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breathing frequency, blood flow velocity, solubility, and diffusivity on the par-
tial pressure of inert gas in blood and tissue. Additionally, the effects of anes-
thetic inert gas and oxygen on venous blood partial pressure were analyzed.
Simulation results demonstrate that the high solubility and diffusivity of anes-
thetic inert gas lead to its prolonged presence in blood and tissue, resulting in
lower partial pressure in venous blood. These findings enhance our under-
standing of inert gas interaction with alveolar/venous blood, with potential
implications for medical diagnostics and therapies.
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1 | INTRODUCTION

The term “inert” is used to describe gases with low chemical reactivity. The atmosphere contains naturally occurring
inert gases, such as argon (Ar), helium (He), krypton (Kr), neon (Ne), nitrogen (N,), radon (Rn), and xenon (Xe). These
gases’ inert nature makes them useful in various applications, such as providing a nonreactive environment for certain
chemical reactions, serving as carrier gases in analytical instruments, and being used as protective atmospheres in
industrial processes. Nitrogen is the most abundant inert gas. Additionally, helium and argon are commonly used
in breathing mixtures for divers. Xenon has anesthetic properties and is used in surgical procedures.

Besides these applications, there may be some health risks due to the imbalance in anesthesia’ > and excessive inha-
lation of certain inert gases, such as radon, atmospheric nitrogen,*” helium,* '° and argon. These gases primarily affect
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the oxygen level'''* in the blood, which causes an imbalance of partial pressure of gases in arterial as well as venous
blood."” Here, the term partial pressure is defined as the pressure exerted by a particular gas alone.'®"”

Generally, in the process of respiration, we inhale a mixture of gases, which are exchanged between the air-blood
barrier through the process of simple diffusion with the help of the partial pressure of gases.'® In the context of blood
gas analysis, the partial pressure of gases in oxygenated blood (upon entering the body) is referred to as “arterial
blood partial pressure,” while in deoxygenated blood (as it exits the body), it is termed “venous blood partial
pressure.”"’

Due to excess inhalation of inert gas and imbalance in anesthesia, the partial pressure affects the arterial blood as
well as the venous blood, which causes impaired gas exchange not only in young people but also in elderly.'*'*"** In lit-
erature, there are various theoretical studies”®®?>*> on the attempt of suicide by inhalation of an excessive amount of
inert gas. In a forensic investigation, it was documented that a 37-year-old male was discovered unresponsive inside his
vehicle, with five liquid nitrogen tanks found in the trunk,* indicating excessive inhalation of nitrogen gas. Addition-
ally, a helium suicide case was also identified in Carfora et al®

Furthermore, in a study by Hedenstierna and Rothen,*® it was observed that during general anesthesia with
mechanical ventilation, there was a consistent impairment in pulmonary gas exchange, resulting in decreased blood
oxygenation and potential lung tissue collapse. Another physiological study conducted by Strandberg et al.> examined
14 patients who underwent anesthesia, using computerized tomography. The findings revealed that within 5-10 min of
anesthesia, all patients developed lung densities in a dependent, crest-shaped pattern. Notably, in nine out of ten
patients, these densities persisted 1 h after surgery, and in five out of ten patients, they were still present 24 h after anes-
thesia. From the literature, we found that inhaling inert gases to a significant extent can result in adverse health
effects.” Unfortunately, these gases are colorless and odorless, making them difficult to detect using standard toxicologi-
cal analysis. Additionally, their hidden nature poses an added challenge in identifying their presence. Once inhaled,
these gases mix with oxygen in the lungs and are transported through the bloodstream, affecting both the partial pres-
sure of oxygen in the blood and tissues.

In recent years, numerous studies have explored various methodologies for facilitating gas exchange between tissues
and capillaries. For instance, Singh et al.”” investigated the simultaneous transportation of oxygen and carbon dioxide
within systemic capillaries and surrounding tissues under hyperbaric conditions, employing the eigenfunction expan-
sion method. Additionally, to calculate the alveolar partial pressure of carbon monoxide Sharan et al.*® applied the
Newton—-Raphson method and found that the alveolar partial pressure increased exponentially with time and attained
an asymptotic value for a given atmospheric carbon monoxide concentration. Another study by Sharan et al.*® utilized
the finite element method (FEM) to solve the transportation of oxygen in the systemic capillaries and surrounding tis-
sues, however, to resolve the nonlinearities of the system the authors used a fixed-point iterative technique. Melo
et al.*® applied the downhill simplex method and observed that accounting for diffusing capacity and
ventilation-perfusion heterogeneity increased oxygen arterial pressure while decreasing total blood flow. Additionally,
in the process of inert gas exchange between tissue and blood capillaries, Whiteley et al.'” used FEM to calculate the
mixed-venous blood partial pressure, which is return to the lungs. Furthermore, Baker and Framery”' used an analyti-
cal method to solve the transportation of inert gas between tissue and blood capillaries using a multi compartment
model, while to calculate some values in the single compartment model author used some iterative method. In continu-
ation recently, Kori and Pratibha'® calculated intercapillary gas exchange with the effects of aging and various lung dis-
eases using the explicit finite difference method (FDM).

To solve some physical problems in axisymmetric or simple domains we need an appropriate approach that can be
employed efficiently in terms of accuracy and computational cost. One such approach is the operator splitting method
(OSM), where the problem is divided into smaller sub-problems and solved level by level. From the literature OSM has
found application in advection—diffusion problems. For instance, Ravshanov et al.** calculated the transport and diffu-
sion of air pollutants in the atmospheric boundary layer by using OSM together with a second-order implicit finite-
difference scheme in time and stated that OSM provides sufficient accuracy of the problem solution compared with field
measurement data and it has a certain advantage over other numerical methods, such as FDM and the variable substi-
tution method. Similarly, in addressing advection-dispersion-reaction problems, Valocchi and Malmstead® utilized
OSM to achieve high-order accuracy in the overall solution. Additionally, Liu et al.>* conducted a convergence analysis
and error estimate for the OSM applied to a reaction-diffusion system with detailed balance.

