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In this article, we develop an unconditionally stable numerical scheme for the modifed Fisher–Kolmogorov–Petrovsky–Piscounov
(Fisher–KPP) equation modeling population dynamics in two-dimensional space. Te Fisher–KPP equation models the process of
interaction between reaction and difusion. Te new solution algorithm is based on an alternating direction implicit (ADI) method
and an interpolation method so that it is unconditionally stable. Te proposed fnite diference method is second-order accurate in
time and space variables. Terefore, the main purpose of this study is to propose the novel Fisher–KPP equation with a nonlinear
growth term and develop an unconditionally stable second-order numerical scheme. Te novelty of our method is that it is
a numerical method with second-order accuracy using interpolation and ADI methods in two dimensions. We demonstrate the
performance of the proposed scheme through computational tests such as convergence and stability tests and the efects of model
parameters and initial conditions.

1. Introduction

In this paper, we develop an unconditionally stable diference
scheme for the modifed Fisher–Kolmogorov–Petrovsky–Pisco
unov (Fisher–KPP) equation in the two-dimensional (2D) space:

zu(x, y, t)

zt
� D∆u(x, y, t) + Kpqu

p
(x, y, t)[1 − u(x, y, t)]

q
, (1)

where u(x, y, t) is the population density at (x, y) in 2D
domainΩ and at time t. Here D, Kpq, p, and q are all positive
parameters. Figure 1 visualizes the reaction term, the second
term Kpqup(1 − u)q on the right side of equation (1), with
various values of p and q.

To compare the diference depending on various values
of p and q, we require its integral from 0 to 1 to be unit as
shown in the following equation:

􏽚
1

0
Kpqu

p
(1 − u)

q
du � 1, (2)

where

Kpq �
Γ(p + q + 2)

Γ(p + 1)Γ(q + 1)
and Γ(z) � 􏽚

∞

0
t
z− 1

e
− tdt. (3)

In this paper, unless otherwise stated, we use equation
(3) for the value of Kpq.

Te original equation, proposed by Fisher in a 1937
paper [1], is a one-dimensional model which has been
studied in various forms. Salako and Shen studied the long
time behaviour of random Fisher–KPP equation [2]. Tian
et al. studied the Fisher–KPP with difusion and nonlocal
delay [3]. Leyva and Plaza focused on the spectral stability of
the degenerate Fisher–KPP equation [4]. Tey investigated
the long time behavior of solutions using numerical sim-
ulations. Hernández and Trofmchuk established the
uniqueness of monotone wavefronts in the Fisher–KPP
equation [5]. Te Fisher–KPP equation has also been widely
used in mathematical biology. Feng et al. proposed a single
species movement model in a ranged boundary using the
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Fisher–KPP equation [6]. Warne et al. presented a meth-
odology that can be applied to various biological models,
such as cell spreading [7]. In [8, 9], authors proposed
entropy-based methods for the Fisher–KPP equation.

Te Fisher–KPP equation has been expanded to include
multidimensional equations. Roquejofre and Rous-
sier–Michon studied the asymptotic behaviour as time goes
to infnity in two spatial dimensions [10]. Yahyaoui et al.
used the 2D Fisher–KPP equation with time-dependent
parameters to predict activated or inhibited cell-sheet
wound closure [11]. In order to solve the 2D Fisher–KPP
equation, Ozdemir et al. developed a three-step ultra-
spherical wavelet collocation method which is third-order
accurate in time [12]. Teir work is based on the Jacobi
wavelet collocation method, which Secer and Cinar de-
veloped for the fractional Fisher’s equation [13]. Rui and
Zhang studied the Fisher–KPP type time-fractional
reaction-difusion models by combining the separation
variable and integral bifurcation methods [14]. Time frac-
tional Fisher–KPP is also studied by [15]. Furthermore, the
fnite diference method studied in [16] with the time
fractional equation is applied in our proposed method.
Minors and Dawes studied the dynamics of traveling wave
solutions to the 2D Fisher–KPP equation [17]. Palencia
analyzed a system including the Fisher–KPP reaction term,
linear advection term, and high-order operator [18]. At-
tempts on three-and higher-order dimensions have also
been made by Girardin [19]. Lou and Lu showed that the
spreading phenomena in the high-dimensional Fisher–KPP
equation converge to the unique positivity state [20]. Tey
showed the uniqueness of the one-dimensional problem and
used a diferent method for the N-dimensional problem.Te
gradient decay estimate for the solutions of the multidi-
mensional Fisher–KPP equation was studied by Roquejofre
and Tarfulea [21]. Tey proved that the frst and second
derivatives of the solution decay exponentially over time.
Flandoli et al. studied suitable conditions which can delay
the blow-up bymultiplicative noise in the three-dimensional
Fisher–KPP equation [22]. Multidimensional Fisher–KPP
equation was also used in describing a biological reaction-

