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 A B S T R A C T

A novel normalized time-fractional Korteweg–de Vries (KdV) equation is presented to investigate the effects of 
fractional time derivatives on nonlinear wave dynamics. The classical KdV model is extended by incorporating 
a fractional-order derivative, which captures memory and inherited properties in the evolution of soliton-
like structures. Computational studies of the equation’s nonlinear dynamics use a numerical scheme designed 
for the fractional temporal dimension. Simulations show that as the fractional parameter 𝛼 decreases from 1 
(the classical case) to smaller values, soliton dynamics change significantly. The soliton amplitude decreases, 
and its width increases. These changes are interpreted as dispersive or dissipative effects introduced by the 
fractional time component. At lower values of 𝛼, the soliton becomes broader and flatter, and its propagation is 
slowed. At intermediate values of 𝛼, multiple peaks and broader waveforms are observed, which implies more 
complex nonlinear interactions under fractional time evolution. The importance of fractional time derivatives 
in modifying the behavior of soliton solutions is highlighted, which demonstrates their potential in modeling 
physical systems where memory effects play a crucial role. The computational results provide insights into 
fractional partial differential equations and create new opportunities for future research in nonlinear wave 
propagation under fractional dynamics.
1. Introduction

The standard Korteweg–de Vries (KdV) equation has been applied 
to model nonlinear wave phenomena such as tsunamis, tidal waves, 
and internal ocean waves, where the wave height is relatively small 
compared to its wavelength [1–3]. These waves, known as solitons, 
can travel over long distances with minimal energy loss, maintain 
their shape, and move at constant speed [4]. The KdV equation has 
broad applications in atmospheric and oceanic wave theory [5], plasma 
physics [6], traffic flow [7,8], and biological systems. To account for 
effects such as anomalous dispersion or memory, the fractional KdV 
equation is often utilized [9,10].

Numerous studies have been conducted by modifying the standard 
KdV equation. For instance, Thamilmaran et al. [11] investigated rare 
phenomena in a damped KdV autonomous system using numerical sim-
ulations and experimental methods. Derakhshan and Aminataei [12] 
calculated the solution of the distributed-order time-fractional forced 
KdV equation using the Tau scheme. Similarly, Rehman et al. [13] mod-
ified the standard KdV equation using a space–time-fractional order 
and obtained soliton solutions through the Sardar-subequation method. 
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Wang and Liu [14] developed an energy balance method in combina-
tion with the Sardar-subequation method to compute solutions of the 
nonlinear KdV equation for deep-water surface waves. These solutions 
included various wave forms, such as bright solitary waves, dark soli-
tary waves, singular periodic waves, and perfect periodic waves. These 
solutions were represented using generalized hyperbolic functions, gen-
eralized trigonometric functions, and the cosine function. Ali et al. [15] 
applied the (𝐺′∕𝐺)-expansion method to find traveling wave solutions 
of the space–time-fractional order KdV equation. Uddin et al. [16] 
investigated analytical soliton solutions of the space–time-fractional 
modified KdV equation using the generalized (𝐺′∕𝐺)-expansion tech-
nique. Through the proposed method, diverse soliton solutions such 
as kink, periodic, and singular-kink types, were obtained. Liu and 
Zhang [17] calculated exact solutions of the nonlinear KdV model 
using an updated (𝐺′∕𝐺)-expansion technique with space–time local 
fractional derivatives and found various forms of wave solutions such as 
dark soliton, explicit traveling wave, soliton, soliton-like, and periodic 
solutions. Moreover, Yousif et al. [9] used the conformable-Caputo 
fractional non-polynomial spline scheme to solve the time-fractional 
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KdV equation and proved the stability of the method using the von 
Neumann method. Prakash et al. [18] proposed a modified He–Laplace 
method to solve nonlinear fractional equations in fields such as wave 
phenomena and nanotechnology. The method combines homotopy per-
turbation and Laplace transforms, which offers accurate, efficient, and 
simple solutions for various nonlinear equations. Yokuş [19] inves-
tigated exact wave solutions for the nonlinear KdV equation using 
the (1∕𝐺′)-expansion technique. The results showed that, through an 
indexing technique, the computational solutions of the nonlinear time-
fractional KdV equation closely approximated the analytic solution. 
Furthermore, von Neumann stability analysis was conducted for the 
applied method.

