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In this study, we present benchmark problems for the numerical methods of the phase-field equations. To find appropriate
benchmark problems, we first perform a linear stability analysis and then take a growth mode solution as the benchmark problem,
which is closely related to the dynamics of the original governing equations. As concrete examples, we perform convergence tests
of the numerical methods of the Allen–Cahn (AC) and Cahn–Hilliard (CH) equations using the proposed benchmark problems.
-e one- and two-dimensional computational experiments confirm the accuracy and efficiency of the proposed scheme as the
benchmark problems.

1. Introduction

In this study, we present benchmark problems for the nu-
merical schemes of the phase-field equations. Two famous
phase-field models are chosen as examples. -e first equa-
tion is the Allen–Cahn (AC) equation [1, 2]:

ϕt(x, t) � −
F′(ϕ(x, t))

ε2
+ Δϕ(x, t), forx ∈ Ω, t> 0. (1)

with the Neumann boundary condition n · ∇ϕ � 0 on
zΩ, where n is the exterior normal vector to the domain
boundary zΩ. -e phase-field ϕ(x, t) is the difference be-
tween the concentrations of the two mixtures components,
the free energy F(ϕ) � 0.25(ϕ2 − 1)2 is double-well poten-
tial, and ϵ is a positive constant related to the thickness of the
interfacial transition layer. -e second equation is the
Cahn–Hilliard (CH) equation [3]:

ϕt(x, t) � Δ F′(ϕ(x, t)) − ϵ2Δϕ(x, t)􏽨 􏽩, for x ∈ Ω, t> 0.

(2)

with the Neumann boundary condition n · ∇ϕ � n · ∇ ·

Δϕ � 0 on zΩ. Because there are no closed-form analytic
solutions for the general initial and boundary conditions of
the AC and CH equations, it is required to approximate the
solutions of the equations using numerical methods.
-erefore, to validate the accuracy of the newly proposed
numerical methods, it is essential to test the developed
methods with benchmark problems. -e logarithmic Flor-
y–Huggins potential is one of the useful potentials among
phase-field models. In [4], the authors developed an ap-
propriate temporal discretization method for the nonlinear
term of the fourth-order CH equation with concentration
dependent mobility and logarithmic Flory–Huggins po-
tentials. -e developed Invariant Energy Quadratization
(IEQ) method is linear and unconditionally stable. Shen
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et al. [5] proposed a scalar auxiliary variable (SAV) approach
based on the IEQ method to construct accurate and efficient
time discretization methods for a large class of gradient
flows. Yang et al. [6] developed an improved SAV approach
inspired by a step-by-step solving scheme based on the SAV
approach for gradient flow problems which includes the AC
and CH equations [7]. -e improved SAV approach has all
the advantages of classical SAV approach, further simplifies
the algorithm, and easily constructs the temporally first-
order and second-order methods. To solve the AC equation
with Flory–Huggins potential, a novel energy factorization
approach is used based on a stabilization technique called
the stabilized energy factorization approach [8]. -e discrete
maximum principle and unconditional energy stability of
the novel energy factorization approach have been rigor-
ously proved using the discrete variational principle. A novel
linear, energy stable, and maximum principle preserving
scheme was developed to semi-implicitly treat double-well
potentials in the AC equation using the energy factorization
approach [9]. A variety of benchmark problems have been
proposed for the phase-field models and used to validate the
numerical schemes. Jokisaari et al. [10] proposed two
benchmark problems: solute diffusion and second-phase
growth and coarsening. Jeong et al. [11] presented two

benchmark problems, which are shrinking annulus and
spherical shell. -ey considered the CH equation in radially
and spherically symmetric forms to obtain simple bench-
mark solutions. For the AC and CH equations, Church et al.
[12] provided four benchmark problems. Zhang et al. [13]
tested a class of linear numerical schemes for the func-
tionalized CH equation using stabilized scalar auxiliary
variable (SAV) method. Wu et al. [14] presented two
benchmark problems on homogeneous and heterogeneous
nucleation. Li et al. [15] suggested the numerical benchmark
solution of the CH equation. -ey adopted the fourth-order
Runge–Kutta method and finite difference method for the
integration in time and the spatial differential operator,
respectively, with a cosine initial condition. Hug et al. [16]
proposed a benchmark problem for brittle fracture.