difusion system. Khater and Alabdali used the nonlinear
(2 + 1)-dimensional Fisher–KPP model in population ge-
netics and nematic liquid crystals [23]. McCue et al. studied
the porous-Fisher equation and its solutions’ various
properties [24]. Oruç solved the 2D Fisher–KPP equation
using the Chebyshev wavelet method [25]. Faye and Holzer
confrmed the nonlinear asymptotic stability of the critical
front of the Fisher–KPP equation [26]. Xu et al. studied the
nonlocal dispersal Fisher–KPP equation and considered
three issues of spreading speed [27]. Furthermore, the
various versions of the Fisher–KPP equation were studied
[28–36]. In [28], the author considered the nonlocal difusive
Fisher model. Tey studied the problem of sudden jump
points in a model. Te authors in [29] considered a Fish-
er–KPP equation for the evolution of the spatial density of
a single population. In [30], the authors considered the time
fractional nonlinear KPP equation to investigate a mathe-
matical biological model. Tey showed the condition of the
existence and uniqueness of the governing equation. In
addition, the numerical experiments showed practical
solutions.

Te main purpose of this study is to propose the novel
Fisher–KPP equation with a nonlinear growth term and
develop an unconditionally stable second-order numerical
scheme. An important motivation for the proposed nu-
merical scheme is to propose an operator splitting method
(OSM) with second-order accuracy in both space and time
using the interpolation method for the modifed Fisher–KPP
equation. Te OSM has many advantages, such as reducing
multidimensional problems to one-dimensional problems,
simplifying problems, making unconditional schemes be-
cause they preserve order accuracy in time, and speeding up
computations for some complex problems [37].

Te paper is organized in the following way. In Section 2,
we propose the numerical solution algorithm for the 2D
Fisher–KPP equation. We present computational tests to
confrm the efect of parameters, stability, and convergence
of the proposed method in Section 3. In Section 4, the
conclusion is given.

2. Numerical Solution Algorithm

We consider a 2D domain Ω � (Lx, Rx) × (Ly, Ry) with an
Nx × Ny grid to numerically solve equation (1). Let h �

(Rx − Lx)/Nx � (Ry − Ly)/Ny be the uniform spatial mesh
size, ∆t be time step, un

ij be an approximation of u(xi, yj, tn)

at cell centers of the grid, where xi � Lx + (i − 0.5)h for
i � 1, 2, . . . , Nx, yj � Ly + (j − 0.5)h for j � 1, 2, . . . , Ny,
and tn � n∆t. LetL(u(x, t)) � D∆u(x, t) be linear operator,
N(u(x, t)) � Kpqup(x, t)[1 − u(x, t)]q be nonlinear opera-
tor, and x � (x, y) in 2D domain Ω. Tus, equation (1) can
be written as follows:

zu(x, t)

zt
� L(u(x, t)) + N(u(x, t)). (4)

To solve equation (4), we used the OSM [38]. Te idea of
OSM is to divide the operator of the system into simpler
operators. Each operator can also be divided into fractional
time steps. We divided the linear operator into two time
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Figure 1: Kpqup(1 − u)q with various p and q values.
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steps, each progressing only a half time step ∆t/2, whereas
the nonlinear operator moves one full time step ∆t. Tis
makes our method be a second-order OSM. More specif-
cally, we numerically solve equation (5) with
u1(x, 0) � u(x, n∆t) to get u1(x,∆t/2).