From these studies, we observed that in the context of gas exchange between tissue-blood capillaries in axisymmet-
ric or simple domains partial pressure was found by various complex methods, such as FEM. Therefore, in this study,
we investigate the impact of inert gas on the partial pressure of alveolar and venous blood by employing a fast and
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accurate OSM, which effectively separates the governing equations into smaller sub-problems so that the transport and
exchange of inert gas between blood capillaries and surrounding tissue cylinder can be understood efficiently. We dis-
cretized the governing equations using a fully implicit FDM, which allows us to use sufficiently large-time steps. The
use of large time step can lead to fast and efficient computation. To model the problem, we used partial differential
equations (PDEs), which consist of convection-diffusion in blood and only diffusion in tissue. The effects of initial arte-
rial pressure, breathing frequency, blood flow velocity, solubility, and diffusivity are found on the partial pressure of
inert gas in blood and tissue. Additionally, the effect of anesthetic inert gas and oxygen was analyzed on venous blood
partial pressure.

The proposed method uses the OSM with implicit FDM, which allows us to use relatively large time steps. There-
fore, on an axisymmetric computational domain, we expect that we can achieve fast numerical simulations for a given
final time compared with other numerical methods.

Further study is organized as follows. Section 2 presents the governing equations, and Section 3 proposes the meth-
odology for the numerical solution algorithm. Section 4 presents numerical experiments, and Section 5 presents the
conclusion.

2 | GOVERNING EQUATIONS

We used a mathematical model that includes one capillary inside the body section. Suppose that the circulation of
blood flow inside the body section is homogeneous. Blood flows inside a thin capillary, which is surrounded by an inter-
stitial space. The tissue can be considered as the interstitial space. Inert gas is passed inside the blood, which will be dif-
fused through blood-tissue interface into the interstitial space. Figure 1 presents the schematic of the physical problem.

To study flux transformation phenomena, we consider the convection-diffusion equation in blood and tissue sepa-
rately with interface conditions and some initial and boundary conditions as proposed by Whiteley et al.,'” and
others.?**>3® In the blood phase, we consider both convection and diffusion, while in the tissue phase, we consider only
diffusion. Due to radial symmetry, cylindrical polar coordinates are used to simplify the problem into two spatial
dimensions. The governing equations for the partial pressure of inert gas P(r,z,t) in blood and tissue are defined as
follows:

dP(r,z,t) JP(r,z,t)\ 19 [ dP(r,z.t)\ d°P(r,z.t)
“b< PR ey Bkt L PR I e | (1)
0<r<Rp, 0<z<d,
IP(r,z,t) 170 [ dP(rz,t) 82P(r,z,t)
atTiatDt {;0_’—<r or + 072 ’ 2)

Blood

Tissue (o, Dy)

Ry R,
> r

FIGURE 1 Schematic illustration of physical problem.
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Ry<r<Ry, 0<z<d,
where w is a constant velocity, r is radial coordinate, z is axial coordinate, R, is blood capillary radius, R; is tissue
radius, d is axial length of capillary, Dy is diffusion coefficient in plasma, D; is diffusion coefficient in tissue, a} is solu-
bility in plasma, and «; is solubility in tissue. To solve the governing equation, we use the following initial condition:
P(r,z,0)=0, for0<r<R;, and0<z<d, (3)
and defined the boundary conditions as: Input arterial blood partial pressure P, is,

P(r,0,t) = Py(r,0,t) = Pyexp(—ft), for0<r <Ry, (4)

where P, is initial arterial partial pressure difference entering in capillary, and f is frequency of breathing.
Radial symmetry implies that,

JP(r,z,t
M:O, forr=0, 0<z<d. (5)
or
The flux is zero across closed boundaries,
JP(r,z,t
M:O, forr=R;, 0<z<d, (6)
or
JP(r,z,t
%:0, for R, <r<R;, z=0 and d, (7)
and no diffusion flux is taken at the end of capillary,
JP(r,z,t
%:0, for0<r<Ry, z=d. (8)

In addition, P(r,z,t) and flux are continuous across the interface, therefore,

P(r,z,t) =R, =P(r,z,t) e for0<z<d, (9)
an, 2P| p, PP o cz<a. (10)
ar b ar =R
3 | METHODOLOGY
3.1 | Numerical solution algorithm

To solve the governing equation with boundary conditions, we employ the OSM. Figure 2 demonstrates the computa-
tional grid, which consists of rectangular cells of size Ar by Az. These cells Q; are centered in r-direction with
ri=(i—.5)Ar, where i=1,23,..,b—1,b,b+1,..,N, with Ar=R,/(b—.5), N,=10b—5 so that we can get
rn, +A4r/2=R, and in z-direction with zx = (k —.5)Az for k=1,2,...,N,. Here, N, and N, are number of cells in r- and
z-directions, respectively. The grid point r; is at the interface (blood-tissue barrier) through which flux will be continu-
ously diffused from the blood phase (from grid point r,_1) to the tissue phase (to grid point ry.1). Three different color
symbols (-, #, #) are used to show the interface and ghost points as well as respective boundary conditions. Let P}, be
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FIGURE 2 Schematic illustration of computational grid.

the numerical approximation of P(r;,zx,t,) where t, = nat and At is a time step. The discrete partial pressure field Pj,

for c=n,n+3,n+1 and the pressure at the interface Pbk are located at cell centers.

