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We study a linear stability analysis for the Cahn–Hilliard (CH) equation at critical and off-critical compositions. The CH equation
is solved by the linearly stabilized splitting scheme and the Fourier-spectral method. We define the analytic and numerical growth
rates and compare these growth rates with respect to the different average levels. In this study, the linear stability analysis is
conducted by classifying three average levels such as zero average, spinodal average, and near critical point levels of free energy
function, in the one-dimensional (1D) space. The numerical results provide insight for the dynamics of CH equation at critical
and off-critical compositions.

1. Introduction

The Cahn–Hilliard (CH) equation describes the temporal
evolution of the conserved phase-field by the following
partial differential equation [1, 2]:

∂ϕ x, tð Þ
∂t

= Δ F ′ ϕ x, tð Þð Þ − ε2Δϕ x, tð Þ
h i

, x ∈Ω, t > 0, ð1Þ

where ϕðx, tÞ is a phase-field at position x and time t, FðϕÞ
= 0:25ðϕ2 − 1Þ2 is the free energy per unit volume and can
be substituted for other free energy functions in numerical
experiments, and constant ε determines the thickness of
the interface. The CH equation (1) was originally introduced
as the mathematical model which describes the spinodal
decomposition in a binary mixture. This equation has been
applied in diverse fields such as dealloying [3, 4], two-
phase fluid flow [5–7], topology optimization [8–10], popu-
lation dynamics [11], tumor growth [12–14], thin films
[15–17], block copolymer [18, 19], and image processing
[20, 21]. The CH equation is mass-constrained gradient flow

in the dual space H−1 of zero average space of the Ginzburg–
Landau free energy,

E ϕð Þ≔
ð
Ω

F ϕð Þ + ε2

2 ∇ϕj j2
� �

dx: ð2Þ

To confirm the total mass conservation and the energy
dissipation, we differentiate the total mass of ϕ and equation
(2) with respect to time t and obtain the following results,
respectively.

d
dt

ð
Ω

ϕdx =
ð
Ω

ϕtdx =
ð
Ω

Δ F ′ ϕð Þ − ε2Δϕ
h i

dx = 0, ð3Þ

d
dt

E ϕð Þ =
ð
Ω

F ′ ϕð Þϕt + ε2∇ϕ · ∇ϕt
� �

dx

=
ð
Ω

F ′ ϕð Þ − ε2Δϕ
� �

ϕtdx

= −
ð
Ω

∇ F ′ ϕð Þ − ε2Δϕ
� ���� ���2dx ≤ 0:

ð4Þ
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The results of equations (3) and (4), respectively, show
that the conservation of total mass holds, and the total
energy does not increase with respect to time. Figure 1 rep-
resents a double-well potential FðϕÞ, its corresponding first
and second derivatives. Here, the spinodal region is defined
by the gray-colored region where the second derivative is
negative, i.e., F ′′ðϕÞ < 0. In this region, ϕ is unstable and
then phase separation occurs. With these various applica-
tions of the CH equation, many researchers have proposed
new efficient numerical methods [22–24]. Usually, in the
stage of verifying the numerical method, the linear stability
analysis is used. In [25], the linear stability was used for local
equilibrium of Boltzmann equation. In [26], the stability
analysis of the advective CH equation was employed to
define the perturbation to investigate the instability of wave
packets. In this paper, we shall present a clear standard for
this test by defining linear and nonlinear regimes.

The main purpose of this paper is to numerically inves-
tigate the dynamics of phase separation in binary mixtures
with different average concentrations using the CH equation
in the one-dimensional (1D) space. In addition, we propose
criteria for linear regimes with small differences between
numerical solutions and linear solutions.

This paper is organized as follows. The Fourier-spectral
method is introduced in Section 2 for numerical solution.
Section 3 provides numerical results and simulations with lin-
ear stability analysis. Conclusions are discussed in Section 4.

