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A B S T R A C T

We propose the Allen–Cahn (AC) equation with a space-dependent mobility and a source term for general
motion by mean curvature. Using the space-dependent mobility, we can control the temporal evolution
dynamics. Furthermore, by using the source term, we can control the growth and shrinkage of the interfaces.
To efficiently solve the governing equation, we use an operator splitting method that splits the main equation
into the modified AC equation and the source term equation. The modified AC model is numerically computed
using a fully explicit Euler method, and the source term equation is solved analytically. The overall numerical
schemes preserve the maximum principle if the time step size satisfies a certain condition. To show the
performance of the proposed mathematical model and its corresponding numerical scheme, we conduct
several computational experiments. The numerical results confirm the efficiency and robust performance of
the proposed model and its numerical algorithm, rendering the proposed model as a versatile tool for a wide
range of applications.
1. Introduction

In this paper, we propose the Allen–Cahn (AC) equation with a
space-dependent mobility and a source term for general motion by
mean curvature:

𝜕𝜙(𝐱, 𝑡)
𝜕𝑡

= 𝑀(𝐱)
(

−
𝐹 ′(𝜙(𝐱, 𝑡))

𝜖2
+ 𝛥𝜙(𝐱, 𝑡) − 𝜆|∇𝜙(𝐱, 𝑡)|

)

, 𝐱 ∈ 𝛺, 𝑡 > 0,

(1)

where 𝜙(𝐱, 𝑡) is a phase-field at space point 𝐱 and time 𝑡, 𝛺 is the
domain, 𝑀(𝐱) is the space-dependent mobility, 𝐹 (𝜙) = 0.25(𝜙2 − 1)2,
𝜖 is the interfacial transition parameter, and 𝜆 is a growth or decay
parameter. In this study, we use the homogeneous Neumann boundary
condition for simplicity. We can also use Dirichlet and periodic bound-
ary conditions without any difficulties. If 𝑀(𝐱) = 𝑀0 is a constant and
𝜆 = 0, then Eq. (1) reduces to the classical AC equation as follows:

𝜕𝜙(𝐱, 𝑡)
𝜕𝑡

= −
𝐹 ′(𝜙(𝐱, 𝑡))

𝜖2
+ 𝛥𝜙(𝐱, 𝑡), 𝐱 ∈ 𝛺, 𝑡 > 0, (2)

which models the dynamics of anti-phase domain coarsening in crys-
talline solids [1,2]. The AC model can be derived from the following
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functional:

(𝜙) = ∫𝛺

(

𝐹 (𝜙(𝐱, 𝑡))
𝜖2

+ 1
2
|∇𝜙(𝐱, 𝑡)|2

)

𝑑𝐱. (3)

The source term 𝜆|∇𝜙(𝐱, 𝑡)| appears as a ice melting term [3]. Wang
et al. demonstrated the conditions for the interface between ice and
liquid, i.e. the zero level set of the phase-field to move toward the area
of low temperature. 𝐹 (𝜙(𝐱, 𝑡)) = 0.5𝜖2|∇𝜙(𝐱, 𝑡)|2 satisfies the desired
condition. Next, the space dependent mobility 𝑀(𝐱) plays an important
role in the governing equation. Throughout the space dependent mo-
bility, we can significantly control the diffusion across different regions
in the computational domain. The mobility can lower the long-range
diffusion in particular regions. However, up to authors’ knowledge,
there has been no reported study concerned with the space dependent
mobility in AC equation. Other studies using a mobility term tend to use
concentration dependent, periodic and constant mobility terms [4–7].
Therefore, the use of the space dependent mobility and the source term
is the main strength of our study.

Furthermore, it is well known that the conventional AC equation
is closely related to the evolution driven by the motion by mean
curvature, which describes how interfaces evolve over time to minimize
their curvature [8].
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The AC equation has been used for modeling many important
applications. For instance, Qiao and Zhang [9] proposed a novel edge
detection method of the grayscale image using the AC equation and a
nonlocal edge detection operator. Wang et al. [10] proposed a linear en-
ergy stable and maximum principle preserving semi-implicit numerical
method for the AC equation and proved its properties. Hötzer et al. [11]
measured the performance of PACE3D using the sweep for the phase-
field equation based on the AC equation. Feng et al. [12] proposed
a new linear second-order finite difference method (FDM) for the AC
equations using a modified Leap-Frog FDM. Zhang et al. [13] pro-
posed and analyzed a family of up to third-order maximum-principle-
preserving schemes for solving the AC equation using the stabilization
technique and fixed-point-preserving improvement of the integrating
factor method. Sitompul et al. [14] developed an ordered active pa-
rameter tracking method for simulations of multiple phases based of the
AC equation. Hou et al. [15] proposed a novel second-order maximum-
principle preserving FDM for AC equations with periodic boundary con-
ditions. Tan and Zhang [16] presented a new FDM for solving the AC
equations which preserve the discrete maximum principle and energy
stability by combining the second-order FDM and the Crank–Nicolson
(CN) scheme. Bo et al. [17] studied the discrete maximum principle
and energy stability of the compact FDM for the 2D AC equation. Wang
et al. [18] studied the Hurst exponent 𝐻(2) during the phase separation
evolution of the conservative AC equation. Gao et al. [19] proposed the
second-order FDM and the Runge–Kutta method for numerically solving
the nonlocal AC equation. Yang et al. [20] developed fourth-order
unconditionally maximum-principle preserving finite element methods
for both the local and nonlocal AC equations.

Phase field models with constant and nonconstant mobility is pop-
ular subject that is gathering attention. Shen et al. [4] studied the AC
equation with degenerating mobility. Stability analysis and time step
restrictions for various numerical methods are introduced in the study.
The stochastic AC equation with mobility term is introduced by Bertini
et al. [5], where the authors proved the existence and uniqueness of
the solution. Morfe [6] studied the sharp interface limit for the AC
equation with periodic mobility to prove that the large-scale behavior
of interfaces are determined by mobility and mean curvature flow.
While Morfe studied the AC equation, sharp interface limit for the
Cahn–Hilliard equation mobility is studied by Lee et al. [7]. See [21–
24] for studies concerning Cahn–Hilliard equation with the mobility
term.

As described in the references above, it is very important for the
numerical schemes of the AC equation to have the maximum principle
because it is one of the key properties of the equation. In this study,
we propose the AC equation with a space-dependent mobility and a
source term for general motion by mean curvature. Furthermore, we
present a numerical method that preserves the maximum principle for
this modified AC equation.

The structure of the paper is outlined as follows. In Section 2,
numerical solution algorithm is presented. In Section 3, computational
experiments are given. In Section 4, conclusions are drawn.