zu1(x, t)

zt
� L u1(x, t)( 􏼁. (5)

Using u1(x,∆t/2), we numerically solve equation (6)
with u2(x, 0) � u1(x,∆t/2) to get u2(x,∆t).

zu2(x, t)

zt
� N u2(x, t)( 􏼁. (6)

Using u2(x,∆t), we numerically solve equation (7) with
u3(x, 0) � u2(x,∆t) to get u3(x,∆t/2).

zu3(x, t)

zt
� L u3(x, t)( 􏼁. (7)

Finally, we set u(x, (n + 1)∆t) � u3(x,∆t/2). Te full
scheme is as follows:

u(x, (n + 1)∆t) � L
∆t/2°N∆t

°
L
∆t/2

􏼒 􏼓u(x, n∆t). (8)

Equations (5) and (7) can be solved using the alternating
directions implicit (ADI) fnite diference method [39].
Now, we introduce the ADImethod.Te ADImethod solves
an equation by dividing a time step into two stages. Here,
each stage treats only one operator implicitly and uses a half
time step. We solve the equation with each standard space
direction. Te equation is frst implicitly solved with respect
to x and then implicitly solved with respect to y in 2D. For
simplicity, we denote u1 and u3 by u.

u
∗
ij − u

n
ij

∆t/2
� L

x
ADIu
∗
ij,

(9)

u
∗∗
ij − u

∗
ij

∆t/2
� L

y

ADIu
∗∗
ij , (10)

with discrete diference operators Lx
ADI and L

y

ADI defned
by

L
x
ADIu
∗
ij �

D

2
u
∗
i+1,j − 2u

∗
ij + u
∗
i−1,j

h
2 +

D

2
u

n
i,j+1 − 2u

n
ij + u

n
i,j−1

h
2 ,

L
y

ADIu
∗∗
ij �

D

2
u
∗
i+1,j − 2u

∗
ij + u
∗
i−1,j

h
2 +

D

2
u
∗∗
i,j+1 − 2u

∗∗
ij + u

∗∗
i,j−1

h
2 .

(11)

Adding equations (9) and (10), we get the following
equation:

u
∗∗
ij − u

n
ij

∆t/2
� L

x
ADIu
∗
ij + L

y

ADIu
∗∗
ij . (12)

After fnding u1(x,∆t/2) by solving the difusion
equation with ADI method, we use a recently developed
interpolation method [41, 42] to solve the nonlinear
equation (6). Assume that M is a fxed positive integer.

Let I � Is ∣ Is � (s − 1)/(M − 1), for  s � 1, . . . , M􏼈 􏼉 be
a partition of the unit interval. We numerically solve
equation (6) on the grid I with a smaller time step ∆τ �

∆t/Nτ where Nτ will be later defned. Because equation
(6) is an ordinary diferential equation with respect to
time variable t with fxed values of spatial variable (x, y),
we can rewrite it with a new variable Φ(t):

dΦ(t)

dt
� KpqΦ

p
(t)[1 −Φ(t)]

q
. (13)

Let Φs(t) be the function satisfying equation (13) for s �

1, . . . , M with the initial condition Φs(0) � Is. To simplify,
we use an explicit Euler’s method, which is for each
m � 0, . . . , Nτ − 1,

Φs((m + 1)∆τ) � Φs(m∆τ) + ∆τKpqΦ
p
s (m∆τ) 1 − Φs(m∆τ)( 􏼁

q
.

(14)

Terefore, we obtain the numerical solution Φs(∆t) of
equation (14) at the point Is, as shown in Figure 2.