3.2 | Algorithm

We applied OSM in Equations (1) and (2). Then, both the equations are splitted into two equations. First one is a PDE
in r-direction and second one is a PDE in z-direction. Therefore, we have equations in r- and z-directions as,

r-direction equation:

Dy J r&P(r,z,t)
dP(r,z,t) r or or
ot D; d (raP(r ,251)

) for0<r <Ry,

T or o > forR, <r<R;,

P(R;,z.t) =P(R},z.t) on interface,

JP(r,z,t J0P(r,z,t .

abDbﬁ =R, = a,Dtﬁ on interface.

ar ar r—k;

z-direction equation:

é’zP(r,z, t) dP(r,z,t)

OP(r,z,t) Dy 07 —-w = for 0 <r <Ry,
at | PP(rzt
D[M for Ry <r<R;.
d7z?

(14)

On a given time nAt, P} is the initial condition of the r-direction equations, and the solution of the r-direction equa-
tion is the initial condition of the z-direction equations. Using a FDM,>” we will discretize the split equations on the

numerical grid as defined in Appendix A with the notation given at Section 3.1.
« Step 1: Discretization in r-direction,

We got following matrices forms,
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1
APTE =P,
where A; isan (N, —b+1) x (N, —b+1) matrix,
D
1+at t —a,D, 0 0 0 0
apDp
1o Ar (1+2a) 1427 0 0 0
—a1— o —a
! 2rpy1 ! ! 2Fpi1
0 1A (1+2a) 14-Ar 0 0
— — a —Q
! 2rpy2 ! ! 2Fpi2
A= : ]
0 0 P (1+2a;) 142 0
“ 2rN,72 “ “ 2rN,,2
0 0 0 o Ar (14-2a;) 1+ Ar
“ 2VNr_1 @ «“ 2rNr—1
Ar Ar
0 0 0 0 fal(lf—) 1+a1(177)
21‘,‘ N,
1 1 nT T
P = (P PyT) and P = (Pl Py ) (15)
1
AP =P},
Ar Ar
l4a(1+=0—) —a14+ 0 0 0 0
2}"1' 2}’,‘
Ar Ar
—a 1—— 1+2&2 —Qy 1+— 0 0 0
2ri Zl’i
0 —apDy apDp + a; Dy —a;Dy e 0 0
0 0 1A (1+2a1) 142 0 0
— - 104 —
A= ! 2rpi1 ! ! 2Fpi1 ,
0 0 T (1+2ay) 14 AT 0
— — 104 —
! 2¥N,—2 ! ! 2¥rN,—2
0 0 0 P (1+2ay) 142
a1 ZVN,71 a1 ay 2"N,—1
0 0 0 0 1 Ar 1+ 1 !
P e al1-20
1 2 1 2,
where A, is an N, x N, matrix, and,
1 1 T T
P = (P Phy) and Pp= (Pl Pl ) Sfork=2,..N;. (16)

« Step 2: Discretization in z-direction for i =1,...,N,.

We got following matrices forms,

85UB017 SUOWIWIOD BAIEa.D 3|t (dde aup Aq peuisnob ke a0 e VO ‘8sN JO Sa|nu Joj Afeiq1T 8UlUO AB]1M UO (SUOIHPUOD-PUB-SULIBY WO A8 | 1M ATeIq 1 Ul [UO//:SANY) SUORIPUOD PUe SWS | 84} 885 *[6202/20/7T] Uo ARIqiT8uluO AB|IM * BOIPBIN ANISIBAIUN B310Y - WY %0ssuUne AQ GEBE WIUO/ZO0T OT/I0P/W0™A8 | 1M AleIq Ul |Uo//Sdny wouy pepeojumod ‘8 ‘202 ‘L76.0v02



JYOTI ET AL. Wl LEY 7 of 24

1
BIP;HI _ P;"Jrz’
where B, is an N, x N, matrix,
10 0 --- O 0
0/ 73 O 0
0 a3 B3 73 0
B=|00 a f vy - 0 |
0 0 a3 fs 73
00 0 -+ 0 a3 fi+71;

and

1 1
P

T 1 T
Pt = (PR PT) Sfori=1,2,..,b—Tand P = (P, PUY)

1
BZP?+1 = P?Jrzy
where B, is an N, x N, matrix,
ay+py v, 0 - 0 0
a Py ora 0 - 0 0
0 a3 By 74 0 o0
0 9

B,= 0 0 as Py 14

0 a py V4
0 0 0 - 0 ag Pyty,

and
T 1 1 nT
Pl = (P{‘l“, . -,P;}th) ,and P;Hz = (Pinlﬂ, . ~,PZ\,+ZZ) , (17)

fori=b-+1,b+2,...,N,.
Finally, venous blood partial pressure (P,) can be calculated as,

2

Py(t) _R—i/ORbP(r,d, Hrdr. (18)

After that, Equation (18) is solved using simple Riemann sum rule as,

b—1

2

P:’)Hrl_ﬁ( P;fNZri—FPZ’NZrb/Z)Ar. (19)
b \ i=1

i=
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4 | NUMERICAL EXPERIMENTS

In this study, we analyze the effect of inert gas on the partial pressure of alveolar and venous blood. For this purpose,
we will focus on the anesthetic gas nitrous oxide (N,O). For numerical computations, we need values of parameters
used in the governing equations. Therefore, we will use Table 1 for numerical computations, including both parameter
values and units. Units of pressure and time are in millimeter of mercury and seconds, respectively.”’ Hereafter, units
will be omitted for clarity.