For example, Jeong et al. [11] used the following initial
state for a benchmark problem:

ϕ(r, 0) � tan h
0.1 − ∣ r − 0.75 ∣

�
2

√
ε

􏼠 􏼡. (3)

In [12], the authors used the following four benchmark
problems:

ϕ(x, 0) � cos(2x) + 0.01e
cos(x+0.1)

, (4)

ϕ(x, y, 0) � 0.05 cos(3x)cos(4y) + cos2(4x)cos2(3y) + cos(x − 5y)cos(2x − y)􏽨 􏽩, (5)

ϕ(x, y, 0) � tan h

����������������

(x − π)
2

+(y − π)
2

􏽱

− 2
�
2

√
ε

, (6)

ϕ(x, y, 0) � − 1 + 􏽘
7

i�1
f

�����������������

x − xi( 􏼁
2

+ y − yi( 􏼁
2

􏽱

− r􏼒 􏼓
i
, (7)

where f(s) � 2e− ϵ2/s2 if s< 0 and f(s) � 0 otherwise. In [13],
the authors used the following initial condition for the
benchmark problem:

ϕ(x, y, 0) � 2e
sin x+sin y− 2

+ 2.2e
− sinx− siny− 2

− 1. (8)

Figure 1 shows some of the initial conditions for the
benchmark problems.

However, most of the previous benchmark problems for
the phase-field equations are chosen without any concrete
theoretical basis. In [17], the authors developed a mathe-
matical model including heat equation and optimization of
the experimental parameters and temperature profiles, and
the mathematical model was validated according to the
numerical results without suggesting a benchmark problem.
Benchmark problems with concrete theoretical basis are an
important basis for validating the accuracy of mathematical
models and numerical methods.

In this paper, we propose appropriate benchmark
problems to verify the accuracy of the numerical methods

based on the theoretical basis through linear stability
analysis using simple initial conditions. First, we perform a
linear stability analysis and then take a growth mode so-
lution [18] as the benchmark problem, which is closely
related to the dynamics of the original governing equations.

-e layout of this paper is as follows. In Section 2, the
procedure of finding benchmark problems is described. In
Section 3, the numerical experiments are performed. In
Section 4, the conclusions are given.

2. Proposed Benchmark Problems

In this section, the proposed benchmark problems are
presented for the numerical methods of the one- and two-
dimensional AC and CH phase-field models. We first
conduct a linear stability analysis and then take a growth
mode solution as the benchmark problem, which is closely
related to the dynamics of the AC equation or the CH
equation.

2 Discrete Dynamics in Nature and Society
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2.1. Benchmark Problems for the AC Equation. First, let us
consider the benchmark problems for the one- and two-
dimensional AC equation.

2.1.1. One-Dimensional AC Equation. -e one-dimensional
AC equation is as follows:

ϕt(x, t) � −
ϕ3

(x, t) − ϕ(x, t)

ε2
+ ϕxx(x, t),

forx ∈ Ω � (0, 2π), t> 0.

(9)

with the Neumann boundary condition
ϕx(0, t) � ϕx(2π, t) � 0. To find appropriate benchmark
problems for the AC equation, a linear stability analysis is
first conducted around a spatially constant critical com-
position solution ϕ � 0. We linearize the nonlinear term
F′(ϕ) � ϕ3 − ϕ by applying the Taylor expansion and then
get linearized term F′(ϕ) ≈ − ϕ. -erefore, the linearized
AC equation is as follows:

ϕt(x, t) �
ϕ(x, t)

ε2
+ ϕxx(x, t). (10)

For a positive integer k, we takeΦ(x, t) � α(t)cos(kx) as
a solution for (10), where α(t) is an amplitude. Substituting
above Φ(x, t) into (10), we have

α′(t)cos(kx) �
α(t)cos(kx)

ε2
− k

2α(t)cos(kx). (11)

Dividing cos(kx) on the both sides of (11), we obtain

α′(t) �
1
ε2

− k
2

􏼠 􏼡α(t). (12)

-en, the solution of the ordinary differential equation
(ODE) (12) is as follows:

α(t) � α(0)exp
1
ε2

− k
2

􏼠 􏼡t􏼢 􏼣. (13)

Let

Φ(x, t) � α(t)cos(kx). (14)

Be a benchmark problem solution for a one-dimensional
modified AC equation, where α(t) is given by (13). Here,
Φ(x, 0) � α(0)cos(kx) is the initial condition. Next, when
performing the convergence tests for the numerical schemes
of the AC equation, we consider the following modified AC
equation with a source term:

ϕt(x, t) � −
F′(ϕ(x, t))

ϵ2
+ ϕxx(x, t) + s(x, t) for t> 0,

(15)

where

s(x, t) � Φt(x, t) +
F′(Φ(x, t))

ϵ2
− Φxx(x, t)

� α′(t) +
1
ϵ2

α3(t)cos2(kx) − α(t)􏼐 􏼑 + k
2α(t)􏼢 􏼣cos(kx).

(16)
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Figure 1: (a–f) -e different initial conditions for benchmark problems from equations (3) to (8), respectively.
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Here, the value of α(t) is given in (13) and α′(t) can be
found by taking the first derivative of α(t) with respect to t.
Note that if k is chosen to satisfy k< 1/ε, then the numerical
solution grows as time evolves as seen from (13).

2.1.2. Two-Dimensional AC Equation. -e two-dimensional
AC equation is as follows:

ϕt(x, y, t) � −
ϕ3(x, y, t) − ϕ(x, y, t)

ε2
+ Δϕ(x, y, t),

for(x, y) ∈ Ω � (0, 2π) ×(0, 2π), t> 0.