Next, we compute an Nτ which can stably integrate
equation (14). If Is � 0 or 1, then for any ∆τ,

Φs((m + 1)∆τ) � Is, for m � 0, . . . , Nτ − 1, (15)

from equation (14). We want to say that Φs((m + 1)∆τ) is
bounded by zero and one for m � 0, . . . , Nτ − 1 when
0< Is < 1. We can show 0≤Φs((m + 1)∆τ)≤ 1 from the
former step 0≤Φs(∆τ)≤ 1 using the mathematical in-
duction. Assume that 0< Is < 1,Φs(0) � Is, and m � 0. Ten
by equation (14) we get

Φs(∆τ) � Is + ∆τKpqI
p
s 1 − Is( 􏼁

q
. (16)

We have Φs(∆τ)> 0 for any ∆τ from equation (16)
because KpqIp

s (1 − Is)
q > 0 for 0< Is < 1. Terefore, we only

need to fnd ∆τ satisfying Φs(∆τ)≤ 1, i.e.,
Is + ∆τKpqIp

s (1 − Is)
q ≤ 1, which results in the inequality

∆τ ≤ I
−p
s 1 − Is( 􏼁

1− q/Kpq. (17)

Let G(Is) � I−p
s (1 − Is)

1− q/Kpq be the right hand side of
equation (17). Te critical value of G(Is) on 0< Is < 1 is Is �

p/(p + q − 1) because G′(Is) � I−p−1
s (1 − Is)

− q[(p + q − 1)

Is − p]/Kpq. If we assume p, q≥ 1, then we have two cases:
0<p/(p + q − 1)< 1 and p/(p + q − 1)≥ 1, as shown in
Figures 3(a) and 3(b), respectively.

In the case of 0<p/(p + q − 1)< 1, ∆τ � I
−p
∗

(1 − I∗)
1− q/Kpq satisfes equation (17), where I∗ � p/

(p + q − 1).Terefore, we setNτ � [∆tI
p
∗(1 − I∗)

q− 1Kpq] + 1,
where [x] is the foor function. In the case of q≤ 1, which
implies q � 1 because we assumed q≥ 1. Ten,
G(Is) � I−p

s /Kpq becomes a decreasing function and
∆τ � 1/Kpq satisfes equation (17) for any Is. Terefore, we set
Nτ � [∆tKpq] + 1. In summary, we have the following formula:

Nτ �
∆tKpq􏽨 􏽩 + 1, if  q � 1,

∆tI
p
∗ 1 − I∗( 􏼁

q− 1
Kpq􏽨 􏽩 + 1, if  q> 1,

⎧⎪⎨

⎪⎩
(18)

where I∗ � p/(p + q − 1). Now, with precomputed nu-
merical solutions Φs(∆t) for s � 1, . . . , M and u∗∗ij , we
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calculate u∗∗∗ij using the piecewise linear interpolation as
follows:

u
∗∗∗
ij �

Is+1 − u
∗∗
ij

Is+1 − Is

Φs(∆t) +
u
∗∗
ij − Is

Is+1 − Is

Φs+1(∆t), (19)

where Is ≤ u∗∗i ≤ Is+1 for some s. As abovementioned, u∗∗ij is
u1(xi, yj, n∆t) and u∗∗∗ij is u2(xi, yj,∆t). Finally, we can get
u3(xi, yj,∆t/2) using the ADImethod and u2(xi, yj,∆t). We
illustrated un+1

ij schematically in Figure 4.
Te stability and convergence of the proposed

method are as follows. Te proposed algorithm consists
of the three steps, i.e., equations (5)–(7). In the frst step,
equation (5) is the two-dimensional partial diferential
equation.

zu(x, y, t)

zt
�

z
2
u(x, y, t)

zx
2 +

z
2
u(x, y, t)

zy
2 , (20)

which is numerically solved in equations (9) and (10) by using
the Peaceman–Rachford (PR) ADI method [39]. Tis ADI
scheme was proved unconditionally stable in [39]. In the
second step, equation (6) is the nonlinear equation as follows:

zu(x, y, t)

zt
� Kpqu

p
(x, y, t)[1 − u(x, y, t)]

q
, (21)

which is solved using the interpolation. Its numerical so-
lution, given by equation (19), is unconditionally stable from
the construction of the scheme. In the third step, equation
(7) is the same to equation (5). Te numerical solution for

(i) Step 1: equation (9) is rewritten as
αiu
∗
i−1,j + βiu

∗
ij + ciu

∗
i+1,j � fn

ij,

where
αi � −D/(2h2), βi � 2/∆t + D/h2, ci � −D/(2h2),

fn
ij � 2un

ij/∆t + D(un
i,j+1 − 2un

ij + un
i,j−1)/(2h2).