4.1 | Validation of scheme

In the following Sections 4.1.1 and 4.1.2, we conduct tests that were also performed in a previous study'” to validate our
scheme.

41.1 | Comparison between ordinary differential equation and PDEs models

We utilize the solution of the ordinary differential equation (ODE) model defined in Ref. [17,35] (Refer to these papers
for a complete description of the ODE model and parameters) as follows,

P,(t)=Pg (1— exp (—%)) (20)

where Pg is a constant, Q is the rate of flow of blood through the capillary, V), is the effective volume of the body com-
partment. Together with the solution of the PDE model obtained by the proposed scheme using Equation (19). In both
ODE and PDEs models we used the input arterial blood partial pressure P,(t) =1 as defined in Ref. [17]. Then we com-
pared both results as shown in Figure 3. From the figure, we observed that both curves tend toward an asymptotic value
of 1. However, it was noted that the solution derived from the ODE model converges to this limit significantly faster
than the PDEs. A similar result is also found in Ref. [17].

The physiological reason for this behavior may be due to the consideration of spatial variations in inert gas (nitrous
oxide) partial pressure in PDE models, which illustrate the effects of tissue heterogeneity, as different tissues absorb
and release gases at different rates due to variations in blood flow, tissue solubility, and metabolic activity. Additionally,
PDE models consider the shape of the body compartment and the density of the capillaries that supply blood to this

TABLE 1 Parameters used in numerical computations.

Parameter Value References
Ry 3.25 x 107* cm [29]
R; 325 x 103 cm [29]

w .03 cm/s [29]
a(N,0) 2.49 x 10~® mol cm > (mmHg) [38]
a(N,O) 2.78 x 10® mol cm > (mmHg) ! [39]
Dy(N,0) 1.6 x 10~* cm?/s [38]
D,(N,0) 1.2 x 107° cm?/s [39]
ap(0,) 1.527 x 10~ mol cm > (mmHg) [29]
a,(0,) 1.295 x 107 mol cm > (mmHg) " [29]
Dy(0) 1.12 x 10~° cm?/s [29]
D,(0,) 1.7 x 107° cm?/s [29]

f 12-20 breaths/min [40,41]
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FIGURE 3 P,(t) calculated using both the PDEs and ODE models depicting the uptake of the anesthetic gas nitrous oxide, with P,(¢)
exhibiting a step change from 0 to 1 at time ¢t =0.

tissue. However, ODE models only consider temporal variations, highlighting the impact of gas exchange between tis-
sues and blood over time, including the uptake and elimination of inert gases.

Moreover, to visualize the partial pressure profile inside the blood capillary corresponding to the outflow venous
blood partial pressure, we plotted surface diagrams in Figure 4 with a computational domain
02=(0,3.25x107) x (0,162.5 x 10~*). We used N, =125, N, =650, At=.01, a final time T =50, and an arterial blood
partial pressure P,(t) =1.

4.1.2 | Sinusoidal variations in arterial blood partial pressure

In this subsection, we adopt a sinusoidal form for the partial pressure of gas entering the body compartment, as
defined in Ref. [17]: P,(t) = Posin(2xft). Next, using the proposed scheme, we generate a combined plot (Figure 5)
showing the arterial (P,) and venous (P,) blood partial pressures of the gas for both ODE and PDE models over time.
Interestingly, our results exhibit a striking similarity to those reported in Ref. [17]. Upon analyzing Figure 5, we
observed that when blood enters the body compartment, the arterial partial pressure of the gas is initially quite high.
However, it gradually starts to diffuse, and at the outflow boundary, we noted a reduction in the average partial pres-
sure of the gas, whether obtained through ODE or PDE models. Notably, the average partial pressure of the gas in
venous blood, as predicted by the ODE model, is significantly lower than that predicted by the PDE model at the out-
flow boundary. The distinction between ODEs and PDEs lies in the treatment of temporal variation. ODEs only con-
sider temporal variation, whereas PDEs incorporate both temporal variation and the effects of convection and
diffusion.

4.2 | Convergence test

To assess the spatial convergence of our numerical solutions using the proposed scheme, we conducted a convergence
test as depicted in Figure 6. This figure illustrates the average venous partial pressure along the outflow boundary at
time ¢=50, considering different numbers of grid points N, and N,. In the computational domain
02=(0,3.25x107%) x (0,162.5 x 10~*), we employed a fully implicit scheme, necessitating a sufficiently large time step
of At=.01. By analyzing the results presented in Figure 6, we observed that the numerical solutions converge toward
the solid line, corresponding to N, =130 and N, = 650. Consequently, we adopted a grid size of N, =130 and N, =650
for all subsequent analyses.
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FIGURE 4 Pressure profile corresponding to outflow venous blood partial pressure for different total times (A) T =5, (B) T =10,
(C) T=20, and (D) T = 50.

Pressure

FIGURE 5 A combined plot for input arterial partial pressure P,(t) and average venous partial pressure (P,) of gas at outflow boundary
using PDE and ODE models for sinusoidal input.