Similarly, Ameen et al. [20] extended the KdV equation using 
conformable fractional derivative and produced soliton waves with 
the software package Maple. Additionally, Sherriffe and Behera [21] 
found analytical traveling wave solutions in the form of solitons for 
a non-linear fifth-order time-fractional KdV equation using the sine–
cosine method. Meanwhile, Li et al. [22] used an 𝛼-robust high-order 
computational algorithm to solve the time-fractional nonlinear KdV 
equation using the L1 formula based discretization technique on graded 
grids. The presented approach demonstrated the adaptability of frac-
tional derivatives in capturing complex wave phenomena in applied 
physics and engineering. Aljohani [23] studied the fourth-order KdV–
Klein/Gordon equation using Lie symmetries and conservation laws. 
Symmetry-based reduction techniques were applied to simplify the 
equation and derive conserved quantities, and numerical methods were 
used when analytical solutions were unattainable to emphasize the 
role of symmetries in complex wave phenomena. Khan et al. [24] 
investigated the nonlinear time-fractional KdV and modified KdV equa-
tions. They used an innovative approach called the Aboodh trans-
form decomposition technique. Their findings revealed that the solitary 
wave solution for the time-fractional modified KdV model exhibits 
less stability against oscillations compared to the time-fractional KdV 
solution. To study the behavior of specific waves in nonlinear systems 
Hosseini et al. [25] used the Generalized Hirota Bilinear equation. 
Furthermore, in another study analyzing the long-wave behavior in 
shallow water, Hosseini et al. [26] used the three-dimensional KdV 
equation. The authors used the simplified Hirota method to retrieve 
multi-soliton waves. To analyze the behavior of water waves with 
long wavelengths, Umar et al. [27] investigated the two-dimensional 
generalized Kadomtsev–Petviashvili equation. By using the modified 
Hirota method, they derived single-, double-, and triple-soliton wave 
solutions after verifying the equation’s integrability and satisfying the 
three-soliton condition.

Various disciplines are also incorporating fractal fractional deriva-
tives into their research. For instance, Farman et al. [28] developed 
a fractional-order model based on an ABC-fractional-order dynamical 
system to analyze the effects of human-induced forest fires and explore 
sustainable forest resource management using a nonlinear mathemat-
ical framework. To track insulin and glucose levels in individuals 
experiencing stress, excitement, or trauma, Nisar et al. [29] intro-
duced a novel fractional-order diabetes mellitus model. Additionally, 
a system of fractional differential equations was solved in [30] using 
a fractal fractional operator with a Mittag-Leffler-type kernel, which 
incorporates both fractal and fractional orders. Furthermore, Gokbulut 
et al. [31] proposed a nonlinear deterministic model to investigate 
the dynamics of Methicillin-resistant Staphylococcus aureus. Addition-
ally, to solve time-fractional nonlinear porous medium equations Chew 
et al. [32] used the fractional Newton explicit group method. To study 
the transmission dynamics of the Nipah virus, Baleanu et al. [33] 
proposed a Caputo-type fractional model in which they studied the 
boundedness of the solution using the generalized fractional mean 
value theorem. However, the stability of the system was checked 
using the fractional Routh–Hurwitz criterion and LaSalle’s invariance 
principle. To study the dynamics of the motion of an accelerated mass–
spring system Defterli et al. [34] utilized a non-integer Euler–Lagrange 
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model. Additionally, to analyze the tumor-immune surveillance mech-
anism, Baleanu et al. [35] presented a system of fractional differential 
equations and solved it using a numerical technique.

Nevertheless, when we investigate the effects of the order param-
eter 𝛼, it is challenging to make fair comparisons at the same time 
points, since the Caputo fractional derivative is not normalized in time. 
Therefore, the main purpose and novelty of this study are to intro-
duce a normalized time-fractional derivative for the KdV equation. Lee 
et al. [36] presented a normalized time-fractional diffusion equation, 
which we extend to the KdV equation to explore the effects of 𝛼. We 
consider a new normalized time-fractional KdV equation: 
𝜕𝛼𝑢
𝜕𝑡𝛼

(𝑥, 𝑡) = −6𝑢(𝑥, 𝑡) 𝜕𝑢
𝜕𝑥

(𝑥, 𝑡) − 𝜕3𝑢
𝜕𝑥3

(𝑥, 𝑡), (1)

where the normalized time-fractional derivative is given as follows: 
𝜕𝛼𝑢
𝜕𝑡𝛼

(𝑥, 𝑡) = 1 − 𝛼
𝑡1−𝛼 ∫

𝑡

0

𝜕𝑢(𝑥, 𝑠)
𝜕𝑠

𝑑𝑠
(𝑡 − 𝑠)𝛼

, 0 < 𝛼 < 1. (2)