For a fxed index j, the solution vector u∗1: Nx,j is found by solving the tridiagonal system [40]
Axu∗1: Nx,j � fn

1: Nx,j,

where

Ax �

β1 + α1 c1 0 . . . 0 0
α2 β2 c2 . . . 0 0
0 α3 β3 . . . 0 0
⋮ ⋮ ⋱ ⋱ ⋱ ⋮
0 0 0 . . . βNx−1 cNx−1
0 0 0 . . . αNx

βNx
+ cNx

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Ten, we perform a loop over the y-direction:
for j � 1: Ny

for i � 1: Nx

set αi, βi, ci, and fn
ij by equations (Algorithm 1)

end
Solve Axu∗1: Nx,j � fn

1: Nx,j by using the Tomas algorithm
end

(ii) Step 2: equation (10) is rewritten as
αju
∗∗
i,j−1 + βju

∗∗
ij + cju

∗∗
i,j+1 � g∗ij,

where
αj � −D/(2h2), βj � 2/∆t + D/h2, cj � −D/(2h2),

g∗ij � 2u∗ij/∆t + D(u∗i+1,j − 2u∗ij + u∗i−1,j)/(2h2).

For a fxed index i, the solution vector u∗ ∗i,1: Ny
is found by solving the tridiagonal system

Ayu∗ ∗i,1: Ny
� g∗i,1: Ny

,

where

Ay �

β1 + α1 c1 0 . . . 0 0
α2 β2 c2 . . . 0 0
0 α3 β3 . . . 0 0
⋮ ⋮ ⋱ ⋱ ⋱ ⋮
0 0 0 . . . βNy−1 cNy−1
0 0 0 . . . αNy

βNy
+ cNy

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Ten, we perform a loop over the x-direction:
for i � 1: Nx

for j � 1: Ny

set αj, βj, cj, and g∗ij by equations (Algorithm 1)
end
solve Ayu∗ ∗i,1: Ny

� g∗i,1: Ny
by using the Tomas algorithm

end

ALGORITHM 1: ADI.
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the third step is also unconditionally stable. Terefore, the
proposed numerical scheme is unconditionally stable be-
cause all substeps are unconditionally stable.

Next, we consider the convergence of the proposedmethod.
In the frst and third steps, the ADI scheme is temporally and
spatially second-order accurate, as proved in [39]. Due to the
property of time subcycling in the second step, we can make the
scheme second-order accurate. As described in [43], the full
scheme (8) is temporally and spatially second-order accurate.

In this study, for the sake of presentation, we presented
the proposed method in rectangular space domains dis-
cretized with Cartesian meshes and uniform discretization
of the time interval. If complex space domains are used, then
it is better to use other methods such as the multigrid
method [44] for the heat equation part. For a more efcient
method, we may use the adaptive time step method.

3. Computational Tests

3.1. Convergence Tests. We use the initial condition of
equation (1) in Ω � (−20, 20) × (−20, 20) with D � Kpq �

p � q � 1 as follows:

u(x, y, 0) �
1
2

−
1
2
tanh

x

2
�
6

√􏼠 􏼡􏼢 􏼣

2

. (22)

Te exact solution is given in [41]:

u(x, y, t) �
1
2

−
1
2
tanh

x

2
�
6

√ −
5t

12
􏼠 􏼡􏼢 􏼣

2

. (23)

Figure 5 shows u(x, y, 0) (gray color) and u(x, y, 4)

(transparent color).