2. Numerical Solution

Now, we use the Fourier-spectral method [27] to find the
numerical solution for the CH equation (1) in the 1D space
Ω = ð0, LÞ,

∂ϕ x, tð Þ
∂t

= Δ F ′ ϕ x, tð Þð Þ − ε2Δϕ x, tð Þ
h i

, x ∈ 0, Lð Þ, t > 0: ð5Þ

Let h = L/Nx be the grid size in the x-axis directions,
where Nx is positive even integer. At the edge points xm =
ðm − 1Þh where m = 1, 2,⋯,Nx, we simply denote the
numerical representation ϕðxm, tnÞ into ϕnm. Here, tn = nΔt
and Δt is the temporal step size. Also, we set μp = 2πp/L
for the Fourier-spectral method. Let us consider the discrete

Fourier transform bϕn

p =∑Nx
m=1ϕ

n
me

−iðμpxmÞ and the inverse dis-
crete Fourier transform

ϕnm = 1
Nx

〠
Nx/2−1

p=−Nx/2
bϕn

pe
i μpxmð Þ: ð6Þ

For simplicity of notation, we define f ðϕÞ = F ′ðϕÞ = ϕ3

− ϕ. By applying the linearly stabilized splitting scheme
[28] into the CH equation (5), we obtain the following
discrete CH equation:

ϕn+1m − ϕnm
Δt

= Δ f ϕnmð Þ − 2ϕnm + 2ϕn+1m − ε2Δϕn+1m

Â Ã
= Δ ϕnmð Þ3 − 3ϕnm + 2ϕn+1m − ε2Δϕn+1m

h i
:

ð7Þ

Letting gðϕÞ = ϕ3 − 3ϕ, equation (7) comes into

ϕn+1m − ϕnm
Δt

= Δ g ϕnmð Þ + 2ϕn+1m − ε2Δϕn+1m

Â Ã
: ð8Þ

Then, we can transform equation (8) into the discrete
Fourier space as follows:

bϕn+1
p − bϕn

p

Δt
= μ2p 2bϕn+1

p + ε2μ2p
bϕn+1
p + ĝn

p

h i
: ð9Þ

By rearranging the above one, we obtain

bϕn+1
p =

bϕn

p − μ2pΔtĝ
n
p

1 + Δt 2μ2p + ε2μ4p

� � : ð10Þ

As a consequence, we can compute the updated numer-
ical solution ϕn+1m by applying the inverse discrete Fourier
transform (6).

3. Numerical Experiments

In this section, we define growth rate of the CH equation
and compare analytic growth rate with numerical growth
rate. We also define an error between the analytic solution
and the numerical solution. Through several numerical
experiments about the growth rate and the error, we investi-
gate the numerical behaviour at different spinodal points.
Then, we propose linear and nonlinear regimes.

3.1. Analytic and Numerical Growth Rates. In this section,
we shall find the analytic and numerical growth rates. We
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Figure 1: Schematic illustration of double-well potential FðϕÞ,
F ′ðϕÞ, and F ′′ðϕÞ.
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consider the following three different free energy functions
[29], F1, F2, and F3 at ϕ = ϕave.

F1 ϕð Þ = 0:25 ϕ2 − 1
À Á2, ð11Þ

F2 ϕð Þ = ϕ6 − ϕ4 − ϕ2 + 1, ð12Þ

F3 ϕð Þ = 0:5 1 + ϕð Þ ln 1 + ϕ

2

� �
+ 1 − ϕð Þ ln 1 − ϕ

2

� �� �
+ 1:695 1 − ϕ2

À Á
:

ð13Þ
We linearize each of F′1, F′2, and F′3 by applying the

Taylor expansion for different free energy functions; then,
we obtain the following linearized terms. The linearized
functions are explained in detail in Appendix.