4.3 | Axial effect of breathing frequency on partial pressure of inert gas

The breathing frequency plays a significant role in controlling the levels of inert gases in the blood and tissue capil-
laries. Changes in breathing frequency can impact alveolar ventilation and arterial partial pressure and, consequently,
the removal of inert gases from the lungs.*>** Alveolar ventilation, which is the volume of fresh air reaching the alveoli
per minute, is a critical factor in controlling the partial pressures of gases in the alveoli. To maintain cardiovascular
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FIGURE 6 Spatial convergence of average venous partial pressure over the outflow boundary for four cases N, = 70, N, = 350 (dash-
dotted line); N, =90,N, =450 (dotted line); N, =110, N, = 550 (dashed line); and N, =130,N, = 650 (solid line).
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FIGURE 7 Axial effect of breathing frequencies f = 12,15,18,20 per minute on (A) center of blood capillary, p(ry,z,t), (B) boundary of
the blood capillary, p(rs,z,t), and (C) boundary of the tissue p(ry,,z,t) at t=5.

stability and prevent complications, such as changes in blood pressure and heart rate and to optimize gas exchange and
intercept hypoxemia (low oxygen levels) or hypercapnia (high carbon dioxide levels) adequate control of breathing fre-
quency is essential because anesthesia can depress the respiratory drive.**

In this section, we present the effect of breathing frequency on the partial pressure of inert gas. Figure 7 shows the
effect of various frequency rates, f =12,15,18,20 per minute, on the center of the blood capillary p(r,z,t), axial bound-
ary of the blood p(rs,z,t) and tissue p(ry,,z,t) capillaries at t = 5. We used numerical values as defined in Table 1 at the
center of blood capillary p(ry,z,t). In Figure 7A, initially arterial pressure of inert gas starts from .36 at frequency
f=12/60 and tends to decrease with respect to axial length z, after that we increase the breathing frequency f =15/60
and again found a decrement of inert gas partial pressure axially. Then, we choose some high frequencies, such as
f=18/60,20/60 but this time partial pressure of inert gas at the center of the tube, however begins from lower values
than previous frequencies but starts to increase with respect to axial distance.

Then we analyze the partial pressure of inert gas at the axial boundary of blood p(r,z,t) in Figure 7B and found this
time for the lowest frequency partial pressure of inert gas is the lowest while, as we increase frequencies the partial
pressure of inert gas will increase accordingly with respect to axial distance. One more noticeable thing is that all the
frequencies start at the same point and have the lowest values than the center of the tube. Finally, we analyze the effect
of breathing frequency on the axial boundary of tissue in Figure 7C and find that for the lowest frequency the partial
pressure of inert gas is lower than the other higher frequencies.
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Physiologically, we can say for the lowest frequency rate less amount of inert gas will reach the surrounding tissue
of the blood capillary, which will affect less to the patients so the appropriate frequency to take inert gas should
be f <12/60.

4.4 | Radial effect of breathing frequency on partial pressure of inert gas

In Figure 8 we observe the effect of breathing rates, f =12,15,18,20 per minute, on the entering position of the blood
capillary p(ri,z1,t), i=1,2,...,b, and its surrounding tissue p(r;,z;,t), i=b+1,b+2,..,N, also on ending position of
blood capillary p(ri,zw,,t), i=1,2,...,b and its surround tissue p(r;,zn,,t), i=b+1,b+2,..,N, at t=>5. For numerical
values, we used Table 1.

In Figure 8A, we found the entering point of the blood capillary for a breathing rate f =12 the partial pressure of
inert gas starts approximately at .37 and then becomes constant just before the radial boundary of the blood capillary,
after which it slightly declines. Then we increased the breathing rate f = 15 and found some decrement in inert gas par-
tial pressure with respect to radial distance. Subsequently, for higher breathing rates, such as f = 18,20, we find that the
partial pressure of inert gas starts from lower values than the previous rates and remains constant just before reaching
the radial boundary of the blood capillary, after which it slightly increases. Simultaneously, we analyzed the radial dif-
fusion of inert gas on the entering position of tissue in Figure 8B. Here for f =12 diffusion of inert gas in tissue
decreases, while for f =15 it is constant. But for f =18 and f =20 it increases compared with the partial pressure of
inert gas in the blood capillary due to no flux boundary condition. Similarly, at the end of the blood capillary, we calcu-
lated the effect of inert gas partial pressure for different values of breathing rates, f =12,15,18,20 per minute, in blood
as shown in Figure 8C and in tissue as shown in Figure 8D. Here, we found that the partial pressure of inert gas in both
blood and tissue is directly proportional to the breathing rate. This may be due to no flux boundary condition.
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FIGURE 8 Radial effect of breathing frequency f = 12,15,18,20 per minute on (A) entering position of blood capillary p(r;,z;,t) for
i=1,2,...,b and (B) its surround tissue p(r;,z;,t) fori=b+1,b+2,...,N,, also on (C) ending position of blood capillaryp(r,-,zNZ,t) for
i=1,2,...,b, and (D) its surround tissue p(r;,zy,,t) fori=b+1,b+2,..,N, at t=>5.
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Under the same conditions, we changed the boundary condition at r =R, to the homogeneous Dirichlet boundary
condition, which was originally a homogeneous Neumann boundary condition. Figure 9 illustrates the radial effects
when applying the homogeneous Dirichlet boundary condition. The first noticeable difference is that the partial pres-
sure of inert gas decreased for all frequencies when entering the position of tissue. Such a phenomenon happens at both
the entering position of the blood capillary and ending position of blood capillary. Also, lower frequency led to smaller
partial pressure at all positions. Lastly, the partial pressure converged to zero at r = R, as g increased, due to the homo-
geneous Dirichlet boundary condition.

From the above results, we observed that when inert gas entered the blood capillary, it diffused from blood to tissue,
where it became soluble. Due to no flux boundary condition, it accumulated at the tissue boundary, causing a high par-
tial pressure even for the lowest entering arterial pressure difference.

4.5 | Axial effect of initial arterial pressure difference on partial pressure of inert gas

In Figure 10, we observed the effect of initial arterial pressure difference Py =1,.75,.45,.30,>*” on the center of the
blood capillary p(ry,z,t), axial boundary of the blood p(rs,z,t) and the tissue p(ry,,z,t) capillaries at t=>5 using
the numerical values as defined in Table 1.