(17)

with the Neumann boundary condition n · ∇ϕ � 0 on
zΩ, where n is the exterior normal vector to the domain
boundary zΩ. To find appropriate benchmark problems for
the two-dimensional AC equation, we first conduct a linear
stability analysis around a spatially constant critical com-
position solution ϕ � 0. -e nonlinear term F′(ϕ) � ϕ3 − ϕ
is linearized by applying the Taylor expansion, and then the
linearized term F′(ϕ) ≈ − ϕ is obtained. -erefore, the
linearized AC equation is as follows:

ϕt(x, y, t) �
ϕ(x, y, t)

ϵ2
+ ϕxx(x, y, t) + ϕyy(x, y, t). (18)

For positive integers kx and ky, let us consider
Φ(x, y, t) � α(t)cos(kxx)cos(kyy) as a two-dimensional
benchmark solution for (18), where α(t) is an amplitude.
Substituting above Φ(x, y, t) into (18), then

α′(t)cos kxx( 􏼁cos kyy􏼐 􏼑 �
α(t)cos kxx( 􏼁cos kyy􏼐 􏼑

ϵ2

− k
2
x + k

2
y􏼐 􏼑α(t)cos kxx( 􏼁cos kyy􏼐 􏼑.

(19)

Dividing cos(kxx)cos(kyy) on the both sides of (19), we
obtain

α′(t) �
1
ϵ2

− k
2
x − k

2
y􏼠 􏼡α(t). (20)

-en, the solution of the ODE (19) is as follows:

α(t) � α(0)exp
1
ε2

− k
2
x − k

2
y􏼠 􏼡t􏼢 􏼣. (21)

Let

Φ(x, y, t) � α(t)cos kxx( 􏼁cos kyy􏼐 􏼑. (22)

be a benchmark problem solution for the modified AC
equation, where α(t) is given by (21). -e initial condition is
given by Φ(x, y, 0) � α(0)cos(kxx)cos(kyy). Finally, when
we perform convergence tests for numerical schemes of the
AC equation, the following modified AC equation with a
source term is taken:

ϕt(x, y, t) � −
F′(ϕ(x, y, t))

ε2
+ Δϕ(x, y, t) + s(x, y, t),

for(x, y) ∈ Ω, t> 0,

(23)

where

s(x, y, t) � Φt(x, y, t) +
F′(Φ(x, y, t))

ε2
− ΔΦ(x, y, t)

� α′(t) +
1
ε2

α3(t)cos2 kxx( 􏼁cos2 kyy􏼐 􏼑 − α(t)􏼐 􏼑 + k
2
x + k

2
y􏼐 􏼑α(t)􏼢 􏼣cos kxx( 􏼁cos kyy􏼐 􏼑.

(24)

Here, the value of α(t) is given in (21) and α′(t) can be
found by taking the first derivative of α(t) with respect to t.
Note that if we set kx and ky satisfying k2

x + k2
y < 1/ε2, then

the numerical solution grows as time evolves as seen from
(21).

2.2. Benchmark Problems for the CH Equation. Next, let us
consider the benchmark problems for the one- and two-
dimensional CH equation.

2.2.1. One-Dimensional CH Equation. -e one-dimensional
CH equation is as follows:

ϕt(x, t) � ϕ3(x, t) − ϕ(x, t) − ϵ2ϕxx(x, t)􏽨 􏽩
xx

,

forx ∈ Ω � (0, 2π), t> 0.
(25)

with the Neumann boundary condition
ϕx(0, t) � ϕx(2π, t) � ϕxxx(0, t) � ϕxxx(2π, t) � 0. Similar
to the benchmark problem solution of the AC equation, a
linear stability analysis is first conducted around a spatially

4 Discrete Dynamics in Nature and Society
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constant critical composition solution ϕ � 0. -en, the
linearized CH equation is as follows:

ϕt(x, t) � − ϕxx(x, t) − ϵ2ϕxxxx(x, t). (26)

For the positive integer k, we consider
Φ(x, t) � β(t)cos(kx) as a solution for (26), where β(t) is an
amplitude. Substituting above Φ(x, t) into (26), we have

β′(t)cos(kx) � k
2β(t)cos(kx) − k

4ϵ2β(t)cos(kx). (27)

Dividing cos(kx) on the both sides of (27), we obtain

β′(t) � k
2 1 − (kϵ)2􏽨 􏽩β(t). (28)

-en, the solution of the ODE (28) is as follows:

β(t) � β(0)exp k
2 1 − (kϵ)2􏼐 􏼑t􏽨 􏽩. (29)

