations [40].
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