At the center of the blood capillary p(r1,z,t) in Figure 10A, we observed that initially, the arterial pressure of inert
gas starts from .28 at an initial arterial pressure difference P, =1 and tends to decrease with respect to the axial length
z. Then we decreased the entering pressure Py =.75 and observed some decrement of inert gas partial pressure axially.
After that, we choose some lower entering pressures, such as Py, =.45,.30 but this time partial pressure of inert gas at
the center of the tube however begins from the lower values than previous entering pressures but starts to increase with
respect to axial distance.

(A) (B)
4 . . 4 .
3r o _
o
- )
=
1 —r=12
——f =15
......... f=18
- —.f=20
0 ‘
0 1 2 3 3
T %1074 T %1073
© D)
_4 —4
5 x10 ‘ ‘ ‘ 5 x10
al
— AY
w3t \
= \
S K
S AR
i AN
———-f=15 A
......... f=18
L
0 ‘
0 1 2 3

r x107*

FIGURE 9 Radial effect of breathing frequency f =12,15,18,20 per minute under the homogeneous Dirichlet boundary condition.
(A) Entering position of blood capillary p(r;,z,t) for i=1,2,...,b and (B) its surround tissue p(r;,z;,t) fori=b+1,b+2,...,N,, also on
(C) ending position of blood capillary p(r;,zn,,t) for i=1,2,...,b, and (D) its surround tissue p(r;,zy,,t) fori=b+1,b+2,..,N, at t=5.
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FIGURE 10 Axial effect of initial arterial pressure difference Py =1,.75,.45,.30 on (A) the center of blood capillary, p(r1,z,t),
(B) boundary of the blood capillary, p(r,z,t), and (C) boundary of the tissue capillary p(ry,,z,t) at t =5.

Then, we analyzed the partial pressure of inert gas at the axial boundary of blood p(rs,z,t) in Figure 10B and we
observed that for the highest entering pressure difference the partial pressure of inert gas has decreasing nature while, as
we decrease the pressure difference the partial pressure of inert gas shows increasing nature with respect to axial distance.
One more thing is noticeable here the partial pressure of inert gas has lower values than center of tube. In the end, we ana-
lyzed the effect of entering pressure difference on the axial boundary of tissue in Figure 10C and found for the highest
entering pressure difference the partial pressure of inert gas is lower than the other higher entering pressure difference.

Physiologically, we can conclude that for the lowest entering pressure difference, a lesser amount of inert gas will
reach the surrounding tissue of the blood capillary, which will affect less the patient so the appropriate entering pres-
sure to take inert gas should be Py <.30.

4.6 | Radial effect of initial arterial pressure difference on partial pressure of inert gas

In Figure 11, we found effect of initial arterial pressure difference Py = 1,.75,.45,.30,”>*” on entering position of blood
capillary p(r,z1,t), i=1,2,..,b and its surround tissue p(ri,z1,t), i=b+1,b+2,..,N, also on ending position of
blood capillary p(ri,zn,.t), i=1,2,..,b and its surround tissue p(r,zn,,t), i=b+1,b+2,..,N, at t=5. In Figure 11A,
we observed that at on the entering point of the blood capillary for an initial arterial pressure difference Py =1 the par-
tial pressure of inert gas starts at approximately .3 and then becomes constant just before the radial boundary of the
blood capillary. After that, it slightly leans down. Then we decreased the entering pressure Py =.75 and found some
decrement in inert gas partial pressure with respect to radial distance. After that, we chose some lower entering pres-
sures such that Py =.45,.30 and found partial pressure of inert gas starts from a lower value than the previous one and
remains constant just before the radial boundary of the blood capillary after that it slightly gets up.

Simultaneously, we analyzed the radial diffusion of inert gas at the entering position of tissue in Figure 11B, here
for Pp=1 the diffusion of inert gas in tissue decreases while for Py =.75 it is constant. However, for Py = .45 and
Py =.30 it increases compared with the partial pressure of inert gas in the blood capillary possibly due to no flux bound-
ary condition. Similarly, at the end of the blood capillary, we calculated the effect of inert gas partial pressure for differ-
ent values of Py =1,.75,.45,.30 in blood, as shown in Figure 11C and in tissue as in Figure 11D. Here, we found that the
partial pressure of inert gas in both blood and tissue is inversely proportional to the arterial pressure difference due to
the no flux boundary condition.

From the above results, we observed that when inert gas enters the blood capillary it diffuses from blood to tissue
where it gets soluble and due to no flux boundary condition, it accumulates at the tissue boundary and causes high par-
tial pressure even for the lowest entering arterial pressure difference.

4.7 | Effect of initial velocity of blood on arterial/venous blood partial pressure

In Figure 12, we investigated the impact of the initial velocity of blood on arterial (P,) and venous (P,) blood partial
pressure. We examined this effect for four different values of w=.01,.03,.05 (velocity varies from .01 — .2 mm/s48), and
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FIGURE 11 Radial effect of initial arterial pressure difference P, =1,.75,.45,.30 on (A) entering position of blood capillary p(r;,z1,t) for
i=1,2,...,b and (B) its surround tissue p(r;,z;,t) fori=b+1,b+2,...,N,, also on (C) ending position of blood capillaryp(r,-,zNz,t) for
i=1,2,...,b, and (D) its surround tissue p(r;,zn,,t) fori=b+1,b+2,..,N, at t=5.
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FIGURE 12 Effect of velocity on (A) arterial and (B) venous blood partial pressure P, and P, for velocity w=.01,.03,.05 at time ¢ = 5.