F′1 ϕð Þ ≈ ϕ3ave − ϕave + 3ϕ2ave − 1
À Á

ϕ − ϕaveð Þ, ð14Þ

F′2 ϕð Þ ≈ 6ϕ5ave − 4ϕ3ave − 2ϕave
+ 2 15ϕ4ave − 6ϕ2ave − 1
À Á

ϕ − ϕaveð Þ, ð15Þ

F′3 ϕð Þ ≈ 0:5 ln 1 + ϕave
1 − ϕave

� �
− 3:39ϕave

+ 1
2 1 + ϕaveð Þ + 1

2 1 − ϕaveð Þ − 3:39
� �

ϕ − ϕaveð Þ:

ð16Þ
Therefore, for the free energy functions F1, F2, and F3,

the corresponding linear Cahn–Hilliard (LCH) equations
are as follows:

∂ϕ x, tð Þ
∂t

= 3ϕ2ave − 1
À Á

Δϕ x, tð Þ − ε2Δ2ϕ x, tð Þ, ð17Þ

∂ϕ x, tð Þ
∂t

= 2 15ϕ4ave − 6ϕ2ave − 1
À Á

Δϕ x, tð Þ − ε2Δ2ϕ x, tð Þ,
ð18Þ

∂ϕ x, tð Þ
∂t

= 1
2 1 + ϕaveð Þ + 1

2 1 − ϕaveð Þ − 3:39
� �
Á Δϕ x, tð Þ − ε2Δ2ϕ x, tð Þ:

ð19Þ

To derive the ordinary differential equation for ampli-
tude function αðtÞ, we take ϕðx, tÞ = ϕave + αðtÞ cos ðKπxÞ.
For the positive even integer K , it can satisfy the periodic
boundary condition. Substituting above ϕðx, tÞ into LCH
equations (17), (18), and (19), we have

α′ tð Þ cos Kπxð Þ = 1 − 3ϕ2ave
À Á

α tð Þ Kπð Þ2 cos Kπxð Þ
− ε2α tð Þ Kπð Þ4 cos Kπxð Þ,

ð20Þ

α′ tð Þ cos Kπxð Þ = 2 1 + 6ϕ2ave − 15ϕ4ave
À Á

α tð Þ Kπð Þ2
Á cos Kπxð Þ − ε2α tð Þ Kπð Þ4 cos Kπxð Þ,

ð21Þ

α′ tð Þ cos Kπxð Þ = 3:39 − 1
2 1 + ϕaveð Þ −

1
2 1 − ϕaveð Þ

� �
Á α tð Þ Kπð Þ2 cos Kπxð Þ − ε2α tð Þ Kπð Þ4
Á cos Kπxð Þ:

ð22Þ
Dividing cos ðKπxÞ on the both sides of equations (20),

(21), and (22), we obtain

α′ tð Þ = Kπð Þ2 1 − 3ϕ2ave − ε2 Kπð Þ2Â Ã
α tð Þ, ð23Þ

α′ tð Þ = Kπð Þ2 2 + 12ϕ2ave − 30ϕ4ave − ε2 Kπð Þ2Â Ã
α tð Þ, ð24Þ

α′ tð Þ = Kπð Þ2 3:39 − 1
2 1 + ϕaveð Þ −

1
2 1 − ϕaveð Þ − ε2 Kπð Þ2

� �
α tð Þ:

ð25Þ
The analytic solutions of ordinary differential equations

(23), (24), and (25) are as follows:

α tð Þ = α 0ð Þeλ1t , λ1 = Kπð Þ2 1 − 3ϕ2ave − ε2 Kπð Þ2Â Ã
, ð26Þ

α tð Þ = α 0ð Þeλ2t , λ2 = Kπð Þ2 2 + 12ϕ2ave − 30ϕ4ave − ε2 Kπð Þ2Â Ã
,

ð27Þ
α tð Þ = α 0ð Þeλ3t , λ3

= Kπð Þ2 3:39 − 1
2 1 + ϕaveð Þ −

1
2 1 − ϕaveð Þ − ε2 Kπð Þ2

� �
:

ð28Þ
In this paper, we use F1 unless the free energy function is

mentioned; then, we write F1 = F, λ1 = λ. In the numerical
approach, numerical growth rate is defined by

λ
~
= 1
T

log
ϕNt − ϕave


 



∞
α 0ð Þ

 !
: ð29Þ

Here, k·k∞ denotes the maximum norm.