2. Numerical solution algorithm

To numerically solve Eq. (1), we use the operator splitting method.
We first rewrite Eq. (1) as an equivalent form:

𝜕𝜙(𝐱, 𝑡)
𝜕𝑡

= 𝑀(𝐱)
(

−
𝐹 ′(𝜙(𝐱, 𝑡))

𝜖2
+ 𝛥𝜙(𝐱, 𝑡) − 𝜆

√

2𝜖
(1 − 𝜙2(𝐱, 𝑡))

)

, (4)

where we have used 𝐹 (𝜙(𝐱, 𝑡)) = 0.5𝜖2|∇𝜙(𝐱, 𝑡)|2, which holds when the
interfacial transition layer is locally equilibrated. The term 𝜆|∇𝜙(𝐱, 𝑡)|
is a source term which effectively moves the interface by adding or
subtracting concentration. Let us consider an one-dimensional case
with constant mobility and without the source term for simplicity of
exposition, i.e.,
𝜕𝜙(𝑥, 𝑡)

= −
𝐹 ′(𝜙(𝑥, 𝑡))

+ 𝜙 (𝑥, 𝑡). (5)
2

𝜕𝑡 𝜖2 𝑥𝑥
If Eq. (5) is in equilibrium state, then
𝐹 ′(𝜙(𝑥, 𝑡))

𝜖2
= 𝜙𝑥𝑥(𝑥, 𝑡). (6)

By multiply 𝜙𝑥(𝑥, 𝑡) to both the terms in Eq. (6) and taking indefinite
integration, we have

∫ 𝜙𝑥(𝑥, 𝑡)
𝐹 ′(𝜙(𝑥, 𝑡))

𝜖2
𝑑𝑥 = ∫ 𝜙𝑥(𝑥, 𝑡)𝜙𝑥𝑥(𝑥, 𝑡)𝑑𝑥. (7)

⇒
𝐹 (𝜙(𝑥, 𝑡))

𝜖2
= 1

2
(𝜙𝑥(𝑥, 𝑡))2 + 𝐶, (8)

here 𝐶 is some constant. If we assume that 𝜙(𝑥, 𝑡) = ±1 as 𝑥 → ∞,
e have 𝐶 = 0. Therefore, we have 𝐹 (𝜙(𝑥, 𝑡)) = 0.5𝜖2(𝜙𝑥(𝑥, 𝑡))2. Now,
sing this condition, we can rewrite the source term in Eq. (1) as an
quivalent form:

|∇𝜙(𝐱, 𝑡)| = 𝜆
√

𝐹 (𝜙(𝐱, 𝑡))
0.5𝜖2

= 𝜆

√

0.25(𝜙2(𝐱, 𝑡) − 1)2

0.5𝜖2
= 𝜆

√

2𝜖
(1 − 𝜙2(𝐱, 𝑡)).

The operator splitting method is one of the standard method for
olving original and modified AC equations [25–29]. We formally split
q. (4) into two equations as follows:

𝜕𝜙(𝐱, 𝑡)
𝜕𝑡

= 𝑀(𝐱)
(

−
𝐹 ′(𝜙(𝐱, 𝑡))

𝜖2
+ 𝛥𝜙(𝐱, 𝑡)

)

, (9)

𝜕𝜙(𝐱, 𝑡)
𝜕𝑡

= −
𝜆𝑀(𝐱)
√

2𝜖
(1 − 𝜙2(𝐱, 𝑡)). (10)

2.1. Numerical scheme

Let 𝛺 = (𝐿𝑥, 𝑅𝑥) × (𝐿𝑦, 𝑅𝑦) be a two-dimensional domain and
𝛺ℎ = {(𝑥𝑖, 𝑦𝑗 )|𝑥𝑖 = 𝐿𝑥 + (𝑖 − 0.5)ℎ, 𝑦𝑗 = 𝐿𝑦 + (𝑗 − 0.5)ℎ, 1 ≤ 𝑖 ≤
𝑁𝑥, 1 ≤ 𝑗 ≤ 𝑁𝑦} be its discrete domain, where 𝑁𝑥 and 𝑁𝑦 are integers
and ℎ = (𝑅𝑥 − 𝐿𝑥)∕𝑁𝑥 is the grid size. For simplicity of notation, let
𝑀𝑖𝑗 = 𝑀(𝑥𝑖, 𝑦𝑗 ) and 𝜙𝑛

𝑖𝑗 = 𝜙(𝑥𝑖, 𝑦𝑗 , 𝑛𝛥𝑡), where 𝛥𝑡 is the time step. Let
us define the maximum norm as follows:

‖𝜙𝑛
‖∞ = max

1≤𝑖≤𝑁𝑥 , 1≤𝑗≤𝑁𝑦
|𝜙𝑛

𝑖𝑗 |. (11)

We solve Eq. (9) using a finite difference method with a fully explicit
Euler method:
𝜙∗
𝑖𝑗 − 𝜙𝑛

𝑖𝑗

𝛥𝑡
= 𝑀𝑖𝑗

(

−
𝐹 ′(𝜙𝑛

𝑖𝑗 )

𝜖2
+ 𝛥𝑑𝜙

𝑛
𝑖𝑗

)

, for 1 ≤ 𝑖 ≤ 𝑁𝑥, 1 ≤ 𝑗 ≤ 𝑁𝑦, (12)

where 𝛥𝑑𝜙𝑖𝑗 = (𝜙𝑖+1,𝑗 + 𝜙𝑖−1,𝑗 + 𝜙𝑖,𝑗+1 + 𝜙𝑖,𝑗−1 − 4𝜙𝑖𝑗 )∕ℎ2. The zero
Neumann boundary condition is implemented as follows:

𝜙𝑛
0𝑗 = 𝜙𝑛

1𝑗 , 𝜙
𝑛
𝑁𝑥+1,𝑗

= 𝜙𝑛
𝑁𝑥𝑗

, for 𝑗 = 1,… , 𝑁𝑦,

𝜙𝑛
𝑖0 = 𝜙𝑛

𝑖1, 𝜙
𝑛
𝑖,𝑁𝑦+1

= 𝜙𝑛
𝑖𝑁𝑦

, for 𝑖 = 1,… , 𝑁𝑥.

If we rewrite Eq. (12), then we have

𝜙∗
𝑖𝑗 = 𝜙𝑛

𝑖𝑗+𝛥𝑡𝑀𝑖𝑗

(

−
𝐹 ′(𝜙𝑛

𝑖𝑗 )

𝜖2
+ 𝛥𝑑𝜙

𝑛
𝑖𝑗

)

, for 1 ≤ 𝑖 ≤ 𝑁𝑥, 1 ≤ 𝑗 ≤ 𝑁𝑦. (13)

Next, because Eq. (10) is an ordinary differential equation with respect
to time variable 𝑡, we can analytically solve it using separation of
variables as follows:

𝜙𝑛+1
𝑖𝑗 =

(1 + 𝜙∗
𝑖𝑗 )𝑒

𝐴𝑖𝑗 − 1 + 𝜙∗
𝑖𝑗

(1 + 𝜙∗
𝑖𝑗 )𝑒

𝐴𝑖𝑗 + 1 − 𝜙∗
𝑖𝑗

, for 1 ≤ 𝑖 ≤ 𝑁𝑥, 1 ≤ 𝑗 ≤ 𝑁𝑦, (14)

where 𝐴𝑖𝑗 = −
√

2𝜆𝑀𝑖𝑗𝛥𝑡∕𝜖. Therefore, the computational scheme for
he two-dimensional modified AC equation consists of Eqs. (13) and
14).

The three-dimensional modified AC equation is solved in a similar
anner. Let 𝛺 = (𝐿𝑥, 𝑅𝑥) × (𝐿𝑦, 𝑅𝑦) × (𝐿𝑧, 𝑅𝑧) be a three-dimensional

domain and 𝛺ℎ = {(𝑥𝑖, 𝑦𝑗 , 𝑧𝑘)|𝑥𝑖 = 𝐿𝑥+(𝑖−0.5)ℎ, 𝑦𝑗 = 𝐿𝑦+(𝑗−0.5)ℎ, 𝑧𝑘 =

𝐿𝑧 + (𝑘 − 0.5)ℎ, 1 ≤ 𝑖 ≤ 𝑁𝑥, 1 ≤ 𝑗 ≤ 𝑁𝑦, 1 ≤ 𝑘 ≤ 𝑁𝑧} be its discrete
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domain, where 𝑁𝑥, 𝑁𝑦 and 𝑁𝑧 are integers representing the number of
rid for each axis and ℎ = (𝑅𝑥 −𝐿𝑥)∕𝑁𝑥 is the grid size. For simplicity
f notation, let 𝑀𝑖𝑗𝑘 = 𝑀(𝑥𝑖, 𝑦𝑗 , 𝑧𝑘) and 𝜙𝑛