0 0.2 0.4 Is0.6 0.8 1

104

103

102

101

Is
—p (1 — Is)1—q (K)

(a)

Is0 0.2 0.4 0.6 0.8 1

106

104

102

100

Is
—p (1 — Is)1—q (K)

(b)

Figure 3: Semilogy plot of G(Is) � I−p
s (1 − Is)

1− q/Kpq with respect to Is: (a) p � 1, q � 3 and (b) p � 3, q � 1.

Is0 1

1

Φs (Δt)

Figure 2: Numerical solution Φs(∆t) of equation (16) at the point Is.
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We list the l2-norm error between the proposed nu-
merical and exact solutions, and the convergence rate of the
numerical results of increasing Nt values with fxed fnal

time T � 4 and Nx � Ny � 28 in Table 1. (i.e., Rate
(Nt, 2Nt) � log(Error(Nt)/Error(2Nt))/ log(2)). Here,
l2-norm error is defned as follows:

1

0.5

0
-20 -10 0 10 20

-20

0

20

y

x

u

Figure 5: u(x, y, 0) (gray color) and u(x, y, 4) (transparent color).

Table 1: l2-norm error and temporal convergence rate.

Nt 64 128 256 512

Error (Nt) 2.6764e − 03 6.7565e − 04 1.6887e − 04 4.2921e − 05
Rate (Nt, 2Nt) 1.9859 2.0004 1.9762
CPU time (s) 0.3011 0.5894 1.1635 2.3023

uij
n+1

uij
**

1

Φs+1 (Δt)

Φs (Δt)

0 1Is Is+1

Figure 4: Schematic diagram of un+1
ij using the interpolation.

Table 2: l2-norm error and spatial convergence rate.

Nx × Ny 16 × 16 32 × 32 64 × 64 128 × 128

Error (Nx × Ny) 2.9605e − 03 7.6411e − 04 1.8824e − 04 4.3929e − 05
Rate (Nx × Ny, 2Nx × 2Ny) 1.9540 2.0212 2.0994
CPU time (s) 2.2735 5.1009 14.5456 43.7526

6 Journal of Mathematics

 1469, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2023/5527728 by Junseok K

im
 - K

orea U
niversity M

edical , W
iley O

nline L
ibrary on [14/07/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



l2-norm error( 􏼁 �

����������������������

1
NxNy

􏽘

Nx

i�1
􏽘

Ny

j�1
u
exact
ij − uij􏼐 􏼑

2

􏽶
􏽴

, (24)

where uexact is the exact solution of u. Terefore, we can
confrm that the computational method is second-order
accurate in time.

We list the l2-norm error between the proposed nu-
merical and exact solutions, and the convergence rate of the
numerical results of increasing Nx × Ny values with fxed
fnal time T � 4 and Nt � 215 in Table 2. (i.e., Rate (Nx ×

Ny, 2Nx × 2Ny) � log(Error (Nx × Ny)/Error(2Nx ×

2Ny))/ log(2)). Terefore, we can confrm that the com-
putational method is second-order accurate in space.

Tables 1 and 2 provide CPU times calculated using an
Intel(R) Core(TM) i9-13900K 3.00GHz processor for each
experiment.

3.2. Stability Test. We perform that the proposed method
is unconditionally stable. We use the initial condition
(22) to check whether the proposed scheme is stable on
Ω � (−20, 80) × (−0.5, 0.5). Te parameters are
Nx � 1000, Ny � 10, and T � 30. We examine three
diferent time steps ∆t � 0.01, 0.1, and 1. In Figure 6, for
∆t � 0.01, it is confrmed that the result overlaps with the
exact solution equation (23). Te solution does not blow
up for ∆t � 1.