3.2. Convergence Test. In this section, we verify convergence
of the numerical growth rate. For numerical test, we use
ϕðx, 0Þ = ϕave + 0:001 cos ð10πxÞ, ϕave = 0, and ε = 0:02 in
Ω = ð0, 1Þ.

Table 1 shows the numerical growth rate ~λ at time T =
0:004 for various Δt = T/Nt and h = 1/Nx. Here, the analytic
growth rate is λ = 597:3241. In Table 1, we can see that the
numerical growth rate converges to the analytic one as Δt
and h decrease.

3.3. Linear Stability Analysis. From now on, we implement
the linear stability analysis with the constant solution ϕ =
ϕave. In the every numerical experiment, we use the constant
ε = εm =mh/½2 ffiffiffi

2
p

tan h−1ð0:9Þ� to adjust the interfacial
thickness. As long as do not more mentioned, the numerical
parameters use such as Nx = 128, h = 1/Nx, Δt =2e-7, αð0Þ
= 0:001, ε = ε11, and T is total time. In addition, we use three

3Journal of Function Spaces
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different value ϕave = 0, 0:4, and 0:6 which are in spinodal
region and near critical points of free energy. Note that these
values are indicated points A, B, and C in Figure 1. For a
positive even integer K ≤ 16, the initial condition is selected
as ϕðx, 0Þ = ϕave + 0:001 cos ðKπxÞ in Ω = ð0, 1Þ. First, we
investigate analytic and numerical growth rates for different
mode numbers K .

Before the next tests, we define linear solution as follows:

u x, tð Þ = ϕave + α tð Þ cos Kπxð Þ, ð30Þ

where αðtÞ = αð0Þeλt and λ is analytic growth rate, see
equation (26). Figure 2 shows the change of the analytic
and numerical growth rates with respect to each mode
numbers K for ϕave = 0, 0:4, and 0:6 in short-time evolu-
tion. As we can see, numerical growth rate ~λ estimates
analytic growth rate λ well in short time (T = 0:004).
The growth rates in spinodal region (ϕave = 0, ϕave = 0:4)
have positive values for some mode K . On the other
hand (ϕave = 0:6), the growth rates are always negative
regardless of mode number K and also growth rates are
monotonically decreased as mode number K increases.
Figures 3(a)–3(c) show the analytic growth rates accord-
ing to mode numbers K for ϕave = 0, 0:4, and 0:6, respec-

tively, where the analytic growth rates λ1, λ2, and λ3 are
(26), (27), and (28). However, in the long time evolution,
it is difficult to expect the numerical growth rate that fits
well with the analytic one. In order to find this reason,
we first observe dynamics of the numerical solution ϕðx
, tÞ and linear solution uðx, tÞ. In Figure 4, we can check
the behaviour of the numerical and linear solution in
short and long time evolution for K = 2, 4, and 6, when
ϕave = 0 and ϕave = 0:4. Unlike the short-time cases, the
long-time numerical solutions in all cases show a lot of
difference from the linear solutions. This result means
that over time, the CH solution has nonlinearity.

Let us consider Ginzburg–Landau free energy (2) by
decomposing it as

E ϕð Þ =E1 ϕð Þ +E2 ϕð Þ, ð31Þ

where

E1 ϕð Þ =
ð
Ω

F ϕð Þdx andE2 ϕð Þ =
ð
Ω

ε2

2 ∇ϕj j2dx: ð32Þ

We compare short- and long-time numerical solution ϕ
ðx, tÞ when ϕave = 0 and ϕave = 0:4. In this test, we use mode
K = 2 and αð0Þ = 0:1. As shown in Figure 5(a), we can see

0 2 4 6 8 10 12 14 16
–200

0

200
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600

Analytic
𝜙ave = 0

K

λ

(a)

0 2 4 6 8 10 12
–600

–400

–200

0

200
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𝜙ave = 0.6

K

λ

(b)

Figure 2: Analytic and numerical growth rates of the CH equation with different mode numbers at T = 0:004 when (a) ϕave = 0 and (b)
ϕave = 0:4 and ϕave = 0:6.