𝑖𝑗𝑘 = 𝜙(𝑥𝑖, 𝑦𝑗 , 𝑧𝑘, 𝑛𝛥𝑡). Let us
define the maximum norm as follows:

‖𝜙𝑛
‖∞ = max

1≤𝑖≤𝑁𝑥,
1≤𝑗≤𝑁𝑦
1≤𝑘≤𝑁𝑧

|𝜙𝑛
𝑖𝑗𝑘|. (15)

We solve Eq. (9) using a finite difference method with a fully explicit
Euler method:
𝜙∗
𝑖𝑗𝑘 − 𝜙𝑛

𝑖𝑗𝑘

𝛥𝑡
= 𝑀𝑖𝑗𝑘

(

−
𝐹 ′(𝜙𝑛

𝑖𝑗𝑘)

𝜖2
+ 𝛥𝑑𝜙

𝑛
𝑖𝑗𝑘

)

, (16)

for 1 ≤ 𝑖 ≤ 𝑁𝑥, 1 ≤ 𝑗 ≤ 𝑁𝑦, 1 ≤ 𝑘 ≤ 𝑁𝑧,

here 𝛥𝑑𝜙𝑖𝑗𝑘 = (𝜙𝑖+1,𝑗𝑘 + 𝜙𝑖−1,𝑗𝑘 + 𝜙𝑖,𝑗+1,𝑘 + 𝜙𝑖,𝑗−1,𝑘 + 𝜙𝑖𝑗,𝑘+1 + 𝜙𝑖𝑗,𝑘−1 −
6𝜙𝑖𝑗𝑘)∕ℎ2. The zero Neumann boundary condition is implemented as
follows:

𝜙𝑛
0𝑗𝑘 = 𝜙𝑛

1𝑗𝑘, 𝜙
𝑛
𝑁𝑥+1,𝑗𝑘

= 𝜙𝑛
𝑁𝑥𝑗𝑘

, for 𝑗 = 1,… , 𝑁𝑦, 𝑘 = 1,… , 𝑁𝑧,

𝜙𝑛
𝑖0𝑘 = 𝜙𝑛

𝑖1𝑘, 𝜙
𝑛
𝑖,𝑁𝑦+1,𝑘

= 𝜙𝑛
𝑖𝑁𝑦𝑘

, for 𝑖 = 1,… , 𝑁𝑥, 𝑘 = 1,… , 𝑁𝑧,

𝜙𝑛
𝑖𝑗0 = 𝜙𝑛

𝑖𝑗1, 𝜙
𝑛
𝑖𝑗,𝑁𝑧+1

= 𝜙𝑛
𝑖𝑗𝑁𝑧

, for 𝑖 = 1,… , 𝑁𝑥, 𝑗 = 1,… , 𝑁𝑦.

If we rewrite Eq. (16), then we have

𝜙∗
𝑖𝑗𝑘 = 𝜙𝑛

𝑖𝑗𝑘 + 𝛥𝑡𝑀𝑖𝑗𝑘

(

−
𝐹 ′(𝜙𝑛

𝑖𝑗𝑘)

𝜖2
+ 𝛥𝑑𝜙

𝑛
𝑖𝑗𝑘

)

, (17)

for 𝑖 = 1,… , 𝑁𝑥, 𝑗 = 1,… ,≤ 𝑁𝑦, 𝑘 = 1,… , 𝑁𝑧.

Next, because Eq. (10) is an ordinary differential equation with respect
to time variable 𝑡, we can analytically solve it using separation of
variables as follows:

𝜙𝑛+1
𝑖𝑗𝑘 =

(1 + 𝜙∗
𝑖𝑗𝑘)𝑒

𝐴𝑖𝑗𝑘 − 1 + 𝜙∗
𝑖𝑗𝑘

(1 + 𝜙∗
𝑖𝑗𝑘)𝑒

𝐴𝑖𝑗𝑘 + 1 − 𝜙∗
𝑖𝑗𝑘

, (18)

for 1 ≤ 𝑖 ≤ 𝑁𝑥, 1 ≤ 𝑗 ≤ 𝑁𝑦, 1 ≤ 𝑘 ≤ 𝑁𝑧,

where 𝐴𝑖𝑗𝑘 = −
√

2𝜆𝑀𝑖𝑗𝑘𝛥𝑡∕𝜖.
Therefore, the numerical solution algorithm for the modified AC

quation consists of Eqs. (17) and (18).

.2. Stability analysis and maximum principle

We can rewrite Eq. (16) as follows:

𝜙∗
𝑖𝑗 − 𝜙𝑛

𝑖𝑗

𝑀𝑖𝑗𝛥𝑡
= −

𝐹 ′(𝜙𝑛
𝑖𝑗 )

𝜖2
+ 𝛥𝑑𝜙

𝑛
𝑖𝑗 , for 1 ≤ 𝑖 ≤ 𝑁𝑥, 1 ≤ 𝑗 ≤ 𝑁𝑦, (19)

where we assume 𝑀𝑖𝑗 > 0. If 𝑀𝑖𝑗 = 0, then Eq. (16) becomes

∗
𝑖𝑗 = 𝜙𝑛

𝑖𝑗 , (20)

hich is valid for any time step. Because the finite difference scheme
sed in Eq. (19) is the fully explicit Euler method, there is a time step
onstraint [29] for stability, i.e.,

𝑖𝑗𝛥𝑡 ≤
𝜖2ℎ2

2ℎ2 + 2𝑁𝜖2
, (21)

where 𝑁 is the dimension of the governing equation. In this 2D case,
𝑁 = 2. Let 𝑀𝑚𝑎𝑥 = max𝑖𝑗 𝑀𝑖𝑗 and 𝑀𝑚𝑎𝑥 = max𝑖𝑗𝑘 𝑀𝑖𝑗𝑘 for the two- and
hree-dimensional modified AC equations, respectively. Then, we have

𝑡 ≤ 𝜖2ℎ2

𝑀𝑚𝑎𝑥(2ℎ2 + 2𝑁𝜖2)
, (22)

The continuous AC equation satisfies the maximum bound princi-
ple [30–32]. If the initial value and boundary conditions are bounded
by 1, then the entire solution is also bounded by 1. Therefore, the
maximum principle for both continuous and discrete AC equation is
3

verified.
Table 1
Errors and convergence rates for the spatial discretization.
𝑁𝑥 ×𝑁𝑦 32 × 32 64 × 64 128 × 128

Error 7.90885e-03 2.13944e-03 5.36247e-04
Rate 1.89 2.00

Therefore, the time step satisfying the condition (21) guarantees
‖𝜙∗

‖∞ ≤ 1 if ‖𝜙𝑛
‖∞ ≤ 1, where 𝜙∗

𝑖𝑗 is from Eq. (13). Next, from Eq. (14),
we have

|𝜙𝑛+1
𝑖𝑗 | =

|

|

|

|

|

|

(1 + 𝜙∗
𝑖𝑗 )𝑒

𝐴𝑖𝑗 − 1 + 𝜙∗
𝑖𝑗

(1 + 𝜙∗
𝑖𝑗 )𝑒

𝐴𝑖𝑗 + 1 − 𝜙∗
𝑖𝑗

|

|

|

|

|

|

≤
(1 + 𝜙∗

𝑖𝑗 )𝑒
𝐴𝑖𝑗 + 1 − 𝜙∗

𝑖𝑗

(1 + 𝜙∗
𝑖𝑗 )𝑒

𝐴𝑖𝑗 + 1 − 𝜙∗
𝑖𝑗

= 1, (23)