3.3.DEfects. We simulate the computational test to observe
the efect of the difusion coefcient D. Te initial conditions
are as follows:

u(x, y, 0) � 0.2 cos(2πx)cos(2πy) + C, (25)

where C is constant, Nx � Ny � 100, T � 0.4, ∆t � 0.01, and
p � q � 1 on Ω � (0, 1) × (0, 1). Figure 7 shows the efect of
difusion coefcient D with (a) C � 0.25, (b) C � 0.5, and (c)
C � 0.75. From the top to bottom rows, initial condition
(24), result with D � 0.001, result with D � 0.1, and tem-
poral evolution of total mass M are shown. We can observe
that the case of D � 0.1 fattened faster than the case of
D � 0.001. With C � 0.25, as shown in Figure 7(a), the
temporal evolution of the total mass is greater with D � 0.1
than D � 0.001.

3.4. p and q Efects. We investigate the efect of p and q

values with the following initial condition on
Ω � (0, 1) × (0, 1):

u(x, y, 0) � 0.45 cos(2πx)cos(2πy) + 0.5. (26)

We also calculate and observe M, defned as the total
mass. Te parameters are Nx � Ny � 100, ∆t � 0.01, and
D � 0.001. Here, a small difusion coefcient D is used to
minimize the difusion term efect and make the nonlinear
term dominant in equation (1). Tis section is divided into
two parts: p � q and p≠ q.

3.4.1. p � q. For p � q, Figure 8 shows the profles of
Kpqup(1 − u)q with p � q � 1,2,5, and 10. As the values of p

and q increase, the curve of Kpqup(1 − u)q becomes nar-
rower around u � 0.5.

In Figure 9, (a) is the initial condition (25), and (b) is the
temporal evolution of each total mass M with p � q � 1
(solid line) and p � q � 10 (dashed line). We can observe the
reversion of the total mass as time evolves. In early times, the
total mass with p � q � 10 is larger, however, later the total
mass with p � q � 1 is larger. (c) and (d) are profles of
u(x, y, t) with p � q � 1 and p � q � 10, respectively. (e) is
the subtraction (d) from (c). Here, the gray plane is the plane
where z � 0. From the left to right column, t � 0.05, 0.1, and
1.5, respectively. As shown in Figure 9(e), we can observe
that in the case of p � q � 1, the small concentration of mass
grows faster than the other case.

3.4.2. p≠ q. In Figure 10, (a) is the initial condition (25), (b)
is the temporal evolution of each total mass M with p � 1,
q � 9 (dashed line); p � q � 5 (solid line); and p � 9, q � 1
(dotted line). We can observe diferent increases of the total
mass as time evolves. (c), (d), and (e) are profles of u(x, y, t)

with p � 1, q � 9; p � q � 5; and p � 9, q � 1, respectively.
From left to right column, t � 0.2, 0.4, and 0.6, respectively.

3.5. Evolution of Numerical Solution. Next, we consider the
efect of initial confguration on the evolution. We use three
diferent initial conditions on Ω � (−1.2, 1.2) × (−1.2, 1.2):

u(x, y, 0) �
0.2, if−0.57≤ x≤ 0.61,

0, otherwise,

⎧⎨

⎩ (27)

u(x, y, 0) �
0.2, if−0.97 + 0.8k≤x≤ − 0.59 + 0.8k for k � 0, 1, 2,

0, otherwise,
􏼨 (28)

u(x, y, 0) �
0.2, if−1.07 + 0.4k≤x≤ − 0.89 + 0.4k  for k � 0, . . . , 5,

0, otherwise.
􏼨 (29)
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Figure 7: Efect of difusion coefcient D: (a) C � 0.25, (b) C � 0.5, and (c) C � 0.75. From to bottom rows, initial condition (24), result with
D � 0.001, result with D � 0.1, and temporal evolution of total mass.
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Figure 6: Numerical solutions using ∆t � 0.01, 0.1, 1, and exact solution.
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Figure 8: Profles of Kpqup(1 − u)q with p � q � 1, 2, 5, and 10.
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Figure 9: Continued.
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Figure 9: (a) Initial condition (t � 0). (b) Temporal evolution of each total mass with p � q � 1 (solid line) and p � q � 10 (dashed line).
Confgurations of u(x, y, t) with (c) p � q � 1 and (d) p � q � 10. (e) Subtraction (d) from (c). From left to right column, t � 0.05, 0.1, and
1.5, respectively.
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Figure 10: Continued.

