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Abstract: In this study, we conduct a global stability analysis
of an extended Susceptible-Unidentified infected-Confirmed
(SUC) epidemic mathematical model. In the original SUC
model, the entire population consists of individuals who are
susceptible, those with unidentified infections, and those
with confirmed infections, without accounting for births
and deaths. In the proposed extended SUC model, we incor-
porate the dynamics of births and deaths into the original
SUC model. We analyze the global stability of this extended
SUC epidemic mathematical model and perform several
computational experiments to validate the global stability
analysis. Through this realistic extended SUC model, we aim
to advance the current understanding of epidemiological
modeling and provide valuable insights for guiding public
health interventions and policies.

Keywords: global stability analysis; COVID-19 disease; SUC
epidemic model

1 Introduction

Mathematical models are important in understanding and
managing COVID-19 because they allow researchers to sim-
ulate the spread of the virus [1], predict outcomes under dif-
ferent scenarios, and assess the impact of interventions like
social distancing [2], [3], vaccination [3], [4], and lockdowns
[5]. These models provide insights into transmission dynam-
ics, estimate the basic reproduction number (R,) [6], and
help allocate healthcare resources efficiently. By predicting
potential future outbreaks and guiding public health deci-
sions, mathematical models are essential tools in strategic
planning and response to the pandemic and ultimately con-
tribute to reducing the virus’s spread and saving lives. The
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susceptible—infected—removed (SIR) model is the classical
model that provides a theoretical framework used to inves-
tigate the spreading of the novel COVID-19 disease within a
community. In this model, susceptible individuals refer to
those who are not currently infected but have the potential
to become infected. Infected individuals are those who have
already contracted the virus and are capable of transmitting
it to susceptible individuals. Removed individuals are those
who have either recovered from the virus and are assumed
to be immune or have died [7]-[10].

Unlike common epidemic diseases, in the case of the
COVID-19 pandemic, infected individuals are typically iso-
lated and do not spread the disease to others, except in
rare instances. Therefore, it was necessary to develop a
new model specifically targeting the COVID-19 pandemic.
Lee et al. [11] proposed a susceptible-unidentified infected-
confirmed (SUC) epidemic mathematical equation, which
has a structure similar to the SIR model, but with different
interpretations for each category. In the next section, we
will describe the details of the SUC model and highlight the
differences from the SIR model. Using the proposed SUC
model and the confirmed case data, Lee et al. [11] could
estimate the unidentified infected population. Lee et al. [12]
developed a modified SUC model to control the COVID-19
pandemic through financial incentives. Hwang et al. [13]
presented a time-dependent SUC model for long-term anal-
ysis of the COVID-19 pandemic. In addition, the robust opti-
mal parameters for the SUC epidemic dynamics model were
estimated using real-world data [14].

We should note that there are more detailed epidemic
models to design more realistic models. Razzaq et al. [15]
investigated the behavioral response of population on trans-
missibility and saturation incidence of a deadly pandemic
through a fractional order dynamical system consisting
of seven nonlinear fractional order differential equations.
Saha et al. [16] have studied the global dynamics of a gener-
alized SIRS epidemic mathematical model that incorporates
government policy, public response, and social behavioral
reactions. Dutta et al. [17] investigated the dynamics of an
epidemic using an SIVIS epidemic mathematical model that
accounts for heterogeneous susceptibility, governmental
interventions, social behavioral dynamics, and public reac-
tions, considering both autonomous and nonautonomous
factors. Another study [18] focused on infectious diseases
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that can be transmitted by asymptomatic carriers who are
infected and contagious but do not show any symptoms
of the disease. Dutta et al. [19] analyzed a compartmental
SIRIS epidemiological mathematical model with two sus-
ceptible compartments, considering immunity, government
actions, public behavior, and environmental factors. This
study emphasized the significance of early governmental
intervention, nonlinear dynamics, and sensitivity analysis
using Latin hypercube sampling. The findings suggest that
a combination of government policies with pharmaceutical
therapy significantly reduces disease transmission.