for 1 ≤ 𝑖 ≤ 𝑁𝑥, 1 ≤ 𝑗 ≤ 𝑁𝑦,

and from Eq. (18), we have

|𝜙𝑛+1
𝑖𝑗𝑘 | =

|

|

|

|

|

|

(1 + 𝜙∗
𝑖𝑗𝑘)𝑒

𝐴𝑖𝑗𝑘 − 1 + 𝜙∗
𝑖𝑗𝑘

(1 + 𝜙∗
𝑖𝑗𝑘)𝑒

𝐴𝑖𝑗𝑘 + 1 − 𝜙∗
𝑖𝑗𝑘

|

|

|

|

|

|

≤
(1 + 𝜙∗

𝑖𝑗𝑘)𝑒
𝐴𝑖𝑗𝑘 + 1 − 𝜙∗

𝑖𝑗𝑘

(1 + 𝜙∗
𝑖𝑗𝑘)𝑒

𝐴𝑖𝑗𝑘 + 1 − 𝜙∗
𝑖𝑗𝑘

= 1, (24)

for 1 ≤ 𝑖 ≤ 𝑁𝑥, 1 ≤ 𝑗 ≤ 𝑁𝑦, 1 ≤ 𝑘 ≤ 𝑁𝑧,

where we have used the condition, ‖𝜙∗
‖∞ ≤ 1. Eqs. (23) and (24)

implies ‖𝜙𝑛+1
‖∞ ≤ 1 for all 𝑛 ≥ 0 if the initial condition satisfies

‖𝜙0
‖∞ ≤ 1. In an analytic perspective, the space dependent mobility

erm is in a sense degenerating term for the time step 𝛥𝑡 and 1 is
the maximum value for the AC equation [4], therefore the governing
equation is bounded above by 1. Therefore, the proposed scheme
satisfies the maximum principle and implies the boundedness of the
numerical solution if we use the time step satisfying the condition (21).

3. Computational results

In this section, unless otherwise stated, we use 𝜖 = ℎ and 𝛥𝑡 =
0.99𝜖2ℎ2∕(2ℎ2 + 4𝜖2) and 𝛥𝑡 = 0.99𝜖2ℎ2∕(2ℎ2 + 6𝜖2) for the two- and
three-dimensional modified AC equations, respectively.

3.1. Convergence tests

We verify the accuracy of the numerical scheme we used. Since we
do not know the exact solution for our proposed model, we use the
solution obtained with a fine mesh and sufficiently small time step
using a fully explicit method as the reference solution. To verify the
spatial accuracy with respect to space, we double the grid size on
𝛺 = (−3, 3)× (−3, 3) and calculate the error. We set the initial condition
and define the 𝑀(𝑥, 𝑦) as follow:

𝜙(𝑥, 𝑦, 0) = tanh

(

2 −
√

𝑥2 + 𝑦2
√

2𝜖

)

,

𝑀(𝑥, 𝑦) =
𝑝(𝑥, 𝑦) − min(𝑥,𝑦)∈𝛺 𝑝(𝑥, 𝑦)

max(𝑥,𝑦)∈𝛺 𝑝(𝑥, 𝑦) − min(𝑥,𝑦)∈𝛺 𝑝(𝑥, 𝑦)
,

𝑝(𝑥, 𝑦) = 3(1 − 𝑥)2𝑒−𝑥2−(𝑦+1)2 − 10
(𝑥
5
− 𝑥3 − 𝑦5

)

𝑒−𝑥2−𝑦2 − 1
3
𝑒−(𝑥+1)2−𝑦2 .

ere, we use 𝜖 = 3𝐻∕[2
√

2 tanh−1(0.9)], 𝐻 = 6∕32, 𝛥𝑡 = 1.e-8, 𝑇 = 0.02.
or the reference solution, we set the grid size 𝑁𝑟𝑒𝑓

𝑥 × 𝑁𝑟𝑒𝑓
𝑦 = 210 ×

10 and use the time step 𝛥𝑡 = 1.e-8. Table 1 shows the errors and
onvergence rates in space. The error is defined as the discrete 𝑙2-norm
rror and is defined as follows:

rror =

√

√

√

√

√

1
𝑁𝑥𝑁𝑦

𝑁𝑥
∑

𝑖=1

𝑁𝑦
∑

𝑗=1

(

𝜙𝑖𝑗 −
𝜙𝑟𝑒𝑓
𝑚𝑖,𝑚𝑗 + 𝜙𝑟𝑒𝑓

𝑚𝑖+1,𝑚𝑗 + 𝜙𝑟𝑒𝑓
𝑚𝑖,𝑚𝑗+1 + 𝜙𝑟𝑒𝑓

𝑚𝑖+1,𝑚𝑗+1

4

)

,

where 𝜙𝑟𝑒𝑓 is the reference solution, and 𝑚 is the ratio of 𝑁𝑟𝑒𝑓
𝑥 to 2𝑁𝑥.

We also consider accuracy for time. We use the same initial condi-
tion and 𝑀(𝑥, 𝑦) on 𝛺 = (−3, 3)×(−3, 3). Here, we use 𝜖 = 4ℎ∕[2

√

2 tanh−1

(0.9)], ℎ = 6∕1024, 𝑇 = 1.e-4. Table 2 shows the errors and convergence
rates in time. We note that the accuracy of the used scheme is first
order for time and second order for space, respectively.
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Fig. 1. (a) 𝑀(𝑥, 𝑦) is a space-dependent mobility. (b) is the temporal evolutions of contours. (c)–(f) are the temporal evolutions at times 𝑡 = 0, 2000𝛥𝑡, 5000𝛥𝑡, and 15000𝛥𝑡.
Table 2
Errors and convergence rates for the temporal discretization.
𝑁𝑡 100 200 400

Error 3.56418e-06 1.76366e-06 8.63723e-07
Rate 1.01 1.03

3.2. Four different mobility values

The space-dependent mobility and initial condition on the domain
𝛺 = (0, 1) × (0, 1) are defined as follows:

𝑀(𝑥, 𝑦) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, if 0 < 𝑥, 𝑦 < 0.5,
0.33, if 0.5 ≤ 𝑥 < 1, 0 < 𝑦 < 0.5,
0.66, if 0.5 ≤ 𝑥, 𝑦 < 1,
1, otherwise,

(25)

𝜙(𝑥, 𝑦, 0) =

{

+1, if 0.2 < 𝑥, 𝑦 < 0.8,
−1, otherwise,

(26)

which are shown in Fig. 1(a) and (c). Fig. 1(b) shows the temporal evo-
lution of the zero level contours of the phase-field function. Fig. 1(c)–(f)
shows the snapshots the filled contours at times 𝑡 = 0, 2000𝛥𝑡, 5000𝛥𝑡,
and 15000𝛥𝑡, respectively. Here, we use 𝑁𝑥 = 𝑁𝑦 = 100, ℎ = 1∕𝑁𝑥,
and 𝜆 = 0. From the computational results, we can clearly see that the
temporal evolutions are dependent on the space-dependent mobility. In
regions with high values of 𝑀(𝑥, 𝑦), evolution is fast, while in regions
with low values of 𝑀(𝑥, 𝑦), evolution is slow. As shown in Fig. 1(f), the
temporal evolution is frozen in the region of 𝑀(𝑥, 𝑦) = 0.

3.3. Smooth transition of mobility with several peaks

We consider a space-dependent mobility based on the several peaks
function in MATLAB [33] such as

𝑝(𝑥, 𝑦) = 3(1 − 𝑥)2𝑒−𝑥
2−(𝑦+1)2 − 10

(𝑥
5
− 𝑥3 − 𝑦5

)

𝑒−𝑥
2−𝑦2 − 1

3
𝑒−(𝑥+1)

2−𝑦2 .