10 Journal of Mathematics

 1469, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2023/5527728 by Junseok K

im
 - K

orea U
niversity M

edical , W
iley O

nline L
ibrary on [14/07/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



1

0.5

0.5 0.5

0

0 0

u

y x

1 1

1

0.5

0.5 0.5

0

0 0

u

y x

1 1

1

0.5

0.5 0.5

0

0 0

u

y x

1 1

(e)

Figure 10: (a) Initial condition (t � 0). (b) Temporal evolution of each total mass with p � 1, q � 9 (dashed line); p � q � 5 (solid line); and
p � 9, q � 1 (dotted line). Confgurations of u(x, y, t) with (c) p � 1, q � 9; (d) p � q � 5; and (e) p � 9, q � 1. From left to right column,
t � 0.2, 0.4, and 0.6, respectively.
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Figure 11: Continued.
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Here, p � q � 5, D � 0.05, Nx � Ny � 120, ∆t � 0.01,
and fnal time T � 1.2 are used. In Figure 11, (a)–(c) are the
evolutions of initial conditions equations (26)–(28), re-
spectively. From left to right, times are at t � 0, 60∆t, and
120∆t. (d) is the temporal evolution of total mass: (a) solid
line, (b) dashed line, and (c) dotted line. In Figure 11(a), the
solution of equation (27) grows faster than equations (28)
and (29) at frst. However, the solution grows more slowly
than that of equation (28) over time. In Figure 11(b), it can
be seen that the solution grows rapidly after evolution has
progressed to some extent.

3.6. Traveling Wave Solution. Finally, we investigate the
traveling wave solution for various p and q values. We use the
following initial condition on the Ω � (−20, 80) × (−2, 2):

u(x, y, 0) �
1
2

−
1
2
tanh

x

2
�
6

√􏼠 􏼡􏼢 􏼣

2

. (30)

Te parameters are Nx � 1000, Ny � 40, T � 8, ∆t � 0.01,
and D � 1. Figure 12 shows the initial condition and fnal time
solutions with diferent p and q values. We can observe the
sharp transition layer as the values ofp and q increase because of
the narrow curve shape of the nonlinear term in the governing
equation.

Te wave speed of traveling wave solution is calculated
and compared with the exact solution. For comparison
with the exact solution of the traveling wave solution, we
consider the case p � q � 1. Te exact solution of traveling
wave solution is as follows:

u(x, y, t) �
1
2

−
1
2
tanh

1
2

�
6

√ x −
5t

�
6

√􏼠 􏼡􏼠 􏼡􏼢 􏼣

2

, (31)

with the wave speed s � 5/
�
6

√
. In order to numerically obtain

the wave speed, the numerical solution is obtained when t �

10 in the domain Ω � (−20, 40) × (−0.5, 0.5) to obtain the
wave speed. Te parameters used are h � 0.025 and ∆t � h2.
Te numerical wave speed is 2.0407 and when compared
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Figure 11: (a–c) are evolutions of initial conditions equations (26)–(28), respectively. From left to right, times are at t � 0, 60∆t, and 120∆t.
(d) Temporal evolution of total mass: (a) solid line, (b) dashed line, and (c) dotted line.
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Figure 12: Traveling wave solutions with various p and q values.
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with s, the diference is 4.9975e − 4, which confrms that the
numerical wave speed is appropriate.

4. Discussion and Conclusions

In this article, we developed an unconditionally stable com-
putational scheme for the modifed Fisher–KPP equation
modeling population dynamics in 2D space. Te Fisher–KPP
equation models the process of interaction between reaction
and difusion. Te proposed novel numerical solution algo-
rithm consists of an ADI scheme and an interpolation method.
Te proposed numerical scheme is temporally and spatially
second-order accurate. We confrmed the performance of the
proposedmethod through numerical tests such as convergence
and stability tests and the efects of model parameters and
initial conditions. In future work, we use a second-order
unconditionally energy stable time-marching scheme [45] to
solve the Fisher–KPP equation.
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