We are well aware that COVID-19 is an infectious dis-
ease that has been prevalent for several years. However, the
existing SUC model did not include the dynamics of birth
and death; therefore, the model is not suitable for analyzing
infectious diseases over a long period of time. Therefore, the
primary objective of this study is to propose and analyze a
modified SUC model that incorporates the dynamics of birth
and death.

The remaining parts of this paper are organized as
follows. In Section 2, we analyze the global stability of an
extended SUC epidemic mathematical model. In Section 3, a
numerical solution method is described, and we present a
series of computational experiments to validate the global
stability analysis. In Section 4, conclusions are drawn.

2 Model formulation and analysis

2.1 Proposed model formulation

We propose an extended Susceptible-Unidentified infected-
Confirmed (SUC) epidemic mathematical equation and ana-
lyze its global stability analysis of the proposed model. In
the original SUC model [11], the entire population N consists
of susceptible individuals S(t), individuals with unidentified
infections U(t), and those with confirmed infections C(t) at
time t:

ds) _ _ 5SOU
dgft(t)_ S(t)ljf\{t) ’

= LA 1
A "’
T = J/U(t),

where f is the disease transmission rate and y is the inverse
of the days before being confirmed. The SUC model (1)
shares structural similarities with the classical suscepti-
ble-infected—removed (SIR) epidemic model [8] but has
different interpretations of the terms. For a disease such
as coronavirus disease 2019 (COVID-19), a highly contagious
respiratory illness caused by the SARS-CoV-2 virus that has
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led to global health crises, once individuals are confirmed
to be infected, they are isolate, and no longer transmit the
infection. Therefore, the unidentified infected mainly trans-
mit the infection to others. In the initial stages of the COVID-
19 outbreak, there was an expectation that it would subside
quickly. Contrary to this anticipation, it has persisted for
several years. Hence, it is essential to include the dynamics
of births and deaths. The original SUC model did not include
these dynamics; however, the proposed extended SUC model
incorporates them:

B0 — v - p5OU0 _ s,
AU _ ,SOU®) _ 2
T Ul

Figure 1 presents schematic diagrams of the different
categories in the conventional SIR model and the proposed
extended SUC model. The top row of Figure 1 shows the S, I,
and R groups in the SIR model. The I group can be further
decomposed into two subgroups, UI (unconfirmed-infected
population) and CI (confirmed-infected population), see the
middle row of Figure 1. In the extended SUC model, U corre-
sponds to UI, and C corresponds to CI U R, as shown in the
bottom row of Figure 1.

In the standard SIR model, y represents the recipro-
cal of the duration in which an infected individual devel-
ops antibodies and recovers. However, in the proposed
extended SUC model, y denotes the reciprocal of the time
span during which an unconfirmed infected individual can
transmit the disease before their infection is identified.

We maintain the assumption that N = S(¢) + U(t) + C(t)
holds true at all times. Therefore, one obtains

Ct) =N —S@) — U(@®. ©)]

Using Eqgs. (2) and (3), now it is enough to investigate the
following system

as® _ n ﬁS(t;\lrJ(t) LS. (4)
du@ _ ,SOU® _
a ﬁiN yU@®) — nU(@),

with the initial data S(0) > 0 and U(0) > 0.

SIR R
R
SuC C

Figure 1: Schematic diagram of the different categories in the standard
SIR model and the proposed extended SUC model.
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2.2 Positivity and boundedness of solutions

Define the solution semiflow W(1): R% — R? of the system
(4) by

Yy = (S@),U@®), for teR,,
where w = (S, Up) € R%. Let D=
{(S®,U(t) € RZ:0 < SMt) + U(t) <N}. Then, we have
the following.

Lemma 2.1. The set D is positively invariant for P(t) in the
sense of V() € D fory € Dandt > 0.

Proof. From Eq. (4), we get

P
t

S() = S(0) exp / (g(]:) -
0

9 t

S(s)

U(t) = U(0) exp /<ﬂN—y—y>ds.
0

Because we have restricted the initial data
(S(0),U(0)) > (0,0), the solution (S(t), U(t)) > (0,0)
immediately holds for all ¢ > 0. In the sequel, define
W(t) = S(t) + U(t), then one has

dw@® _ dS@) " du()
dt ~ dt dt

It follows that

< uN — pWw(.