We define 𝑀(𝑥, 𝑦) on the domain 𝛺 = (−3, 3) × (−3, 3) as follows:

𝑀(𝑥, 𝑦) =
𝑝(𝑥, 𝑦) − min(𝑥,𝑦)∈𝛺 𝑝(𝑥, 𝑦)

, (27)
4

max(𝑥,𝑦)∈𝛺 𝑝(𝑥, 𝑦) − min(𝑥,𝑦)∈𝛺 𝑝(𝑥, 𝑦)
which is shown in Fig. 2(a). The initial condition is defined as follows:

𝜙(𝑥, 𝑦, 0) =

{

+1, if − 2.5 < 𝑥, 𝑦 < 2.5,
−1, otherwise,

(28)

which is displayed in Fig. 2(c). Fig. 2(b) shows the temporal evolution
of the zero level contours of the phase-field function. Fig. 2(c)–(f) shows
the snapshots the filled contours at times 𝑡 = 0, 7000𝛥𝑡, 13000𝛥𝑡, and
17000𝛥𝑡, respectively. Here, we use 𝑁𝑥 = 𝑁𝑦 = 100, ℎ = 6∕𝑁𝑥, and
𝜆 = 0. We can observe the effect of the space-dependent mobility
𝑀(𝑥, 𝑦) on the evolution dynamics. As shown in Fig. 2(f), the interface
shrinks at the position of the small value of 𝑀(𝑥, 𝑦).

3.4. Star-shaped space-dependent mobility

The authors in [34] proposed an image segmentation method utiliz-
ing a modified AC equation with a fractional Laplacian and presented
image segmentation results with different fractional orders. We con-
sider a similar test to a basic numerical experiment with a star-shaped
initial condition. A star-shaped space-dependent mobility and initial
condition on the domain 𝛺 = (−3, 3) × (−3, 3) are defined as follows:

𝑀(𝑥, 𝑦) = 1
2
− 1

2
tanh

(

1.5 + 0.4 cos(6 tan−1(𝑦∕𝑥)) −
√

𝑥2 + 𝑦2
√

2𝜖

)

, (29)

𝜙(𝑥, 𝑦, 0) =

{

+1, if 0.2 < 𝑥 < 0.8, 0.2 < 𝑦 < 0.8,
−1, otherwise,

(30)

which are shown in Fig. 3(a) and (d), respectively. Fig. 3(b) displays
the temporal evolution of the zero level contours of the phase-field
function. Fig. 3(d)–(g) shows the snapshots of the filled contours at the
zero level of the phase-field function at times 𝑡 = 0, 2000𝛥𝑡, 5000𝛥𝑡,
and 15000𝛥𝑡, respectively. Here, we use 𝑁𝑥 = 𝑁𝑦 = 100, ℎ = 6∕𝑁𝑥,
and 𝜆 = 0. Because of the space-dependent mobility and motion by
mean curvature, the evolution reaches a convex hull shape as shown
in Fig. 3(g). However, in the case of non-zero 𝜆 value, the evolution is
a combination of motion by mean curvature and shrinkage. Therefore,
the evolution goes further to reach a star-shaped morphology which is
guided by the space-dependent mobility. These phenomena can be seen
in Fig. 3(c), which is the temporal evolution of the zero level contours
of the phase-field function. Here, we use 𝜆 = 7 and Fig. 3(h)–(k) shows
the snapshots of the filled contours at the zero level of the phase-field
function at times 𝑡 = 0, 240𝛥𝑡, 330𝛥𝑡, and 1890𝛥𝑡, respectively.
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Fig. 2. (a) 𝑀(𝑥, 𝑦) is a space-dependent mobility with the several peaks. (b) is the temporal evolutions of contours. (c)–(f) are the temporal evolutions at times 𝑡 = 0, 7000𝛥𝑡, 13000𝛥𝑡,
and 17000𝛥𝑡, respectively.
Fig. 3. (a) 𝑀(𝑥, 𝑦) is a space-dependent mobility. (b) is the temporal evolutions of contours with 𝜆 = 0. (d)–(g) are the temporal evolutions with 𝜆 = 0 at times 𝑡 = 0, 2000𝛥𝑡, 4000𝛥𝑡,
and 15000𝛥𝑡, respectively. (c) is the temporal evolutions of contours with 𝜆 = 7. (h)–(k) are the temporal evolutions with 𝜆 = 7 at times 𝑡 = 0, 240𝛥𝑡, 330𝛥𝑡, and 1890𝛥𝑡, respectively.
Next, we explore the behavior of parameter 𝜆 through the following
numerical test. While we have shrunk the square at Fig. 3, this time we
start the evolution at the star-shaped morphology and demonstrate the
expanding phenomena by applying a negative lambda, 𝜆 = −7. Using
the identical space dependent mobility, the initial condition is given as
𝜙(𝑥, 𝑦, 0) = 1 − 2𝑀(𝑥, 𝑦). Fig. 4(a)–(d) illustrates the snapshots of the
filled contours when 𝜆 = 0 at times 𝑡 = 0, 600𝛥𝑡, 1200𝛥𝑡, and 2000𝛥𝑡,
respectively. Then, Fig. 4(e)–(h) shows the temporal evolutions when
𝜆 = −7 at times 𝑡 = 0, 600𝛥𝑡, 1200𝛥𝑡, and 2000𝛥𝑡, respectively. Similar
5

to the results given at Fig. 3, the expansion goes further when |𝜆| is
larger.

3.5. Maximum principle test

Next, we consider the maximum principle of the proposed scheme.
A random mobility and initial condition on the domain 𝛺 = (−3, 3) ×
(−3, 3) are defined as follows: 𝑀(𝑥, 𝑦) = rand(𝑥, 𝑦) and 𝜙(𝑥, 𝑦, 0) =
rand(𝑥, 𝑦), where rand(𝑥, 𝑦) is a random number between −1 and 1.
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Fig. 4. (a)–(d) are the temporal evolutions with 𝜆 = 0 at times 𝑡 = 0, 600𝛥𝑡, 1200𝛥𝑡, and 2000𝛥𝑡, respectively. (e)–(h) are the temporal evolutions with 𝜆 = −7 at times

𝑡 = 0, 600𝛥𝑡, 1200𝛥𝑡, and 2000𝛥𝑡, respectively.
𝑛
Fig. 5. (a) 𝑀(𝑥, 𝑦) is a space-dependent mobility. (b) is the temporal evolution of ‖𝜙 ‖∞. (c)–(f) are the temporal evolutions at times 𝑡 = 0, 90𝛥𝑡, 480𝛥𝑡, and 1830𝛥𝑡.
Fig. 6. (a) eight space-dependent mobility 𝑀(𝑥, 𝑦, 𝑧) is illustrated in different colors.
(b)–(e) are the temporal evolutions at times 𝑡 = 0, 500𝛥𝑡, 2000𝛥𝑡, and 5000𝛥𝑡,
respectively.
6

Fig. 5(a) shows 𝑀(𝑥, 𝑦). Fig. 5(b) shows the temporal evolution of
‖𝜙𝑛

‖∞ of the phase-field function. We can clearly observe that the
numerical results satisfy the maximum principle. Fig. 5(c)–(f) shows the
snapshots the filled contours at times 𝑡 = 0, 90𝛥𝑡, 480𝛥𝑡, and 1830𝛥𝑡,
respectively. Here, we use 𝑁𝑥 = 𝑁𝑦 = 100, ℎ = 6∕𝑁𝑥, and 𝜆 = 1.