Let

Φ(x, t) � β(t)cos(kx). (30)

be a benchmark problem solution for the CH equation,
where β(t) is given by (29). -e initial condition is given by
Φ(x, 0) � β(0)cos(kx). Finally, to conduct convergence
tests for numerical schemes of the CH equation, the fol-
lowing modified CH equation with a source term is
considered:

ϕt(x, t) � F′(ϕ(x, t)) − ϵ2ϕxx(x, t)􏽨 􏽩
xx

+ s(x, t) for t> 0,
(31)

where

s(x, t) � Φt(x, t) − F′(Φ(x, t)) − ϵ2Φxx(x, t)􏽨 􏽩
xx

� β′(t) +
3k

2β3(t)

4
− k

2β(t) + k
4ϵ2β(t)􏼢 􏼣cos(kx)

+
9k

2β3(t)

4
cos(3kx),

(32)

where the triple angle identity for cosine is applied, that is,
cos3(kx) � [cos(3kx) + 3 cos(kx)]/4. Here, the value of
β(t) is given in (29) and β′(t) can be found by taking the first
derivative of β(t) with respect to t. Note that if k is chosen to
satisfy k< 1/ε, then the numerical solution grows as time
evolves as seen from (29).

2.2.2. Two-Dimensional CH Equation. -e two-dimensional
CH equation is as follows:

ϕt(x, y, t) � Δ ϕ3(x, y, t) − ϕ(x, y, t) − ε2Δϕ(x, y, t)􏽨 􏽩,

for(x, y) ∈ Ω � (0, 2π) ×(0, 2π), t> 0.

(33)

With the Neumann boundary condition n · ∇ϕ � 0 on
zΩ, where n is the exterior normal vector to the domain
boundary zΩ. A linear stability analysis is conducted around
a spatially constant critical composition solution ϕ � 0.
-en, the linearized CH equation is as follows:

ϕt(x, y, t) � Δ − ϕ(x, y, t) − ϵ2Δϕ(x, y, t)􏽨 􏽩. (34)

For the positive integers kx and ky,
Φ(x, y, t) � β(t)cos(kxx)cos(kyy) is given as a solution for
(34), where β(t) is an amplitude. Substituting above
Φ(x, y, t) into (34), we have

β′(t)cos kxx( 􏼁cos kyy􏼐 􏼑 � k
2
x + k

2
y􏼐 􏼑 1 − k

2
x + k

2
y􏼐 􏼑ϵ2􏽨 􏽩β(t)cos kxx( 􏼁cos kyy􏼐 􏼑. (35)

Dividing cos(kxx)cos(kyy) on the both sides of (35), we
obtain

β′(t) � k
2
x + k

2
y􏼐 􏼑 1 − k

2
x + k

2
y􏼐 􏼑ϵ2􏽨 􏽩β(t). (36)

-en, the solution of the ODE (36) is as follows:

β(t) � β(0)exp k
2
x + k

2
y􏼐 􏼑 1 − k

2
x + k

2
y􏼐 􏼑ϵ2􏽨 􏽩t􏽨 􏽩. (37)

Let

Φ(x, y, t) � β(t)cos kxx( 􏼁cos kyy􏼐 􏼑, (38)

be a benchmark problem solution for the CH equation,
where β(t) is given by (37). -e initial condition is given by
Φ(x, y, 0) � β(0)cos(kxx)cos(kyy). Finally, when con-
ducting convergence tests for the numerical schemes of the

Discrete Dynamics in Nature and Society 5
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CH equation, we consider the following modified CH
equation with a source term:

ϕt(x, y, t) � Δ F′(ϕ(x, y, t)) − ϵ2Δϕ(x, y, t)􏽨 􏽩 + s(x, y, t), (39)

where

s(x, y, t) � Φt(x, y, t) − Δ F′(Φ(x, y, t)) − ε2ΔΦ(x, y, t)􏽨 􏽩

�
β3(t)

16
3 cos kxx( 􏼁cos 3kyy􏼐 􏼑 k

2
x + 9k

2
y􏼐 􏼑 + 3 cos 3kxx( 􏼁cos kyy􏼐 􏼑 9k

2
x + k

2
y􏼐 􏼑􏽨 􏽩

+9 cos kxx( 􏼁cos kyy􏼐 􏼑 k
2
x + k

2
y􏼐 􏼑 + 9 cos 3kxx( 􏼁cos 3kyy􏼐 􏼑 k

2
x + k

2
y􏼐 􏼑􏽩

+ β′(t) − β(t) 1 − ε2 k
2
x + k

2
y􏼐 􏼑􏼐 􏼑 k

2
x + k

2
y􏼐 􏼑􏼐 􏼑cos kxx( 􏼁cos kyy􏼐 􏼑.

(40)

Here, the value of β(t) is given in (37) and β′(t) can be
found by taking the first derivative of β(t) with respect to t.
Note that if kx and ky are given satisfying k2

x + k2
y < 1/ε2, then

the numerical solution grows as time evolves as seen from
(37).