W(t) <N — (N — W(0))e™#,
with W(0) = S(0) + U(0). Therefore,

lim supW(t) = lim sup(S(¥) + U(®) < N.

t—+00 t—+00

The proof follows. O

2.3 Equilibria and stability

Let
SOU(t)
— uS(,
N )

S(txf(t) —yUt) — uU@).

It is clear that system (4) always has a disease-free
equilibrium (DFE) E} = (S}, U;y) = (N, 0). Now, to perform
the stability analysis of DFE, we employ the next-generation
approach [20], [21] to first obtain the basic reproduction

number of the system (4). To this end, let

FS,U)=uN-p

G, U)=p
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As such, the basic reproduction number R, of the sys-
tem (4) can be read as

R, = FV—1=L.
0 = p( ) ity

By direct calculations, the Jacobian matrix of the system
(4) at DFE can be given by

_BU _ _bS

r=| N K N

fo pU  BS_
= N TR

0

_[H -p
0 W+nNR, -1/

Considering |AE — ]E3| =0, we can get the following
characteristic equation at DFE as below

A* =T A+ Dy, =0,

where TE; =wu+y)Ry—1D—u and DE; =—ulpu+
7)Ry, — 1). Therefore, the disease-free equilibrium (DFE)
Ej; is locally asymptotically stable when R, <1 and it is
unstable when R, > 1. Let F(S, U) = G(S,U) = 0 in Eq. (5),
then we know that the system (4) has a unique endemic
equilibrium (EE) E,, = (S,.,U,), where

= r+ N HN
p i
This implies that the endemic equilibrium (EE) E, =
(S,,U,) exists only for R, > 1. Similarly, we can yield the
Jacobian matrix of the system (4) at EE as follows

S, and U, = Ry =D

_bU _ _bsS

5=l 8 N

ke U BS . _
= N TR

*

_ —HRy v —wu
Ry —1) 0o /)

Considering [AE — Jp | =0, we can get the following
characteristic equation at EE as below

A —Tg A+Dg =0,

where Ty = —uR, and Dy = u(p + y)(R, —1). We imme-
diately deduce that the endemic equilibrium (EE) E, =
(S,,U,) is locally asymptotically stable owing to R, > 1
holds. We establish the following local stability results of
DFE and EE.

Theorem 2.1. For the SUC epidemic model (4), one claims
that
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(i) Thedisease-free equilibrium (DFE) E; = (N, 0) is locally
asymptotically stable as R, <1 and it is unstable as
Ry >1;

The endemic equilibrium (EE)E,, = (S,.,U,.) is locally
asymptotically stable as Ry > 1.

(ii)

The following result shows the global stability for DFE
and EE.

Theorem 2.2. For the DFE and EE, we have
() IfR, <1, then DFEE} = (S;.,0) is globally asymptoti-
cally stable;

(i) IfRy,>1and uN < +/u(uN + pU,)S,., thenEEE,, =
(S.,U.,) is globally asymptotically stable.

Proof. For (i), we define

S(t)

V(D) = S0 = S5 — S5 In == + U ().
0
Then, we can have
N <1 } ss((;)> ["N - p00 - usm]

+ ﬂ% —yU® — pU©

sy
N

S*
=M<N+S;;— 0 N—S(t)) +<

50) —r- M> u()

= u<2N ~ 50" S(t)> + (7 + R, — DU

<@+ mwR,—DUW® < 0.

Hence, the DFE E; = (S?,0) is globally asymptotically
stable.
(ii) Define
S(®) U

LO=S®-S,-S, n=—~+U®—-U, —-U, In .
S U,

Then, some direct computation shows

Ao, S, )\, dum(, U,
Lo="5 (1 S(t)> R (1 U(t)>
S\ LSOU®
= <1 S t)> [llN ﬂiN /AS(t)]
+ <1 > [ﬂ SOUO _ yU(@) — MU(t)]

U,
N
= uN — uS@®) — (y + pu() —

N0

S«uN  pS.U®
S N
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+ uS,

_ UL S®
N + @+ WU,

N +pU, o uNS,
N S

<2uS, +2(y + WU, —2A/u(uN + pU,)S .,

where we use fS,/N=y+u and uN=(@y + U, +
uS .. Therefore, the endemic equilibrium EE is globally
asymptotically stable. This ends the proof. O

=2uS, +2(y + WU, —

Theorem 2.2 illustrates that the endemic equilibrium
EE E, =(S,,U,) is globally asymptotically stable when
Ry >1and uN < /u(uN + pU,)S, are satisfied. The fol-
lowing globally stability result shows that the condition
Ry, >1 is enough to ensure the globally stability of the
endemic equilibrium EEE,, = (S,,, U, ) by employing a dif-
ferent Lyapunov function.