3.6. Eight different mobility values

The space-dependent mobility and initial condition on the domain
𝛺 = (0, 1) × (0, 1) × (0, 1) are defined as follows:

𝑀(𝑥, 𝑦, 𝑧) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

0, if 0 < 𝑥, 𝑦, 𝑧 < 0.5,

1∕7, if 0 < 𝑥, 𝑧 < 0.5, 0.5 ≤ 𝑦 < 1,

2∕7, if 0.5 ≤ 𝑥 < 1, 0 < 𝑦, 𝑧 < 0.5,

3∕7, if 0.5 ≤ 𝑥, 𝑦 < 1, 0 < 𝑧 < 0.5,

4∕7, if 0 < 𝑥, 𝑦 < 0.5, 0.5 ≤ 𝑧 < 1,

5∕7, if 0 < 𝑥 < 0.5, 0.5 ≤ 𝑦, 𝑧 < 1,

6∕7, if 0.5 ≤ 𝑥, 𝑧 < 1, 0 < 𝑦 < 0.5,

1, otherwise,

(31)
⎩
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Fig. 7. (a) 𝑀(𝑥, 𝑦, 𝑧) is a space-dependent mobility with several spherical peaks. (b)–(e) are the temporal evolutions at times 𝑡 = 0, 5000𝛥𝑡, 7500𝛥𝑡, and 10000𝛥𝑡, respectively.
𝜙(𝑥, 𝑦, 𝑧, 0) =

{

+1, if 0.2 < 𝑥, 𝑦, 𝑧 < 0.8,
−1, otherwise,

(32)

which are shown in Fig. 3(a) and(b), respectively. Fig. 3(b)–(e) show
the snapshots of zero isosurface at times 𝑡 = 0, 500𝛥𝑡, 2000𝛥𝑡, and
5000𝛥𝑡, respectively. Here, we use 𝑁𝑥 = 𝑁𝑦 = 𝑁𝑧 = 100, ℎ = 1∕𝑁𝑥,
and 𝜆 = 0. From the computational results, we can clearly see that the
temporal evolutions are dependent on the space-dependent mobility. In
regions with high values of 𝑀(𝑥, 𝑦, 𝑧), evolution is fast, while in regions
with low values of 𝑀(𝑥, 𝑦, 𝑧), evolution is slow. As shown in Fig. 6(e),
the temporal evolution is frozen in the region of 𝑀(𝑥, 𝑦, 𝑧) = 0.

3.7. Smooth transition of mobility with spherical peaks

We consider a space-dependent mobility on 3D space using spherical
peaks on the domain 𝛺 = (−3, 3) × (−3, 3) × (−3, 3). Specifically, four
spheres are centered at 𝐶1(1, 1.5, 1), 𝐶2(−1.5, 0.5, 0.5), 𝐶3( − 1.2,−1.2,
−1.2), and 𝐶4(1,−0.5,−1). Let

𝑝(𝑥, 𝑦, 𝑧) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

5(1.22 − 𝑑21 ), if 𝑑1 ≤ 1.2,
4(1.42 − 𝑑22 ), if 𝑑2 ≤ 1.4,
9(0.82 − 𝑑23 ), if 𝑑3 ≤ 0.8,
−4(1.32 − 𝑑24 ), if 𝑑4 ≤ 1.3,
0 otherwise,

where

𝑑1(𝑥, 𝑦, 𝑧) =
√

(𝑥 − 1)2 + (𝑦 − 1.5)2 + (𝑧 − 1)2,

𝑑2(𝑥, 𝑦, 𝑧) =
√

(𝑥 + 1.5)2 + (𝑦 − 0.5)2 + (𝑧 − 0.5)2,

𝑑3(𝑥, 𝑦, 𝑧) =
√

(𝑥 + 1.2)2 + (𝑦 + 1.2)2 + (𝑧 + 1.2)2,

𝑑4(𝑥, 𝑦, 𝑧) =
√

(𝑥 − 1)2 + (𝑦 + 0.5)2 + (𝑧 + 1)2.

Note that each spheres have radius 1.2, 1.4, 0.8 and 1.3, respectively
and have zero intersection. We define 𝑀(𝑥, 𝑦, 𝑧) as the normalized value
of 𝑝(𝑥, 𝑦, 𝑧) in the following way:

𝑀(𝑥, 𝑦, 𝑧) =
𝑝(𝑥, 𝑦, 𝑧) − min(𝑥,𝑦,𝑧)∈𝛺 𝑝(𝑥, 𝑦, 𝑧)

max(𝑥,𝑦,𝑧)∈𝛺 𝑝(𝑥, 𝑦, 𝑧) − min(𝑥,𝑦,𝑧)∈𝛺 𝑝(𝑥, 𝑦, 𝑧)
, (33)

which is shown in Fig. 7(a). The initial condition is defined as follows:

𝜙(𝑥, 𝑦, 𝑧, 0) =

{

+1, if − 2.5 < 𝑥, 𝑦, 𝑧 < 2.5,
(34)
7

−1, otherwise,
which is shown in Fig. 7(b). Fig. 7(b)–(e) shows the snapshots of zero
isosurface at times 𝑡 = 0, 5000𝛥𝑡, 7500𝛥𝑡, and 10000𝛥𝑡, respectively.
Here, we use 𝑁𝑥 = 𝑁𝑦 = 𝑁𝑧 = 100, ℎ = 6∕𝑁𝑥, and 𝜆 = 0. We can
observe the effect of the space-dependent mobility 𝑀(𝑥, 𝑦, 𝑧) on the
evolution dynamics. As shown in Fig. 7(e), the interface shrinks at the
position of the small value of 𝑀(𝑥, 𝑦, 𝑧).

3.8. Star-shaped space-dependent mobility in 3D

We consider a similar test to a basic numerical experiment with
a star-shaped initial condition referred from Li et al. [35]. A star-
shaped space-dependent mobility and initial condition on the domain
𝛺 = (−0.5, 0.5) × (−0.5, 0.5) × (−0.5, 0.5) are defined as follows:

𝑀(𝑥, 𝑦, 𝑧) = 1
2
− 1

2
tanh

(

0.25 + 0.15 cos(6𝜃) −
√

𝑥2 + 𝑦2 + 𝑧2

2
√

2𝜖

)

,

where 𝜃 =

{

tan−1
(

𝑦∕𝑥
)

, if 𝑥 < 0,
tan−1

(

𝜋 + 𝑦∕𝑥
)

, otherwise ,

𝜙(𝑥, 𝑦, 𝑧, 0) =

{

+1, if − 0.4 < 𝑥, 𝑦, 𝑧 < 0.4,
−1, otherwise.

(35)

which are shown in Figs. 8(a) and (b), respectively. Here, we use
𝑁𝑥 = 𝑁𝑦 = 𝑁𝑧 = 100, ℎ = 1∕𝑁𝑥 and 𝜆 = 0 and 7. We first investigate the
case when 𝜆 = 0. Figs. 8(c)–(e) show the snapshots of zero isosurface
at zero level of the phase-field function at times 𝑡 = 500𝛥𝑡, 1000𝛥𝑡,
and 4000𝛥𝑡, respectively. Because of the space-dependent mobility and
motion by mean curvature, the evolution reaches a hexagon shape.
However, in the case of non-zero 𝜆 value, the evolution is a combination
of motion by mean curvature and shrinkage. Therefore, the evolution
goes further to reach a star-shaped morphology which is guided by the
space-dependent mobility. Here, we use 𝜆 = 7 and Figs. 8(f)–(h) show
the snapshots of zero isosurface of the phase-field function at times
𝑡 = 500𝛥𝑡, 1000𝛥𝑡, and 4000𝛥𝑡, respectively.