Let 
𝑤𝑡

𝛼(𝑠) =
1 − 𝛼

𝑡1−𝛼(𝑡 − 𝑠)𝛼
(3)

be a weight function. It is straightforward to verify that 𝑊𝛼(𝑡) =
∫ 𝑡
0 𝑤𝑡

𝛼(𝑠)𝑑𝑠 = 1. Additional information regarding this weight func-
tion is available in [36]. Lazopoulos also derived Eq. (2), the 𝐿-
fractional derivative, using a different approach, which has a significant 
geometrical interpretation, as discussed in [37,38].

The rest of this paper is organized as follows. Section 2 provides the 
numerical solution algorithm. Section 3 presents several computational 
tests, and Section 4 gives the conclusion. We provide the MATLAB code 
in the Appendix for interested readers.

2. Computational solution

We discretize the new normalized time-fractional KdV equation. 
Let 𝛺 = [𝐿𝑥, 𝑅𝑥]. Let us define 𝑢𝑛𝑖 = 𝑢

(

𝐿𝑥 + (𝑖 − 1)ℎ, 𝑡𝑛
)

, where 
ℎ = (𝑅𝑥 − 𝐿𝑥)∕(𝑁𝑥 − 1) and 𝑡𝑛 = (𝑛 − 1)𝛥𝑡, as shown in Fig.  1.

We discretize Eq. (2) as
𝜕𝛼𝑢(𝑥𝑖, 𝑡𝑛+1)

𝜕𝑡𝛼
= 1 − 𝛼

𝑡1−𝛼𝑛+1

𝑛
∑

𝑞=1
∫

𝑡𝑞+1

𝑡𝑞

𝜕𝑢(𝑥𝑖, 𝑠)
𝜕𝑠

𝑑𝑠
(𝑡𝑛+1 − 𝑠)𝛼

≈
𝑛
∑

𝑞=1

1 − 𝛼
𝑡1−𝛼𝑛+1

∫

𝑡𝑞+1

𝑡𝑞

𝑑𝑠
(𝑡𝑛+1 − 𝑠)𝛼

𝑢𝑞+1𝑖 − 𝑢𝑞𝑖
𝛥𝑡

=
𝑛
∑

𝑞=1

(𝑛 + 1 − 𝑞)1−𝛼 − (𝑛 − 𝑞)1−𝛼

𝑛1−𝛼
𝑢𝑞+1𝑖 − 𝑢𝑞𝑖

𝛥𝑡
=

𝑛
∑

𝑞=1
𝑤𝑛

𝑞
𝑢𝑞+1𝑖 − 𝑢𝑞𝑖

𝛥𝑡
, (4)

where 𝑤𝑛
𝑞 =

[

(𝑛 + 1 − 𝑞)1−𝛼 − (𝑛 − 𝑞)1−𝛼
]

∕𝑛1−𝛼 and ∑𝑛
𝑞=1 𝑤

𝑛
𝑞 = 1. Using 

Eq. (4), we obtain 
𝑛
∑

𝑞=1
𝑤𝑛

𝑞
𝑢𝑞+1𝑖 − 𝑢𝑞𝑖

𝛥𝑡
= −6𝑢𝑛𝑖

𝑢𝑛+1𝑖+1 − 𝑢𝑛+1𝑖−1
2ℎ

−
−𝑢𝑛+1𝑖−2 + 2𝑢𝑛+1𝑖−1 − 2𝑢𝑛+1𝑖+1 + 𝑢𝑛+1𝑖+2

2ℎ3
, (5)

where we have used a finite difference method (FDM) [39]. Eq. (5) can 
be reformulated as follows: for 𝑖 = 3,… , 𝑁𝑥 − 2,

− 1
2ℎ3

𝑢𝑛+1𝑖−2 +
(

1
ℎ3

−
3𝑢𝑛𝑖
ℎ

)

𝑢𝑛+1𝑖−1 +
𝑤𝑛

𝑛
𝛥𝑡

𝑢𝑛+1𝑖 −
(

1
ℎ3

−
3𝑢𝑛𝑖
ℎ

)

𝑢𝑛+1𝑖+1 + 1
2ℎ3

𝑢𝑛+1𝑖+2

=
𝑤𝑛

𝑛
𝛥𝑡

𝑢𝑛𝑖 −
𝑛−1
∑

𝑞=1
𝑤𝑛

𝑞
𝑢𝑞+1𝑖 − 𝑢𝑞𝑖

𝛥𝑡
. (6)