Theorem 2.3. For the DFE and EE, we have

() IfR, <1, then DFE E; = (S;,0) is globally asymptoti-
cally stable;

IfRy > 1, thenEEE, = (S, ,U,) is globally asymptoti-
cally stable.

(i)

Proof. For (i), we construct the following function

(y +2u)N
p

Then, the time derivative of V(t) shows

dSO+U®) |, (y +2u)N dU®)
dt p dt

= [(S() — ) + U®] [uN — uS©O) — (v + U]

(7 + 20N [ ,SOU®
+=5 Py

= [(S@) = ;) + UW®)] [-uS® — $3) = (r + WU

(v + 2N [ ,SOU®
+ ; _ﬁ N
= —u(S(O) — S — (r + 2SO — SHU®)

(y +2u)N | ,SOU()
p N

= —u(S(t) = S = (v + WUt
(v + Wy + 2S5
+ A

This shows that the DFE E} = (S;, 0) is globally asymp-
totically stable when R, < 1.

70 = 3|50 - 8+ VO] + U,

V(D) = [(S©) — ) + U0

—(y+ wu@

=+ WU

-y + WU*O + p -y + WU

Ry —DU® < 0.
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(ii) Define
L= %[(S(t) _S)+WO-UP+ w
_y — u)
X [U(t) U,-U, In 0, ]

By computation, one yields

T = 1650 = $.) + WO — U, 36O+ U

dt
" (y +2u)N AU [ U@®) — U,
B d U
= [(S(0) = $,) + (UM — U [N — uS®) — (¢ + wUO)
(¢ + 20N (UO - U, \ [ ,SOU® _

# OO (LGS [ﬂ T ”)U(”}
=[S - S,.) + WO — U)I-uS®) —S,)

— G+ PO - U, + %(U(t) ~U,)

SO S,
< -5 ]

= —uS® - S, = + WU - U,)* <0,

where we use S, /N=y+pu and uN=( + U, +
uS .. Therefore, one claims that the endemic equilibrium
EE is globally asymptotically stable when R, > 1holds. This
ends the proof. O

3 Numerical solution algorithm
and tests

The extended SUC model is numerically solved by using a
finite difference method as follows:

Sn1 =Sn+At(”N_ﬁ% _Msn>»

n=0,12,..., (6)

S, U
Un+1 = Un+At<ﬁ% _yUn_MUn>3 (7)
Coi1=N—=811—Uprs (8

where S, = S(nA?), U, = U(nAt), and C, = C(nAt) with a
time step At. Here, the unknown parameters are f, y, and
U,. Once these parameter values are determined, we can
proceed to solve the discrete system of Eqs. (6)—(8). Due to
the condition (3), it is only necessary to solve Eqgs. (6) and (7).
It is worth noting that a high-order numerical method, such
as the fourth-order Runge—Kutta method used in Ref. [22],
could also be applied.
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Next, we first perform a convergence test of the numer-
ical method to determine an adequately accurate time-
step size. Afterward, we conduct various computational
experiments

3.1 Convergence test

Before investigating the global stability analysis of the
extended SUC epidemic mathematical model, we conduct
a convergence test to determine an appropriate temporal
step for use in the numerical method. The parameters used
are as follows: N = 10,000, C(0) = 700, U(0) = 30, S(0) =
N —U(0) — C(0), Days = 10, N, = Days/At, f =11,y = 0.2,
# =0.05 and R, =44. Table1 shows the temporal I,-
norm errors and convergence rates with various time steps,
where the discrete l,-norm errors lle,ll; are defined as
follows:

”eerIZ — \/(Sref _ SNI)Z + (Uref _ UNI)Z + (Cref _ CNI)Z-

Here, S, U™, and C™ are the reference solutions
obtained by using a very small time step Af**f =220, The
numerical solutions are observed to converge to first-order
accuracy. From now on, we will use a time step of At = 2711,

3.2 Global stability analysis

Let us consider the following parameter values:
N =10, 000, C(0) = 500, U(0) = 30,5(0) =N — U(0) —
C(0),f =11,y =0.7, and yu = 0.05. Thus, we obtain the
parameters R,=44, S, =N/R,=2,27273, U, =
uUNR, -1/ =1,54545 and C,=N-S,-U, =
6,181.82. Figure 2 shows the temporal evolution of
S(®),U(t), and C(t) until they reach numerical steady
states, where the steady states S;,U,, and C, satisfy
max{|S, — S|, U, —Uq|,|C,, —C4|} <1  for  some
smallest integer s.

3.3 Effect of y on endemic equilibrium
values

Next, we investigate the effect of y on endemic equilibrium
values. The parameter y, which is the inverse of the number
of days before being confirmed, affects both the values of the
equilibrium state values and the time taken to reach these

Table 1: Temporal /,-norm errors and convergence rates.

At 2-8  Rate 2% Rate 2-10  Rate 271

6.4234 1.00 3.2097 1.00 1.6038 1.00 0.8010

lew, I
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Figure 2: Evolution of S(t), U(t), and C(t) to the endemic equilibrium
Se,Uy,andCy.

equilibrium states. Here, we use the parameters as follows:
N =10, 000, C(0) =500, U(0) =30, p =11, and u = 0.05.
Figure 3(a) shows the values of equilibrium states S,., U,
and C, for the parameter y and the total population N.
Figure 3(b) shows R, for the parameter y. We observe that
increasing y decreases R,. As the inverse of the days before
being confirmed y increases, unconfirmed infections are
identified and isolated more quickly, increasing the equilib-
rium value of S, , and decreasing the equilibrium values of
C,andU,.

Figure 4(a)-(c) show the temporal evolution of the
populations S(¢), U(t), and C(t) until they reach numerical
steady states with y =1/2, 1/4, and 1/7, respectively. We
can observe that as the value of the parameter y increases,
the number of unidentified infected cases U(t) decreases.
However, the time taken to reach the steady state becomes
longer. Furthermore, we can observe that when y = 1/2, the
number of confirmed cases C is smaller compared to when
y=1/4andy =1/7.

Global stability analysis of an extended SUC model
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Figure 4: Temporal evolution of populations for (a) 5(¢), (b) U(t), and (c)
C(t) withy =1/2,1/4, and 1/7, respectively.

Figure 5 shows the time taken to reach equilibrium
states for the parameter y. We observed that as the value of
the parameter y increases, the time taken to reach numeri-
cal steady states becomes longer. However, although it may
take more time when y is large, as we can observe from the
results in Figure 4, we have small number of unidentified
infected cases.

-
(S
Py,

SIS

(b)

Figure 3: Equilibrium states and basic reproduction numbers. (a) The values of equilibrium states S, , U, and C . and (b) R, for the parameter y.
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Figure 5: Time taken to reach equilibrium states for the parameter y.

4 Conclusions

In this study, we have successfully extended the original
SUC epidemic model to include the dynamics of births and
deaths. The extended novel model offers a more compre-
hensive representation of population changes over time.
Our analysis focused on the global stability of this extended
SUC model, and our findings confirm that the system’s
equilibrium points are globally stable under certain con-
ditions. To validate our theoretical results, we conducted
several computational experiments, which consistently sup-
ported the global stability analysis. The realistic nature of
the extended SUC model provides valuable insights for epi-
demiological modeling. By incorporating important demo-
graphic processes, the model represents real-world situ-
ations more closely. Hence, the new model improves its
utility in guiding public health interventions and policies.
Compared to the SIR model, we can estimate the num-
ber of the unidentified infected population from the SUC
model and confirmed case data. Scientific community can
benefit from the extended SUC model by using it in the
development of new epidemic models for predicting epi-
demic trends and controlling the spread of future pandemic
outbreaks.
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