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ABSTRACT 
We develop a normalized time-fractional susceptible-unidentified infected-confirmed (SUC) epi
demic model that incorporates memory effects through fractional calculus to capture non-local 
time interactions. Unlike integer-order models, this model reflects how past states influence pre
sent transmission. Numerical simulations show that smaller fractional orders accelerate the 
decline of susceptible individuals and produce faster but lower infection peaks, while larger 
orders yield slower, oscillatory declines and delayed peaks, indicating prolonged outbreaks. 
Moreover, the confirmation parameter critically shapes epidemic dynamics, as higher values 
reduce infection spread and lower peak levels of unidentified and confirmed cases, and this 
result highlights its role in controlling epidemic progression.
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1. Introduction

The novel coronavirus, first detected in 2019 and 
named COVID-19, rapidly spread from China 
to countries across the globe. Despite various 
government-imposed measures to curb its transmis
sion (Ayouni et al. 2021; Lv et al. 2022; Li and Zhang 
2023; Williams et al. 2023), the spread of COVID-19 
continued, and various variants were identified over 
time (Liu et al. 2020). It is essential to understand 
that viral mutations build on previous strains through 
accumulated genetic changes (Korber et al. 2020; Xu 
et al. 2022). This highlights the necessity of incorpo
rating non-integer order fractional derivatives in 
modeling the dynamics of COVID-19 (Baba and 
Rihan 2022; Fatima et al. 2024; Shahabifar et al. 2024; 
Thirumalai et al. 2025). In recent years, various math
ematical models have been developed to focus on epi
demic diseases (Alsaadi et al. 2023; Hwang et al. 
2024). For example, Salman et al. (2021) presented an 
SIRS model that identified how the trajectories of 
COVID-19 infection spread over time by fitting the 
model to real COVID-19 data released by the 
Ministry of Health Malaysia. Besal�u and Binotto 
(2023) extended a stochastic SIR-type epidemic model 
by incorporating time-dependent daily encounters 
and a quarantine parameter, and provided an analytic 
description and examined its dynamics through 

diffusion approximations, simulations, and real dis
ease applications. Çar and Çelik (2022) studied the 
numerical solution of the SIR model for COVID-19’s 
spread in Turkey using the Taylor matrix and colloca
tion method, and analyzed transmission and recovery 
rates with data from March 2020 to July 2021 to pre
dict the pandemic’s evolution and provide graphical 
estimates. Zhao and Shi (2023) analyzed a stochastic 
SIR model with nonlinear incidence and recovery 
rates, and proved the existence of a global positive 
solution, established conditions for disease extinction 
or persistence, and demonstrated a stationary distri
bution under certain parameters, with theoretical 
results confirmed through numerical simulations. 
Sene (2020) extended a delayed SIR epidemic model 
using a fractional derivative with a Mittag–Leffler ker
nel. Alharthi and Jeelani (2023) investigated an SEIR 
model for COVID-19 using fractional calculus, per
formed qualitative analysis through the fixed point 
approach and computational analysis via simulations 
with fractional order derivatives, and compared real 
data with numerical results obtained using a scheme 
based on Newton’s polynomials. Witbooi et al. (2023) 
presented a compartmental model for COVID-19, 
which incorporates vaccination and infected inflow, 
analyzed equilibrium stability, and performed numer
ical simulations based on South African data to 
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support the theoretical findings. Fan and Li (2023) 
presented a model that analyzed the impact of peri
odic environmental changes on the transmission of 
infectious diseases, particularly respiratory and enteric 
diseases. They used periodic functions for pathogen 
transmission and decay rates to reflect the influence 
of environmental fluctuations and verified that the 
model incorporating periodic factors provided more 
accurate predictions of seasonal disease patterns, such 
as COVID-19, compared to non-periodic models.

Zhang et al. (2020) proposed the application of time- 
fractional derivative equations for modeling COVID-19 
dynamics and relief scenarios. They verified that while 
general transmission and recovery align with integral- 
order models, the evolution of the death toll is effect
ively captured by time fractional-derivative equations 
due to inherent time memory effects. Majee et al. 
(2022) presented and analyzed a new fractional-order 
SIR type epidemic model that includes a saturated treat
ment function in order to provide more profound 
insights into disease systems. The authors emphasized 
that fractional-order systems are crucial for an accurate 
representation of the memory effect in disease transmis
sion. This property allows susceptible populations to 
rely on past experiences as a means of infection preven
tion. They also noted the practical advantage of such 
systems as the initial conditions can be directly inter
preted, similar to those of integer-order differential 
equations. Bouissa et al. (2023) investigated a diffusive 
SIR epidemic model, characterized by reaction-diffusion 
equations augmented with a Caputo fractional deriva
tive. This formulation includes a critical memory effect 
to better reflect disease history. It emphasizes that the 
non-locality of these fractional operators allows for a 
thorough consideration of the disease’s entire evolution 
history, which can reduce errors when fitting real data.

More recently, Kim (2024) proposed a new normal
ized time-fractional SIR model that includes memory 
effects. Al-Zahrani et al. (2022) investigated the effects 
of the contact rate between people through a suscep
tible-infected-treatment-recovered (SITR) fractional 
derivative equation. Also, Yousif et al. (2023) imple
mented a fractional-order SEIRD model for studying 
the COVID-19 epidemic and stated that due to the 
value of the reproduction number, which is greater than 
one, the disease outbreak would continue for several 
more months and require additional control measures.