3. Numerical Experiments

In this section, we compute the numerical solutions of the
two phase-field equations and verify the accuracy of the
proposed method. A multigrid algorithm [19–21] is used to
solve the discrete equations. Let the l2 -norm errors

(l2-error) be defined as ‖eNt

Nx
‖2 �

��������������

1/Nx 􏽐
Nx

i�1 (e
Nt

i )2
􏽱

, where
e

Nt

i � ϕNt

i − Φ(xi, T) for i � 1, . . . , Nx in one-dimensional

space, and ‖eNt

Nx,Ny
‖2 �

��������������������

1/NxNy 􏽐
Nx

i�1 􏽐
Ny

j�1 (e
Nt

ij )2
􏽱

, where

e
Nt

ij � ϕNt

ij − Φ(xi, yj, T) for i � 1, . . . , Nx, j � 1, . . . , Ny in
two-dimensional space.

3.1. Convergence Test for One-Dimensional AC Equation.
A convergence test of the proposed method is conducted for
the one-dimensional AC equation. Let ϕn

i be approximation
of ϕ(xi, tn), where xi � (i − 0.5)h, i � 1, 2, . . . , Nx and
h � 2π/Nx. Equation (1) is discretized by applying the θ
-method [22] as follows:

ϕn+1
i − ϕn

i

Δt
� (1 − θ) −

ϕn
i( 􏼁

3
− ϕn

i

ε2
+ Δhϕ

n
i􏼠 􏼡

+ θ −
ϕn+1

i􏼐 􏼑
3

− ϕn+1
i

ε2
+ Δhϕ

n+1
i

⎛⎝ ⎞⎠ + s
n+1/2
i ,

(41)

where Δhϕ
n
i � (ϕn

i− 1 − 2ϕn
i + ϕn

i+1)/h2. Here, if θ � 0.5, then
(41) is the Crank–Nicolson (CN) method [23]; else if θ � 1,
then it is the fully implicit Euler method. -e Neumann
boundary condition is applied, thus, ϕn

0 � ϕn
1 and ϕn

Nx+1 �

ϕn
Nx

for all n � 0, 1, . . ..-e discretized (41) is solved by using
the multigrid algorithm. -e nonlinear part (ϕn+1

i )3 of

F′(ϕn+1
i ) is linearized at ϕm

i , therefore,
(ϕn+1

i )3 ≈ (ϕm
i )3 + 3(ϕm

i )2(ϕn+1
i − ϕm

i ). Here, m is the
Gauss–Seidel relaxation step in the multigrid algorithm.

-e initial condition is ϕ(x, 0) � 0.2cos(2x) on
Ω � (0, 2π), thus, Φ(x, T) � 0.2e(1/ε2− 4)T cos(2x) on
Ω � (0, 2π) is a benchmark problem solution for the AC
equation. -e multigrid algorithm parameters are set as
follows: the number of Gauss–Seidel relaxation iteration � 3,
the tolerance � 1.0e -8, and the maximum number of it-
eration � 300.

3.1.1. Fully Implicit Method. Table 1 shows the convergence
test results of the fully implicit method (θ � 1) for time step,
with T � 1.0e − 5 and various temporal step sizes Δt � T/Nt

where Nt � 8, 16, 32, and 64. Other parameters are fixed as
follows: Nx � 2048, h � 2π/Nx, and ε � h.

Table 2 shows the convergence test results of the fully
implicit method for space step, with T � 1.0e− 5 and various
spatial step sizes h � 2π/Nx where Nx � 8, 16, 32, and 64.
Other parameters are fixed as follows: Nt � 2048,
Δt � T/Nt, and ε � π/32.

3.1.2. Crank–Nicolson Method. Table 3 shows the conver-
gence test results of the CN method (θ � 0.5) for time step,
with T � 1.0e -5 and various temporal step sizes Δt � T/Nt

where Nt � 8, 16, 32, and 64. Other parameters are fixed as
follows: Nx � 2048, h � 2π/Nx, and ε � h.

Table 4 shows the convergence test results of the CN
method for space step, with T � 1.0e -5 and various spatial
step sizes h � 2π/Nx where Nx � 8, 16, 32, and 64. Other
parameters are fixed as follows: Nt � 2048, Δt � T/Nt, and
ε � π/32.