3.9. Maximum principle test in 3D

Next, we consider the maximum principle of the proposed scheme.
A random mobility and initial condition on the domain 𝛺 = (−3, 3) ×
(−3, 3) × (−3, 3) are defined as follows: 𝑀(𝑥, 𝑦, 𝑧) = (rand(𝑥, 𝑦, 𝑧) + 1)∕2
and 𝜙(𝑥, 𝑦, 𝑧, 0) = rand(𝑥, 𝑦, 𝑧), where rand(𝑥, 𝑦, 𝑧) is a random number
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Fig. 8. (a) zero isosurface of space-dependent mobility 𝑀(𝑥, 𝑦, 𝑧). (b) initial 𝜙0. (c)–(e) are temporal evolution of zero isosurface when 𝜆 = 0 at times 𝑡 = 500𝛥𝑡, 1000𝛥𝑡, and 4000𝛥𝑡,
respectively. (f)–(h) are temporal evolution of zero isosurface when 𝜆 = 7 at times 𝑡 = 500𝛥𝑡, 1000𝛥𝑡, and 4000𝛥𝑡, respectively.
Fig. 9. ‖𝜙𝑛
‖∞ of the phase-field function and snapshots of zero isosurface at times

𝑡 = 0, 100𝛥𝑡, 150𝛥𝑡, and 250𝛥𝑡.

between −1 and 1. Fig. 9 illustrates ‖𝜙𝑛
‖∞ of the phase-field function

and snapshots of zero isosurface at times 𝑡 = 0, 100𝛥𝑡, 150𝛥𝑡, and 250𝛥𝑡.
We can clearly observe that the numerical results satisfy the maximum
principle. Here, we use 𝑁𝑥 = 𝑁𝑦 = 𝑁𝑧 = 100, ℎ = 6∕𝑁𝑥 and 𝜆 = 1.

4. Conclusion

In conclusion, this paper has introduced a novel approach to model
general motion by mean curvature using the AC equation with space-
dependent mobility and a source term. The incorporation of a space-
dependent mobility allows for precise control over the temporal evo-
lution dynamics, while the addition of a source term permits manip-
ulation of interface growth and shrinkage. We have used an operator
splitting method to efficiently solve the governing equation and split
8

it into the modified AC equation and the source term equation. The
modified AC equation is solved with a fully explicit Euler method, and
the source term equation is solved analytically. It is important to note
that the overall numerical scheme preserves the maximum principle as
long as the time step size satisfies a specific condition. To validate the
effectiveness of the proposed mathematical model and its numerical
algorithm, a series of computational experiments were conducted. The
obtained numerical results demonstrated the efficiency and accuracy
of the proposed model and its numerical approach. This research
opens up new possibilities for the simulation and control of dynamic
systems governed by mean curvature motion and offers a valuable tool
for a wide range of scientific and engineering applications. As future
research works, we will develop high-order numerical schemes such as
a class of high-order maximum principle preserving methods for solving
the AC equation [2,36]. The MATLAB source code for the proposed
algorithm is provided in the Appendix for readers’ reference.
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Appendix. MATLAB source code

The main code for 2D star-shaped evolution is as follows:

c l e a r ; c lo se a l l
x=100; Ny=100; Lx=−3; Rx=3; Ly=−3; Ry=3; h=(Rx−Lx ) /Nx ;

x=l in space ( Lx−0.5∗h , Rx+0.5∗h , Nx+2) ; y=l in space ( Ly−0.5∗h , Ry+0.5∗h ,Ny+2)
;

ep=h ; eps2=ep ^ 2 ; dt=0.99∗eps2∗h^2/(2∗h^2+4∗eps2 ) ; lam=7; Maxiter =600;
ns=30;

fo r i =1:Nx+2
fo r j =1:Ny+2

theta=atan ( y ( j ) /x ( i ) ) ;
( i , j )=0.5∗(1− tanh ((1.5+0.4∗ cos (6∗ the ta ) ...

−( s q r t ( x ( i ) ^2+y ( j ) ^2 ) ) ) /( s q r t (2)∗ep ) ) ) ;
i f abs ( x ( i ) ) <2.5 && abs ( y ( j ) ) <2.5

p( i , j ) =1;
e l s e

p ( i , j )=−1;
end

end
end
f i gu r e (1) ; c l f ; mesh( x (2 :Nx+1) , y (2 :Ny+1) ,M(2 :Nx+1 ,2:Ny+1) ' )
ax i s ( [ Lx Rx Ly Ry 0 1]) ; s e t ( gca , ' f o n t s i z e ' ,20) ; box on ; gr id on
t ex t ( ' I n t e r p r e t e r ' , ' l a t e x ' , ' S t r ing ' , ' $$x$$ ' , ...

' Pos i t i on ' , [0 .6 −3.9 0] , ' f o n t s i z e ' ,30) ;
t e x t ( ' I n t e r p r e t e r ' , ' l a t e x ' , ' S t r ing ' , ' $$y$$ ' , ...

' Pos i t i on ' ,[−3.7 1 0] , ' f o n t s i z e ' ,30) ;
t e x t ( ' I n t e r p r e t e r ' , ' l a t e x ' , ' S t r ing ' , ' $$M$$ ' , ...

' Pos i t i on ' ,[−3.5 3.85 0.75] , ' f o n t s i z e ' ,30) ;
f i gu r e (2) ; c l f ;
contour ( x (2 :Nx+1) , y (2 :Ny+1) ,p (2 :Nx+1 ,2:Ny+1) ' , [0 0] , ' k ' ) ; hold on
f i gu r e (3) ; c l f ; contourf ( x (2 :Nx+1) , y (2 :Ny+1) ,p (2 :Nx+1 ,2:Ny+1) ' , [0 0] , '

k ' ) ;
ax i s image ; ax i s ( [ Lx Rx Ly Ry] ) ; s e t ( gca , ' f o n t s i z e ' ,22) ; box on ; gr id

on
t ex t ( ' I n t e r p r e t e r ' , ' l a t e x ' , ' S t r ing ' , ' $$x$$ ' , ...

' Pos i t i on ' , [ 1 . −3.45] , ' f o n t s i z e ' ,30) ;
t e x t ( ' I n t e r p r e t e r ' , ' l a t e x ' , ' S t r ing ' , ' $$y$$ ' , ...

' Pos i t i on ' ,[−3.5 2 .5] , ' f o n t s i z e ' ,30) ;
np=p ;
fo r i t e r =1: Maxiter
p ( 1 , : )=p ( 2 , : ) ; p (Nx+2 , : )=p(Nx+1 , : ) ; p ( : , 1 )=p ( : , 2 ) ; p ( : , Ny+2)=p ( : , Ny+1) ;
f o r i =2:Nx+1

fo r j =2:Ny+1
np( i , j )=p( i , j )+dt∗M( i , j )∗(−(p ( i , j ) ^3−p( i , j ) ) /eps2 ...

+(p ( i −1, j )+p( i +1, j )−4.0∗p( i , j )+p( i , j −1)+p( i , j +1) ) /h ^2 ) ;
end

end
fo r i =2:Nx+1

fo r j =2:Ny+1
A=−s q r t (2)∗lam∗M( i , j )∗dt /ep ;
p ( i , j ) =((1+np( i , j ) )∗exp (A)−1+np( i , j ) ) /((1+np( i , j ) )∗exp (A)+1−np( i ,

j ) ) ;
end
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end
i f (mod( i t e r , ns )==0)
f i gu r e (2)
contour ( x (2 :Nx+1) , y (2 :Ny+1) ,p (2 :Nx+1 ,2:Ny+1) ' , [0 0] , ' k ' ) ; pause (0 .01)
f i gu r e (3) ; c l f ;
contour f ( x (2 :Nx+1) , y (2 :Ny+1) ,p (2 :Nx+1 ,2:Ny+1) ' , [0 0] , ' k ' ) ; ax i s image ;
ax i s ( [ Lx Rx Ly Ry] ) ; s e t ( gca , ' f o n t s i z e ' ,22) ; box on ; gr id on
t ex t ( ' I n t e r p r e t e r ' , ' l a t e x ' , ' S t r ing ' , ' $$x$$ ' , ...