.07. Our findings revealed that due to the exponential decay nature of arterial pressure, it exponentially decreases over
time as shown in Figure 12A. However, we observed no significant effect of changes in velocity on arterial blood partial
pressure (P,;). On the other hand, in Figure 12B, when we increased the velocity of blood flow, the value of venous
blood partial pressure (P,) increased proportionally. This indicates that arterial pressure is primarily governed by factors
other than blood velocity. While venous blood partial pressure has a direct relationship with blood velocity. Higher
blood flow velocity contributes to an elevation in venous blood pressure, suggesting that velocity plays a more signifi-
cant role in the venous system compared with the arterial system.
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The pressure profile in both arterial and venous blood at T'=1,3, and 5 is illustrated in Figure 13. We can see that
the results agree with the ones in Figure 12.

4.8 | Analysis of the effect of nitrous oxide (N,0O) and oxygen (0O;) on venous partial
pressure

In Figure 14, we investigated the impact of nitrous oxide (N,O) and oxygen (O,) on venous (P,) blood partial pressure
at t =5 by taking the solubility and diffusivity of N,O and O, as defined in Table 1. We found that due to the inhalation
of the anesthetic gas N,0, the partial pressure of venous (P,) blood had lower values compared with the inhalation of
oxygen O,. This is due to the higher solubility and diffusivity of N,O in blood and tissue as compared with O,, which
shows that N,O stays inside blood and tissue for a longer time and affects the venous pressure of blood to a greater
extent than O,. In the future, we will apply a least-squares method to find optimal parameter values.*

Also, to visualize the effect of N,O and O, on the pressure profiles inside the blood capillary, we illustrate the pro-
files in Figure 15 at T'=1,3, and 5. We can see that pressure profiles align with the results presented in Figure 14.
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FIGURE 13 Pressure profile at T=1,3, and 5 with different values of w.
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FIGURE 14 Nitrous oxide (N,0) and oxygen (O;) on venous (P,) blood partial pressure at t =5.
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FIGURE 15 Pressure profiles of N,O and O; at T=1,3, and 5.

5 | CONCLUSION

This study utilized a fast and accurate OSM to examine how inert gas affects the partial pressure of alveolar and venous
blood. The OSM allowed for the separation of governing equations into smaller sub-problems, providing insights into
inert gas transport between blood capillaries and tissue. The governing equations underwent discretization using a fully
implicit finite difference approach, thereby improving computational efficiency. Validation of the scheme is done by
performing some tests, which was also done by previous study,'” and found very much similarity in the results compu-
tational. The model considered convection-diffusion in blood and diffusion in tissue through PDEs. Various parameters
such as initial arterial pressure, breathing frequency, blood flow velocity, solubility, and diffusivity were explored to
understand their impact on the partial pressure of inert gas in blood and tissue.

In conclusion, the physiological findings of this study provide valuable insights into the impact of frequency rate
and entering pressure difference on the distribution of inert gas to the surrounding tissue of blood capillaries. It is evi-
dent that a lower frequency rate (f <12/60) results in a reduced amount of inert gas reaching the tissue, minimizing its
effects on patients. Similarly, an appropriate entering pressure (Py <.30) ensures a controlled distribution of inert gas to
the surrounding tissue, further reducing potential adverse effects. The study also elucidates the role of blood velocity,
which shows venous blood pressure exhibits a direct relationship with blood velocity. Moreover, simulation results
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demonstrated that the high solubility and diffusivity of anesthetic inert gas contributed to its prolonged presence in
both blood and tissue, resulting in lower partial pressure in venous blood.

Overall, this study contributes valuable physiological insights with potential implications for medical diagnostics
and therapies related to the gas exchange process. However, this study has certain constraints. Subsequent research
should focus on examining more complex geometries, and additional investigation is necessary to comprehend the
impacts of anesthesia or inert gas on individuals across different age groups, as well as gas exchange in patients with
cardiovascular or pulmonary conditions.
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APPENDIX A: Solution process by using operator splitting method

We describe the proposed solution algorithm by using the operator splitting method.***

« Step 1: Discretization in r-direction,

First we consider the r-direction equatlon for k=1 and i=1,..,N,. Since P  are given in Equation (4) for

l
i=1,..,b—1, we calculate be Z,PZE s PN 1, where Pb1 : is the pressure on the interface at point ry.

Let us consider the continuous flux condition defined in Equation (13):

1 1 1
Py~ P} Pz —P
apDy, (blArll =D, % ) (A1)
We can rewrite the above equation as,
(apDy + atDt)le aIDth 1 =aDyPy_ ;. (A2)

1
Now, for i=b+1,...,N,—1 where P?Z is in the tissue, the discretized Equation (11) for R, <r<R; can be writ-

ten as,
n+i n n+i n+i n+1 n+i
Puz_Pu:& r'+ﬂ P —Py _ r__g Py * =P {4 (A3)
At rn|\' 2 Ar? ) Ar? ’
which can be written in an implicit form with a; = DfAZ’ as,
Ar 1 Ar 1
—a (1—5> :’+121+(1+2a1) e (1+ ) P} =Pn. (A4)
L

For i =N,, we apply the homogeneous Neumann boundary condition Py,11 = Pn,; on Equation (A4). Then,

Ar n+i Ar n-+
(1—2}'NV)P 111+ |:1+(11 <1—2rNr>:|PN12PK]’ (AS)