We consider zero Dirichlet boundary conditions for simplicity of expo-
sition: 
𝑢𝑛1 = 0, 𝑢𝑛2 = 0.5𝑢𝑛3, 𝑢

𝑛
𝑁𝑥

= 0,  and 𝑢𝑛𝑁𝑥−1
= 0.5𝑢𝑛𝑁𝑥−2

. (7)

Eq. (6) can be written as
𝐴𝐮𝑛+1 = 𝐟 ,

where the parameters are given in Box  I. 
Eq. (6) can be solved using an efficient solver [40]. We may also 

apply a spectral method to solve the diffusion term [41].
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Fig. 1. Discrete computational domain.
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 with 𝐹 𝑛
𝑖 =

𝑛−1
∑

𝑝=1
𝑤𝑛

𝑝
𝑢𝑝+1𝑖 − 𝑢𝑝𝑖

𝛥𝑡
.

Box I. 
Table 1
The spatial convergence errors and ratios.
 ℎ 0.8 0.4 0.2  
 Error 5.0215e−3 1.0097e−3 2.4096e−4 
 Ratio 2.3141 2.0671  

3. Numerical experiments

We investigate the convergence of the numerical method. The initial 
condition is given on 𝛺 = [0, 20] as

𝑢(𝑥, 0) = 1
2
sech2

(𝑥 − 8
2

)

.

The parameters used for the spatial convergence test are 𝛥𝑡 = 5.e-5, 
𝛼 = 0.1, and 𝑇 = 1. Table  1 presents the detailed values of spatial 
errors and the convergence rate. The error for ℎ is defined as follows:

Error =

√

√

√

√
1
𝑁𝑥

𝑁𝑥
∑

𝑖=1

(

𝑢𝑖 − 𝑢ref𝑚(𝑖−1)+1

)2
,

where 𝑢ref is the reference solution and 𝑚 is the ratio ℎ∕ℎref, where 
ℎref denotes the grid step size for the reference solution. To obtain the 
reference solution, we use ℎref = 0.05.

The temporal error and convergence rate are also investigated. The 
parameters used are the same as in the previous test. Here, ℎ = 0.2
is fixed, and the reference solution is obtained using a time step size 
𝛥𝑡ref = 1.e-4. The error for 𝛥𝑡 is defined as follows:

Error =

√

√

√

√
1
𝑁𝑥

𝑁𝑥
∑

𝑖=1

(

𝑢𝑖 − 𝑢ref𝑖
)2,

Table  2 presents the convergence error values and convergence rate 
obtained as 𝛥𝑡 decreases. As a result, we confirm that the numerical 
scheme is first-order in time and second-order in space.
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Table 2
The temporal convergence errors and ratios.
 𝛥𝑡 1.6e−3 8.e-4 4.e-4  
 Error 5.6477e−5 2.6344e−5 1.1288e−5 
 Ratio 1.1002 1.2227  

We impose the following initial condition on 𝛺 = [0, 20]: 

𝑢(𝑥, 0) = 1
2
sech2

(𝑥 − 8
2

)

. (8)

Then, the exact solution with 𝛼 = 1 is 

𝑢(𝑥, 𝑡) = 1
2
sech2

(𝑥 − 8 − 𝑡
2

)

. (9)

We use (𝑁𝑥, 𝑁𝑡) = (101, 4000). Fig.  2 shows the numerical results 
for the normalized time-fractional KdV equation at time 𝑡 = 4, with 
varying values of the fractional parameter 𝛼. Each subplot (a), (b), (c), 
and (d) shows the solution for a different 𝛼 value with the same initial 
condition, which controls the degree of time-fractionality in the system. 
Fig.  2(a) represents the classical KdV equation, 𝛼 = 1. The blue curve 
shows the soliton structure after nonlinear interactions, while the red 
curve represents the initial condition. When 𝛼 = 0.9, the height of 
the soliton decreases, and the shape becomes slightly altered, which 
indicates the influence of fractional time on the system’s evolution as 
shown in Fig.  2(b). At 𝛼 = 0.5, the waveform becomes broader and 
the peak height further decreases, which suggests that as 𝛼 decreases, 
the intensity of the soliton diminishes as displayed in Fig.  2(c). For 
𝛼 = 0.1, the soliton is much weaker, with a significantly reduced peak 
height and a broader base, and shows the pronounced effect of a highly 
fractional time parameter on the system, as observed in Fig.  2(d).