Table 1: Numerical growth rate for various Δt and h at T = 0:004 (λ = 597:3241).

Nt \Nx 23 24 25 26 27

211 304.2649 594.2164 594.2139 594.2139 594.2139

212 304.5360 595.7570 595.7545 595.7545 595.7545

213 304.6718 596.5303 596.5278 596.5278 596.5278

214 304.7397 596.9177 596.9152 596.9152 596.9152

215 304.7737 597.1116 597.1091 597.1091 597.1091

216 304.7907 597.2086 597.2061 597.2061 597.2061

217 304.7992 597.2571 597.2546 597.2546 597.2546

4 Journal of Function Spaces
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the nonlinearity in the long-time solution after a certain
period of time, regardless of ϕave. Figures 5(b)–5(d) show
results of double well potential FðϕÞ, ε/2j∇ϕj2, and FðϕÞ +

ε/2j∇ϕj2, respectively. Here, the solid and dashed lines mean
the short- and long-time results of each function, respec-
tively. Also, the area of the gray-colored region in

0 4 8 12 16 20 K 24

0

1000

2000

3000

λ1

λ2

λ3

λ

(a) ϕave = 0

0 4 8 12 16 20 24 K 28
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λ
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(b) ϕave = 0:4

0 4 8 12 16 20 24
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2000

3000

K

λ

λ1

λ2

λ3

(c) ϕave = 0:6

Figure 3: Analytic growth rates of the CH equations for different free energy functions F1, F2, and F3 at (a) ϕave = 0, (b) ϕave = 0:4, and (c)
ϕave = 0:6.
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Figures 5(b)–5(d) represent the energy E1ðϕÞ, E2ðϕÞ, and
the Ginzburg–Landau free energy EðϕÞ, respectively.

As shown in Figure 1, as ϕ moves away from ϕ = 0, FðϕÞ
becomes smaller than Fð0Þ when −1 ≤ ϕ ≤ 1. For this result,
in Figure 5(b), dashed line is located below solid line overall
of x. It means that FðϕÞ becomes smaller over time in the
spinodal region. Also, according to fluctuation of ϕ, we can
see the property of ε2/2j∇ϕj2 in Figure 5(c). However, it
can also be confirmed that the value has a slight effect on
FðϕÞ + ε/2j∇ϕj2 as shown in Figure 5(d). In conclusion, we
know that the CH solution grows with time in the spinodal
region, and it has nonlinearity in the existing solution in
order to reduce the total free energy.

Figures 6(a)–6(c) show temporal evolution of E1ðϕÞ,
E2ðϕÞ, and EðϕÞ with different ε. All results of E1ðϕÞ and
EðϕÞ decrease with respect to time t. However, it can be seen
that the larger the epsilon, that is, the thicker the interface of
numerical solution, the slower the result is expressed.

From now on, we verify that the CH solution has nonlin-
earity over time. Therefore, when performing a linear stabil-
ity test, it is accurate to examine short time evolution. Also,

based on this fact, we propose the criteria for defining the
following linear and nonlinear regimes. To find linear
regime where numerical solution estimates linear solution
well, we define error eðnΔtÞ between numerical and linear
solution as follows:

e nΔtð Þ = 1
Nx

〠
Nx

m=1
u xm, nΔtð Þ − ϕnmj j2

 !1/2

: ð33Þ

We can distinguish linear regime and nonlinear regime
based on the user-criteria tol as follows: if eðnΔtÞ < tol; then,
linear regime; otherwise, non-linear regime. We propose a
criterion tol using the initial condition uðx, 0Þ as follows:

tol = 1
4Nx

〠
Nx

m=1
u xm, 0ð Þj j2

 !1/2

: ð34Þ

Figure 7 shows proposed criterion and temporal evolu-
tion of error eðt = nΔtÞ for the time t with dynamic of linear
and numerical solutions.
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Figure 4: Numerical solution and theoretical solution at spinodal position (a) ϕave = 0 and (b) ϕave = 0:4 with different mode.
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Figure 5: Long- and short-time evolutions: (a) dynamics of the CH equation, (b)–(d) terms of Ginzburg–Landau free energy EðϕÞ: FðϕÞ,
ε2/2j∇ϕj2, and FðϕÞ + ε2/2j∇ϕj2, respectively.
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4. Conclusions

We studied a linear stability analysis for the CH equation in
spinodal region as different average levels. To solve the CH
equation, we used linearly stabilized splitting scheme and
Fourier-spectral method. Through the numerical simula-
tions, we observed various dynamics of the CH equation
and confirmed the numerical solution compared linear solu-
tion over time. We defined growth rate and also compared
numerical growth rate and analytic growth rate. Using dif-
ference between numerical and linear solution, we defined
error. By means of defined error, we distinguish linear
regime where numerical solution and linear solution match
because of the small error and nonlinear regime where do
not.

Appendix

A. Appendix: Linearlization

By the Taylor theorem, for real valued-function f ðxÞ, if f ðxÞ
has derivatives of all orders at a, then for each positive inte-
ger n,

f xð Þ = f að Þ + f ′ að Þ x − að Þ + f ′′ að Þ
2! x − að Þ2

+⋯+ f nð Þ að Þ
n!

x − að Þn + Rn xð Þ,
ðA:1Þ

where RnðxÞ =
Ð x
aðx − tÞn/n!f ðn+1ÞðtÞdt.

Now, we approximate the linearized functions of various
free energies at ϕave.

f1 ϕð Þ = F1′ ϕð Þ = ϕ3 − ϕ⇒ F1′ ϕð Þ = ϕ3ave − ϕave + 3ϕ2ave − 1
À Á

Á ϕ − ϕaveð Þ +
ðx
ϕave

x − tð Þf 2ð Þ
1 tð Þdt∴F1′ ϕð Þ

≈ ϕ3ave − ϕave + 3ϕ2ave − 1
À Á

ϕ − ϕaveð Þ,
ðA:2Þ

f2 ϕð Þ = F2′ ϕð Þ = 6ϕ5 − 4ϕ3 − 2ϕ⇒ F2′ ϕð Þ = 6ϕ5ave − 4ϕ3ave
− 2ϕave + 2 15ϕ4ave − 6ϕ2ave − 1

À Á
ϕ − ϕaveð Þ

+
ðx
ϕave

x − tð Þf 2ð Þ
2 tð Þdt∴F2′ ϕð Þ ≈ 6ϕ5ave − 4ϕ3ave

− 2ϕave + 2 15ϕ4ave − 6ϕ2ave − 1
À Á

ϕ − ϕaveð Þ,

ðA:3Þ

f3 ϕð Þ = F3′ ϕð Þ = 0:5 ln 1 + ϕ

1 − ϕ

� �
− 3:39ϕ⇒ F3′ ϕð Þ

= 0:5 ln 1 + ϕave
1 − ϕave

� �
− 3:39ϕave

+ 1
2 1 + ϕaveð Þ + 1

2 1 − ϕaveð Þ − 3:39
� �

ϕ − ϕaveð Þ

+
ðx
ϕave

x − tð Þf 2ð Þ
3 tð Þdt∴F3′ ϕð Þ ≈ 0:5 ln 1 + ϕave

1 − ϕave

� �
− 3:39ϕave +

1
2 1 + ϕaveð Þ + 1

2 1 − ϕaveð Þ − 3:39
� �

Á ϕ − ϕaveð Þ:
ðA:4Þ
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Figure 7: Temporal evolution of error eðt = nΔtÞ for mode K = 2.
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