3.2. Convergence Test for Two-Dimensional AC Equation.
Let ϕn

i be approximation of ϕ(xi, yj, tn), where
xi � (i − 0.5)h, i � 1, 2, . . . , Nx, yj � (j − 0.5)h,
j � 1, 2, . . . , Ny and h � 2π/Nx � 2π/Ny. -e

6 Discrete Dynamics in Nature and Society
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two-dimensional AC equation is discretized by applying the
θ -method as follows:

ϕn+1
ij − ϕn

ij

Δt
� (1 − θ) −

F′ ϕn
ij􏼐 􏼑

ε2
+ Δhϕ

n
ij

⎛⎝ ⎞⎠

+ θ −
F′ ϕn+1

ij􏼐 􏼑

ε2
+ Δhϕ

n+1
ij

⎛⎝ ⎞⎠ + s
n+1/2
ij ,

(42)

where 0≤ θ≤ 1, Δhϕ
n
ij � (ϕn

i+1 + ϕn
i− 1 + ϕn

i,j+1 + ϕn
i,j− 1−

4ϕn
ij)/h

2. We set the ghost points as ϕn
0,j � ϕn

1,j,
ϕn

Nx+1,j � ϕn
Nx,j, j � 1, 2, . . . , Ny and ϕn

i,0 � ϕn
i,1, ϕn

i,Ny+1 �

ϕn
i,Ny

, i � 1, 2, . . . , Nx for all n � 0, 1, . . ., because the
Neumann boundary condition is adopted. -e discretized
governing equation is solved by using the multigrid
method.

-e initial condition is ϕ(x, y, 0) � 0.2cos(2x)cos(2y)

on Ω � (0, 2π) × (0, 2π), thus, Φ(x, y, T) �

0.2e(1/ε2− 8)T cos(2x)cos(2y) on Ω � (0, 2π) × (0, 2π) is the
benchmark problem solution for the two-dimensional AC
equation. -e multigrid algorithm parameters are taken as
follows: the number of Gauss–Seidel relaxation iteration � 3,
the tolerance � 1.0e -8, and the maximum number of it-
eration � 300.

3.2.1. Fully Implicit Method. Table 5 shows the convergence
test results of the fully implicit method for time step, with
T � 1.0e -5 and various temporal step sizes Δt � T/Nt where

Nt � 8, 16, 32, and 64. Other parameters are fixed as follows:
Nx � Ny � 2048, h � 2π/Nx, and ε � h.

Table 6 shows the convergence test results of the fully
implicit method for space step, with T � 1.0e -5 and various
spatial step sizes h � 2π/Nx � 2π/Ny where
Nx � Ny � 8, 16, 32, and 64. Other parameters are fixed as
follows: Nt � 2048, Δt � T/Nt, and ε � π/32.

3.2.2. Crank–Nicolson Method. Table 7 shows the con-
vergence test results of the CN method for time step, with
T � 1.0e -5 and various temporal step sizes Δt � T/Nt

where Nt � 8, 16, 32, and 64. Other parameters are fixed as
follows: Nx � Ny � 2048, h � 2π/Nx, and ϵ � h.

Table 8 shows the convergence test results of the CN
method for space step, with T � 1.0e -5 and various spatial
step sizes h � 2π/Nx where Nx � 8, 16, 32, and 64. Other
parameters are fixed as follows: Nt � 2048, Δt � T/Nt, and
ε � π/32.

It is demonstrated that the calculated numerical results
are appropriate benchmark problems for verifying the
correctness of the numerical methods for the AC equation.

3.3. Convergence Test for One-Dimensional CH Equation.
We consider the convergence tests of numerical schemes for
CH equation. Equation (2) is discretized by applying the
nonlinearly convex splitting method [24] as follows:

ϕn+1
i − ϕn

i

Δt
� Δhμ

n+1
i , μn+1

i � ϕn+1
i􏼐 􏼑

3
− ϕn

i − ϵ2Δhϕ
n+1
i + s

n+
1
2

i ,

(43)

where i � 1, 2, . . . , Nx. Here, the ghost points are set as
ϕn
0 � ϕn

1, ϕn
Nx+1 � ϕn

Nx, μn
0 � μn

1 and μn
Nx+1 � μn

Nx for all
n � 0, 1, . . ., because the Neumann boundary condition is
applied. -e multigrid algorithm is used to solve (43)

-e initial condition is ϕ(x, 0) � 0.2cos(2x) on
Ω � (0, 2π), thus, Φ(xi, T) � 0.2e(4− 16ϵ2)Tcos(2x) on
Ω � (0, 2π) is the benchmark problem solution for the CH
equation. -e multigrid algorithm parameters are set as
follows: the number of Gauss–Seidel relaxation iteration � 3,
the tolerance � 1.0e -8, and the maximum number of it-
eration � 100.

Table 9 shows the convergence test results of the un-
conditionally stable method [25] for time step, with T � 1.0e

-2 and various temporal step sizes Δt � T/Nt where
Nt � 8, 16, 32, and 64. Other parameters are fixed as follows:
Nx � 2048, h � 2π/Nx, and ε � 8h.

Table 10 shows the convergence test results of the un-
conditionally stable method for space step, with T � 1.0e -2
and various spatial step sizes h � 2π/Nx where

Table 1: Convergence test results of the fully implicit method for
time step.

Case (h, Δt) Rate (h,
Δt/2) Rate (h,

Δt/4) Rate (h,
Δt/8)

l2-error
1.6730e-

2 1.02 8.2512e-
3 1.01 4.0976e-

3 1.00 2.0419e-
3

Table 2: Convergence test results of the fully implicit method for
space step.