Next, we impose the following initial condition on 𝛺 = [0, 30]: 

𝑢(𝑥, 0) = 6 sech2 𝑥 − 7 . (10)
( )
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Fig. 2. (a), (b), (c), and (d) are the numerical solutions at time 𝑡 = 4 with 𝛼 = 1, 𝛼 = 0.9, 𝛼 = 0.5, and 𝛼 = 0.1, respectively. Here, (𝑁𝑥 , 𝑁𝑡) = (101, 4000) is used.
Then, the exact solution with 𝛼 = 1 is as follows: 

𝑢(𝑥, 𝑡) = 12
3 + 4 cosh(2(𝑥 − 7) − 8𝑡) + cosh(4(𝑥 − 7) − 64𝑡)
[3 cosh(𝑥 − 7 − 28𝑡) + cosh(3(𝑥 − 7) − 36𝑡)]2

. (11)

Fig.  3 displays the numerical results for the normalized time-
fractional KdV equation at time 𝑡 = 1, with varying values of 𝛼. The 
subplots (a), (b), (c), and (d) correspond to different 𝛼 values, ranging 
from 𝛼 = 1 to 𝛼 = 0.1, and show how the soliton evolves with the 
fractional parameter. The red dotted line shows the initial condition, 
and the blue line displays the numerical solution at 𝑡 = 1. In Fig.  3(a), 
for 𝛼 = 1, which is the classical KdV case, the solution consists of a 
smooth soliton with a small peak near 𝑥 = 10 and a sharp soliton with 
a high peak near 𝑥 = 22. The soliton structure is well-preserved, which 
indicates strong nonlinearity and coherence of the wave over time. In 
Fig.  3(b), for 𝛼 = 0.95, the soliton begins to broaden, and multiple 
peaks appear in the regions near 𝑥 = 7, 12, 17. This indicates a slight 
change in the soliton’s behavior due to the fractional parameter. In Fig. 
3(c), for 𝛼 = 0.9, the waveform further broadens, and shows multiple 
small peaks. The main soliton peak at 𝑥 = 16 is lower compared to the 
previous cases, which reflects the increasing influence of the fractional 
time parameter and it tends to spread the energy over a wider region. 
In Fig.  3(d), when 𝛼 = 0.1, the solution is significantly dampened, with 
86 
the main soliton peak drastically reduced in height and shifted closer 
to 𝑥 = 8. The overall structure is much flatter, which indicates strong 
dissipative and memory effects from the small fractional parameter. 
As 𝛼 decreases, the soliton disperses more and loses both height and 
coherence. This behavior indicates that the fractional time parameter 
induces dispersive or dissipative effects, particularly as 𝛼 decreases, 
which causes the soliton propagation to slow down and its amplitude 
to decrease due to memory effects.

4. Conclusions

This study introduced a normalized time-fractional KdV equation to 
investigate the effects of fractional time derivatives on nonlinear wave 
dynamics. Through computational analysis, we demonstrated that as 
the fractional parameter 𝛼 decreases, soliton amplitude diminishes, and 
the waveform broadens, which indicates the presence of dispersive or 
dissipative effects. For smaller values of 𝛼, solitons evolve into broader, 
flatter structures, which reflects the influence of fractional dynamics 
on wave propagation and coherence. These results highlight the signif-
icance of fractional time derivatives in altering soliton behavior and 
demonstrate their potential for modeling systems with inherent mem-
ory effects. By adopting a normalized time-fractional derivative, we 
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Fig. 3. (a), (b), (c), and (d) are the numerical solutions at time 𝑡 = 1 with 𝛼 = 1, 𝛼 = 0.95, 𝛼 = 0.9, and 𝛼 = 0.1, respectively. Here, (𝑁𝑥 , 𝑁𝑡) = (301, 10000) is used.
enabled a fair comparison of the effects of different fractional orders. 
Future research could explore various directions, including examining 
soliton interactions for different fractional orders, incorporating alter-
native fractional derivatives such as Caputo or Riesz derivatives, and 
extending the model to triangular grids [42] and higher-dimensional 
spaces, including two- and three-dimensional domains, to analyze more 
complex wave phenomena. Furthermore, applying this model to real-
world systems such as water waves or plasmas may provide practical 
insights into how fractional dynamics influence physical systems with 
memory effects.
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Appendix