From Equations (A2), (A4), and (A5), we can derive the following matrix form,

n+2 o

AP =P,

where A; is an (N, —b+1) x (N, —b+1) matrix,
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D
143 —a,D, 0 0 0 0
apDyp
Ar r
—a(1- 142 —a (1 0 0 0
(11< 2Vb+1> ( + al) (11( +2”b+1)
0 1o A (1+2a) P 0 0
a1 _
! 2Fpi “ “ 2rpy2
A= s z s s :
Ar Ar
0 0 —a 1-— (1+2(Z1) —a 1+ 0
2rn,—2 IN,—2
0 0 0 Ar (1+2ay) —
— — 104 —a
! 2rn, -1 ! ! 2rn,—1
0 0 0 0 1 Tty (127
—a (122 af1-Ar
! 2r; ! 2 N,
ni n+1 ni\ T T
P = (Pl PyT) and P = (Pl Py, ) (A6)

1
For k=2,3,...,N,, we will find PZ:Z fori=1,..,b—1 as,

+1 n+3 n+1 n+i  n+l
Py - ik _ Db r 2 A7 Pide =P’ . _Ar Py * =P ik (A7)
At ¥ ) Ar? ) Ar2 ’
which can be rewritten in an implicit form with a, = %AJ as,
Ar 1 1 Ar 1
—a; (1 - 5) Pl + (142m)P)  —a; (1 +§> Pl =P, fori=2,3,...b—1. (A8)
i ’ i ’

Equation (A8) works as usual except at i=1 due to symmetric boundary condition. Equation (A8) converts for
i=1as,

1

14+4r\ | nt 1+Ar\ o+l
[1+0‘2< > )}sz —az(z—h)Pm,kzpﬁc- (A9)

We discretize continuous flux condition at i = b, which is defined in Equation (13) as,

1 1 1 1
Pn+5 _ Pn+5 Pn+§ _ Pn+7
bk b1k b+1k — Lbk
abDb Tl = atDt HT . (AlO)
Then we rewrite as,
1 1 1
ayDyPy 3+ (aDp+auDy)Py* — aDiPy 3 =0, (A11)

After that we can get value of P;ﬁ in tissue phase from i=b-+1,b+2,...,N,—1,N, as defined in Equations (A3)-
(A5). By Equations (A4), (A5), and (A8)-(Al1), we can derive the following matrix form,

n+% __pn
AP =Py,
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zotu | WILEY
A
1+a2<1+ r) —a2(1+l) 0 0 0 0
2r; 2r;
A A
—a(1-2 1420,  —a1420 0 0 0
2r,- 2ri
0 —apDyp apDy + a; Dy —a;Dy e 0 0
Ar Ar
_ 0 0 —ay (17 ) (142m) - (1+ ) 0 0
A= 2rp 1 2rpi1 >
0 0 I (1+2a) 1A 0
“ 2rnN, 2 “ “ 2rnN,—2
0 0 0 1 Ar (1+2a) 1+ Ar
—ay|1— a —a
! 2rn, -1 ! ! 2rn, -1
Ar Ar
0 0 0 0 e (1-22) 14 (1-—
2r1' ZrN,

where A, is an N, x N, matrix, and,
1 1 T T
P = (P Pyy) and BE= (Pl Pl ) Sfork=2,...N,.
« Step 2: Discretization in z-direction for i =1,...,N,.

We discretize Equation (14) as follows:

prsl il prtl  prel_pnil
prtl_ prth Dy k=1 AZZ ALy~ ik iz Bk=l for i=1,..,b—1
ik ik _
At prtl _opntl JrP{H—l
D, ik Letl fori=b+1,...,N,.

AZ?

First, we consider the case where i =1,...,b — 1 and write Equation (A13) as follows,

n+1 n+1 nel _ phts
asPi 2+ P3Py +rsPi =Py

where,

Dy, w , 1 n 2Dy n w Dy
a =, = — —_— -, = ——.
ST AR A BT M a2 A BT T a2
Then, we can obtain the following relational expressions at n+1 and n+1 for k=1,..,N.

1
Pt = P;;rz,for k=1,
1 +1 +1
ﬂspﬁcﬂ +73P?,k+il ZBP:Z f— ang] fork=2,

n+1 n+1 nt1 Lo+l
aPI AP P =P fork =3, N~ 1,

(A12)

(A13)

(A14)

(A15)

(A16)

(A17)

(A18)
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1 1
P+ (B +ys) P = Bpf‘,jz for k=N,. (A19)

here, P;fé are given as the Dirichlet boundary condition for blood Equation (4) at k=1 and the homogeneous Neu-
mann boundary condition is applied at k=N,. By using Equations (A14)-(A19), we can derive the following
matrix form,

1
BP!l =P/,
where B, is an N, x N, matrix,
10 0 --- 0 O 0
0p5 73 0 0
0 az f3 73 0
Bi=|00 a f5 s o |,
0 -+ 0 a3 fz 713
00 0 -+ 0 a3 fi+y;

and
n-+i n+3

nt1 nt1 ne1)’ ; n+3 T
Pl = (PR PT) Sfori=1,2,...b—Tand P = (P, PUY)

Fori=b+1,..,N,, Equation (A13) written as follows,

pr+ prtl g, pn+l _ phts A20
asPi 2+ PaPiy 74P =Py (A20)
where
D, 1 2D, D,
=—— fi=—t" y,=——. A21
ay 1z Ba At+Az2 Va4 A7 (A21)
Then, we can obtain the following relational expressions at n+1 and n +% fork=1,..,Ng,
n+1 n+1 1 it
(aa+Pa)Py + 74P :Epik Lfork=1, (A22)
1 1 .
P 4 B P -y P = BP{;*Z,for i=1,..b—1, (A23)
1 1
P+ (Bytra) P =Py for k=N, (A24)

where the homogeneous Neumann boundary condition is applied at k =1 and k = N,. By using Equations (A20)-(A24),
we can derive the following matrix form,

n+3
i

B,P!l =P

>
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where B, is an N, x N, matrix,
fori=b-+1,b+2,..,.N,.
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