Case (h, Δt) Rate (h/2,
Δt) Rate (h/4,

Δt) Rate (h/8,
Δt)

l2-error
1.0727e-

6 1.91 2.8517e-
7 1.98 7.2424e-

8 1.99 1.8199e-
8

Table 3: Convergence test results of the CN method for time step.

Case (h, Δt) Rate (h,
Δt/2) Rate (h,

Δt/4) Rate (h,
Δt/8)

l2-error
3.5295e-

4 1.99 8.8705e-
5 2.00 2.2206e-

5 2.00 5.5533e-
6

Table 4: Convergence test results of the CN method for space step.

Case (h, Δt) Rate (h/2,
Δt) Rate (h/4,

Δt) Rate (h/8,
Δt)

l2-error
1.0726e-

6 1.91 2.8514e-
7 1.98 7.2393e-

8 1.99 1.8168e-
8

Table 5: Convergence test results of the fully implicit method for
time step.

Case (h, Δt) Rate (h,
Δt/2) Rate (h,

Δt/4) Rate (h,
Δt/8)

l2-error
1.4487e-

2 1.04 7.0306e-
3 1.02 3.4646e-

3 1.01 1.7199e-
3

Discrete Dynamics in Nature and Society 7
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Nx � 8, 16, 32, and 64. Other parameters are fixed as follows:
Nt � 2048, Δt � T/Nt, and ε � π/32.

3.4. Convergence Test for Two-Dimensional CH Equation.
Next, the two-dimensional CH equation is also discretized
by applying the nonlinearly convex splitting method as
follows:

ϕn+1
ij − ϕn

ij

Δt
� Δhμ

n+1
ij , μn+1

ij � ϕn+1
ij􏼐 􏼑

3
− ϕn

ij − ε2Δhϕ
n+1
ij + s

n+1/2
ij ,

(44)

where i � 1, 2, . . . , Nx, j � 1, 2, . . . , Ny. -e ghost points are
set as ϕn

0,j � ϕn
1,j, ϕ

n
Nx+1,j � ϕn

Nx,j, μ
n
0,j � μn

1,j, μ
n
Nx+1,j � μn

Nx,j,
j � 1, 2, . . . , Ny and ϕn

i,0 � ϕn
i,1, ϕn

i,Nx+1 � ϕn
i,Nx, μn

i,0 � μn
i,1,

μn
i,Nx+1 � μn

i,Nx, i � 1, 2, . . . , Nx, for all n � 1, 2, . . ., because
of the Neumann boundary condition. -e multigrid algo-
rithm is used to solve (44)

-e initial condition is ϕ(x, y, t) � 0.2cos(2x)cos(2y) on
Ω � (0, 2π) × (0, 2π), thus Φ(x, y, T) � 0.2e(8− 64ε2)T

cos(2x)cos(2y) on Ω � (0, 2π) × (0, 2π) is the benchmark

problem solution for the CH equation.-emultigrid algorithm
parameters are taken as follows: the number of Gauss–Seidel
relaxation iteration � 3, the tolerance � 1.0e -8, and the
maximum number of iteration � 100.

Table 11 shows the convergence test results of the un-
conditionally stable method for time step, with T � 1.0e -2
and various temporal step sizes Δt � T/Nt where
Nt � 8, 16, 32, and 64. Other parameters are fixed as follows:
Nx � Ny � 2048, h � 2π/Nx, and ε � 8h.

Table 12 shows the convergence test results of the un-
conditionally stable method for space step, with T � 1.0e -2
and various spatial step sizes h � 2π/Nx � 2π/Ny where
Nx � Ny � 8, 16, 32, and 64. Other parameters are fixed as
follows: Nt � 2048, Δt � T/Nt, and ε � π/32.

It is demonstrated that the calculated numerical results
are appropriate benchmark problems for verifying the
correctness of the nonlinear convex splitting method for the
CH equation.

3.5. Convergence Test for Two-Dimensional CH Equation
Based the SAV Approach. -e two-dimensional CH equa-
tion is discretized by applying the SAV approach [5]. -e
SAV approach is a step-by-step solving approach, and it can
achieve both temporally first- and second-order accuracy. In
this section, we consider the first-order SAV approach and
perform the convergence test. For a detailed description of
the SAV approach, see [5]. First, we define a time-dependent
variable U as U(t) �

���������
􏽒ΩF(ϕ)dx

􏽱
, F(ϕ) � 0.25(ϕ2 − 1)2.

Next, let ϕn+1 � ϕn+1
+ Un+1􏽢ϕn+1, μn+1 � μn+1 + Un+1􏽢μn+1.