Listing 1: KdV code
c l ea r ; c l f ; Nx=101; x=l in space (0 ,20 ,Nx ) ; h=x(2)−x ( 1 ) ;
T=4; dt=0.025∗h ^ 2 ; Nt=round (T/dt ) ; dt=T/Nt ;
fo r i =1:Nx

a ( i )=−1.0/(2.0∗h ^ 3 ) ; e ( i )=1.0/(2.0∗h ^ 3 ) ;
end
u ( : ,1 )=0.5∗ ( sech (0 .5∗ ( x−8) ) ) . ^ 2 ;
f l a g =1; % f l a g =1, alpha=1, f l a g =2, 0<alpha<1
alphase t=[1 0.9 0.5 0 . 1 ] ;
f o r k=1:4

alp=alphase t ( k ) ;
i f a lp==1

f l a g =1;
e l s e

f l a g =2;
end
fo r m=1:Nt

w(m)=1;
i f f l a g==2

fo r q = 1:m
w(q) = ( (m+1−q)^(1− alp )−(m−q)^(1− alp ) ) /m^(1−alp ) ;

end
F = zeros (Nx , 1 ) ;
i f m > 1

fo r q = 1:m−1
F = F+w(q)∗(u ( : , q+1)−u ( : , q ) ) / dt ;

end
end

end
fo r i =1:Nx

b( i )=1.0/h^3−3∗u( i ,m)/h ; c ( i )=w(m)/ dt ;
d ( i )=−1.0/h^3+3∗u( i ,m)/h ;

end
c (3)=c (3)+0.5∗b ( 3 ) ; b(4)=b(4)+0.5∗a ( 4 ) ;
c (Nx−2)=c (Nx−2)+0.5∗d(Nx−2); d (Nx−3)=d(Nx−3)+0.5∗e (Nx−3);
f = w(m)/ dt∗u ( : ,m) ;
i f f l a g==2

f=f−F ;
end
u (3 :Nx−2,m+1)=thomas_penta ( a (3 :Nx−2), b (3 :Nx−2), . . .

c ( 3 :Nx−2), d (3 :Nx−2), e (3 :Nx−2), f ( 3 :Nx−2));
u (2 ,m+1)=0.5∗u(3 ,m+1); u(Nx−1,m+1)=0.5∗u(Nx−2,m+1);
i f mod(m,500)==0
c l f ; p lo t ( x , u ( : , 1 ) , ’ r − ’ ) ; hold on ; p lo t ( x , u ( : ,m+1) , ’b− ’ ) ;
g r id on ; ax i s ( [ x (1) x ( end ) −0.1 0 . 6 ] ) ; pause (0 .01)
end

end
uu{k}=u ( : , Nt+1);

end
fo r k=1:4
f i gu r e ( k ) ; c l f ; p lo t ( x , u ( : , 1 ) , ’ r : ’ , ’ LineWidth ’ , 1 . 5 ) ; hold on
p lo t ( x , uu{k } , ’ b− ’ , ’ LineWidth ’ , 1 . 5 )
ax i s ( [ x (1) x ( end ) −0.05 0 . 6 ] ) ; box on ; gr id on
x labe l ( ’ x ’ ) ; y l abe l ( ’ u ’ )
end
funct ion x = thomas_penta ( a , b , c , d , e , f )
88 
so lve Ax=bb
[ c d e
b c d e
a b c d e [x]=[ f ]
0 a b c d e . . .
. . . ]

x = length ( c ) ; x=zeros (1 ,Nx ) ;
f o r i =2:Nx−1

xmult=b( i )/ c ( i −1); c ( i )=c ( i )−xmult∗d( i −1);
d ( i )=d( i )−xmult∗e ( i −1); f ( i )= f ( i )−xmult∗ f ( i −1);
xmult=a ( i +1)/c ( i −1); b ( i+1)=b( i+1)−xmult∗d( i −1);
c ( i+1)=c ( i+1)−xmult∗e ( i −1); f ( i +1)= f ( i+1)−xmult∗ f ( i −1);

end
xmult=b(Nx)/ c (Nx−1); c (Nx)=c (Nx)−xmult∗d(Nx−1);
x (Nx)=( f (Nx)−xmult∗ f (Nx−1))/c (Nx ) ;
x (Nx−1)=( f (Nx−1)−d(Nx−1)∗x (Nx) ) / c (Nx−1);
fo r i=Nx−2:−1:1

x ( i )=( f ( i )−e ( i )∗x ( i+2)−d( i )∗x ( i +1))/ c ( i ) ;
end
end
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