' Pos i t i on ' , [ 1 . −3.45] , ' f o n t s i z e ' ,30) ;
t e x t ( ' I n t e r p r e t e r ' , ' l a t e x ' , ' S t r ing ' , ' $$y$$ ' , ...

' Pos i t i on ' ,[−3.5 2 .5] , ' f o n t s i z e ' ,30) ;
end
end
f i gu r e (2)
ax i s image ; ax i s ( [ Lx Rx Ly Ry] ) ; s e t ( gca , ' f o n t s i z e ' ,22) ; box on ; gr id

on
t ex t ( ' I n t e r p r e t e r ' , ' l a t e x ' , ' S t r ing ' , ' $$x$$ ' , ...

' Pos i t i on ' , [ 1 . −3.45] , ' f o n t s i z e ' ,30) ;
t e x t ( ' I n t e r p r e t e r ' , ' l a t e x ' , ' S t r ing ' , ' $$y$$ ' , ...

' Pos i t i on ' ,[−3.5 2 .5] , ' f o n t s i z e ' ,30) ;

The main code for 3D star-shaped evolution is as follows:

c l e a r ; c l f ; c l o se a l l ; Nx = 100; Ny = Nx ; Nz = Nx ;
Lx=−0.5; Ly=−0.5; Lz=−0.5; Rx=0.5; Ry=0.5; Rz=0.5; h=(Rx−Lx ) /Nx ;
x=l in space ( Lx−0.5∗h , Rx+0.5∗h , Nx+2) ; y=l in space ( Ly−0.5∗h , Ry+0.5∗h ,Ny+2) ;
z=l in space ( Lz−0.5∗h , Rz+0.5∗h , Nz+2) ; Maxiter =4000; ns=500; ep=h ; ep2=ep

^ 2 ;
p = −ones (Nx+2,Ny+2,Nz+2) ; M=0∗p+0.0; p=0∗p−1;
fo r i =1:Nx+2

fo r j =1:Ny+2
for k=1:Nz+2

i f x ( i )<0
th = atan ( y ( j ) /x ( i ) ) ;

e l s e
th = pi+atan ( y ( j ) /x ( i ) ) ;

end
M( i , j , k ) = 0.5−0.5∗ tanh ((0.25+0.15∗ cos (6∗ th ) ...

−s q r t ( x ( i ) ^2+y ( j ) ^2+z (k ) ^2 ) ) /(2∗ s q r t (2)∗ep ) ) ;
i f abs ( x ( i ) ) <0.4 && abs ( y ( j ) ) <0.4 && abs ( z ( k ) ) <0.4

p( i , j , k ) =1;
end

end
end

end
np=p ; np2=p ; lmd=0; dt = 0.99∗ep2∗h^2/(2∗h^2+6∗ep2 ) ;

= −s q r t (2)∗lmd∗M∗dt /ep ; p0 = p ;
f i gu r e (1) ; hold on ;
i s o = i s o s u r f a c e ( x (2 :Nx+1) , y (2 :Ny+1) , z ( 2 : Nz+1) , ...

p ( 2 :Nx+1 ,2:Ny+1 ,2:Nz+1) , 0 , ' k ' ) ;
ISO = patch ( i so ) ; s e t ( ISO , ' FaceColor ' , [0 .5 0.6 0 .9] ) ;
s e t ( ISO , ' EdgeColor ' , ' none ' ) ; ax i s image ; ax i s ( [ Lx Rx Ly Ry Lz Rz ] ) ;
view(−78, 26) ; s e t ( gca , ' f o n t s i z e ' ,18) ; box on ; gr id on ;
ax = gca ; ax . BoxStyle = ' f u l l ' ;
t e x t ( ' I n t e r p r e t e r ' , ' l a t e x ' , ' S t r ing ' , ' $$ x $$ ' , ' Pos i t i on ' , ...

[0.32 −0.53 −0.61] , ' f o n t s i z e ' ,25) ;
t e x t ( ' I n t e r p r e t e r ' , ' l a t e x ' , ' S t r ing ' , ' $$ y $$ ' , ' Pos i t i on ' , ...

[−0.57 0.32 −0.58] , ' f o n t s i z e ' ,25) ;
t e x t ( ' I n t e r p r e t e r ' , ' l a t e x ' , ' S t r ing ' , ' $$ z $$ ' , ' Pos i t i on ' , ...

[−0.40 0.66 0.19] , ' f o n t s i z e ' ,25) ;
l i gh t ang l e (120 , 150) ; drawnow ;
fo r i t e r = 1: Maxiter

p ( 1 , : , : )=p ( 2 , : , : ) ; p (Nx+2 , : , : )=p(Nx+1 , : , : ) ;
p ( : , 1 , : )=p ( : , 2 , : ) ; p ( : , Ny+2 , : )=p ( : , Ny+1 , : ) ;
p ( : , : , 1 )=p ( : , : , 2 ) ; p ( : , : , Nz+2)=p ( : , : , Nz+1) ;
f o r i =2:Nx+1

fo r j =2:Ny+1
for k=2:Nz+1

np( i , j , k ) = p( i , j , k ) − dt∗M( i , j , k ) ∗(p ( i , j , k )^3−p( i , j , k
) ) ...

/ep2+dt∗M( i , j , k ) ∗(p ( i −1,j , k )+p( i +1, j , k )+p( i , j −1,k )
...

+p( i , j +1,k )+p( i , j , k−1)+p( i , j , k+1)−6.0∗p( i , j , k ) ) /h
^ 2 ;

np2 ( i , j , k ) = ((1+np( i , j , k ) )∗exp (A( i , j , k ) )−1+np( i , j , k ) )
...

/((1+np( i , j , k ) )∗exp (A( i , j , k ) )+1−np( i , j , k ) ) ;
end

end
end
p = np2 ;
i f (mod( i t e r , ns )==0)

f i gu r e ( i t e r /ns+1) ;
i so6 = i s o su r f a c e ( x (2 :Nx+1) , y (2 :Ny+1) , z ( 2 : Nz+1) , ...

p ( 2 :Nx+1 ,2:Ny+1 ,2:Nz+1) , 0 , ' k ' ) ;
ISO6 = patch ( i so6 ) ; s e t ( ISO6 , ' FaceColor ' , [0 .5 0.6 0 .9] ) ;
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s e t ( ISO6 , ' EdgeColor ' , ' none ' ) ; ax i s image ;
ax i s ( [ Lx Rx Ly Ry Lz Rz ] ) ; view(−78, 26) ; s e t ( gca , ' f o n t s i z e '

,18) ;
ax = gca ; ax . BoxStyle = ' f u l l ' ; box on ; gr id on ;
t e x t ( ' I n t e r p r e t e r ' , ' l a t e x ' , ' S t r ing ' , ' $$ x $$ ' , ' Pos i t i on ' , ...

[0.32 −0.53 −0.61] , ' f o n t s i z e ' ,25) ;
t e x t ( ' I n t e r p r e t e r ' , ' l a t e x ' , ' S t r ing ' , ' $$ y $$ ' , ' Pos i t i on ' , ...

[−0.57 0.32 −0.58] , ' f o n t s i z e ' ,25) ;
t e x t ( ' I n t e r p r e t e r ' , ' l a t e x ' , ' S t r ing ' , ' $$ z $$ ' , ' Pos i t i on ' , ...

[−0.40 0.66 0.19] , ' f o n t s i z e ' ,25) ;
l i gh t ang l e (120 , 150) ; drawnow ;

end
end
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