-erefore, we can rewrite (44) as
ϕ n+1

− ϕn

Δt
� Δμ n+1

+ s
n+1/2
ij , μ n+1

� − ε2Δϕ n+1
+ S ϕ n+1

− ϕn
􏼒 􏼓,

(45)

􏽢ϕn+1

Δt
� Δ􏽢μn+1

, 􏽢μn+1
� − ϵ2Δ􏽢ϕn+1

+
F′ ϕn

( 􏼁
����������
􏽒ΩF ϕn

( 􏼁dx
􏽱 + S􏽢ϕ

n+1
,

(46)

where i � 1, 2, . . . , Nx, j � 1, 2, . . . , Ny and S is a positive
constant that plays a role of stabilization. -e ghost points
are set as ϕn

0,j � ϕn

1,j, ϕn

Nx+1,j � ϕn

Nx,j, μn
0,j � μn

1,j,
μn

Nx+1,j � μn
Nx,j, j � 1, 2, . . . , Ny and ϕn

i,0 � ϕn

i,1,
ϕn

i,Nx+1 � ϕn

i,Nx
, μn

i,0 � μn
i,1, μ

n
i,Nx+1 � μn

i,Nx
, i � 1, 2, . . . , Nx for

all n � 1, 2, . . ., and ghost points for 􏽢ϕn, 􏽢μn are set similarly to
ϕn, ϕn, respectively. -e multigrid algorithm is used to solve
CH equation with SAV approach. We use
ϕ(x, y, 0) � 0.2cos(2x)cos(2y) on Ω � (0, 2π) × (0, 2π),
therefore Φ(x, y, T) � 0.2e(8− 64ϵ2)Tcos(2x)cos(2y) on Ω �

(0, 2π) × (0, 2π) is the benchmark problem solution for the
CH equation and stabilization constant is S � 2. -e mul-
tigrid algorithm parameters are taken as follows: the number
of Gauss–Seidel relaxation iteration � 3, the tolerance � 1.0e

-8, and the maximum number of iteration � 100.
Table 13 shows the first-order convergence test results of

the SAV approach for time step, with T � 1.0e -2 and various

Table 6: Convergence test results of the fully implicit method for
space step.

Case (h, Δt) Rate (h/2,
Δt) Rate (h/4,

Δt) Rate (h/8,
Δt)

l2-error
1.5169e-

6 1.91 4.0326e-
7 1.98 1.0240e-

7 1.99 2.5714e-
8

Table 7: Convergence test results of the CN method for time step.

Case (h, Δt) Rate (h,
Δt/2) Rate (h,

Δt/4) Rate (h,
Δt/8)

l2-error
2.1410e-

4 2.00 5.3658e-
5 2.00 1.3423e-

5 2.00 3.3562e-
6

Table 8: Convergence test results of the CN method for space step.

Case (h, Δt) Rate (h/2,
Δt) Rate (h/4,

Δt) Rate (h/8,
Δt)

l2-error
1.5169e-

6 1.91 4.0324e-
7 1.98 1.0238e-

7 1.99 2.5693e-
8

Table 9: Convergence test results of the unconditionally stable
method for time step.

Case (h, Δt) Rate (h,
Δt/2) Rate (h,

Δt/4) Rate (h,
Δt/8)

l2-error
1.6655e-

5 1.00 8.3544e-
6 1.00 4.1886e-

6 0.99 2.1017e-
6

Table 10: Convergence test results of the unconditionally stable
method for space step.

Case (h, Δt) Rate (h/2,
Δt) Rate (h/4,

Δt) Rate (h/8,
Δt)

l2-error
1.4948e-

3 2.10 3.4801e-
4 1.88 9.4222e-

5 1.97 2.4093e-
05
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temporal step sizes Δt � T/Nt, where Nt � 8, 16, 32, and 64.
Other parameters are fixed as follows: Nx � Ny � 2048,
h � 2π/Nx, and ϵ � 8h.

Table 14 shows the second-order convergence test results
of the SAV approach for space step, with T � 1.0e -2 and
various spatial step sizes h � 2π/Nx � 2π/Ny where
Nx � Ny � 8, 16, 32, and 64. Other parameters are fixed as
follows: Nt � 2048, Δt � T/Nt, and ε � π/32.

It is demonstrated that the calculated numerical ex-
periment results are appropriate benchmark problems for
verifying the convergence rates of the SAV approach for the
CH equation.

4. Conclusion

In this study, a benchmark problem is presented for the nu-
merical technique of phase-field equations. To show the ef-
fectiveness of the proposed method, two famous phase-field
equations were considered. To design an appropriate bench-
mark problem for the AC equation and the CH equation on the
one- and two-dimensional, we first performed a linear stability
analysis and then took a growth mode solution as the
benchmark problem, which is closely related to the dynamics of
the original governing equation. For each phase-field equation,
convergence tests were conducted of the numerical schemes.
-e computational results confirmed the accuracy and effi-
ciency of the proposed method. -e proposed method is
general; therefore, it is possible to design benchmark problems
for various phase-field equations or directly extend to higher
dimensions such as three-dimensional space.
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