The novelty of the paper is the proposal of a nor
malized time-fractional epidemic model, which 
emphasizes a normalized formulation and specialized 
compartments to effectively incorporate memory 
effects. This model provides a more realistic and 

accurate description of epidemics like COVID-19. As 
future work, we intend to investigate the inverse 
problem of estimating the unidentified confirmed 
infection population in time-fractional epidemic mod
els (Shaikh et al. 2020; Zhang et al. 2020; Santra et al. 
2024; Ur Rahman et al. 2025), through the application 
of the least-squares curve fitting method to real data 
(Hwang et al. 2024).

This paper is organized as follows. Section 2 presents 
the proposed normalized time-fractional SUC epidemic 
model. Section 3 presents the computational solution 
algorithm. Section 4 provides computational experi
ments to highlight the effect of the fractional order on 
the temporal evolution of each population. Finally, 
Section 5 provides the conclusion of the paper.

2. Proposed normalized time-fractional SUC 
epidemic model

Unlike typical epidemic diseases, COVID-19 presents 
unique characteristics, where infected individuals are 
generally isolated, reducing transmission to others 
except in rare cases. Consequently, a novel model spe
cialized for the COVID-19 pandemic was required, 
and a susceptible-unidentified infected-confirmed 
(SUC) model was introduced, which shares an equiva
lent framework to the SIR model but with distinct 
meanings for each compartment. Confirmed popula
tions are individuals who have undergone diagnostic 
testing and have been officially confirmed as infected 
cases. These individuals are recognized as known 
cases within the public health system. Once con
firmed, they are typically subjected to isolation or 
quarantine measures to prevent further transmission 
of the disease. This compartment reflects the group of 
patients who are not only identified but also actively 
managed through medical supervision and public 
health interventions. For more information, see (Chen 
et al. 2024) and references therein. In this paper, we 
incorporate the memory effect into the SUC model by 
proposing a normalized time-fractional SUC model. 
This model is derived from the normalized time- 
fractional diffusion equation and the SIR model 
(Jornet and Nieto 2024; Kim 2024; Lee et al. 2024).

daSðtÞ
dta

¼ lN − b
SðtÞUðtÞ

N
− lSðtÞ, (1) 

daUðtÞ
dta

¼ b
SðtÞUðtÞ

N
− cUðtÞ − lUðtÞ, (2) 

daCðtÞ
dta

¼ cUðtÞ − lCðtÞ, (3) 

where SðtÞ, UðtÞ, and CðtÞ are the susceptible, uniden
tified infected, and confirmed populations at time t, 
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respectively. The parameter b is the rate at which the 
disease spreads among individuals, c is the reciprocal of 
the number of days until confirmation of the diagnosis, 
and l is the birth and death rate (see Figure 1). The 
total population N ¼ SðtÞ þ UðtÞ þ CðtÞ is assumed to 
be constant, as the birth rate equals the death rate.

daSðtÞ
dta

¼
1 − a

t1−a

ðt

0

dSðsÞ
ds

ds
ðt − sÞa

, 0 < a < 1: (4) 

Equation (4) is a normalized derivative, i.e.

1 − a

t1−a

ðt

0

ds
ðt − sÞa

¼ 1, 0 < a < 1: (5) 

Similarly, daUðtÞ=dta and daCðtÞ=dta are analogously 
defined. We note that the specific form of the normalized 
time-fractional derivative Equation (4) was obtained by 
modifying the original Caputo derivative by changing the 
constant coefficient of the integral using a time- 
dependent term that satisfies Equation (5), irrespective of 
time and the fractional orders. Please refer to Kim (2024) 
and the references therein for more detailed information.

3. Computational solution algorithm

We define Sn ¼ SðtnÞ; Un ¼ UðtnÞ; and Cn ¼ CðtnÞ for 
n ¼ 1, :::, where tn ¼ ðn − 1ÞDt: We discretize Equation 
(4) in the following manner:

daSðtnþ1Þ

dta
¼

1 − a

t1−a
nþ1

Xn

p¼1

ðtpþ1

tp

dSðsÞ
ds

ds
ðtnþ1 − sÞa

�
Xn

p¼1

1 − a

t1−a
nþ1

ðtpþ1

tp

ds
ðtnþ1 − sÞa

Spþ1 − Sp

Dt

¼
Xn

p¼1

ðnþ 1 − pÞ1−a − ðn − pÞ1−a

n1−a

Spþ1 − Sp

Dt
:

(6) 

Therefore, we derive

Xn

p¼1
wn

p
Spþ1 − Sp

Dt
¼ lN − b

Snþ1Un

N
− lSnþ1, (7) 

Xn

p¼1
wn

p
Upþ1 − Up

Dt
¼ b

Snþ1Un

N
− cUnþ1 − lUnþ1, (8) 

Xn

p¼1
wn

p
Cpþ1 − Cp

Dt
¼ cUnþ1 − lCnþ1: (9) 

Here, wn
p ¼ ½ðnþ 1 − pÞ1 − a − ðn − pÞ1−a

�=n1 − a;

which results in 
Pn

p¼1 wn
p ¼ 1: Equations (7)–(9) can 

be rewritten as follows:

wn
n

Snþ1 − Sn

Dt
¼ lN − b

Snþ1Un

N
− lSnþ1

−
Xn−1

p¼1
wn

p
Spþ1 − Sp

Dt
, (10) 

wn
n

Unþ1 − Un

Dt
¼ b

Snþ1Un

N
− cUnþ1 − lUnþ1

−
Xn−1

p¼1
wn

p
Upþ1 − Up

Dt
, (11) 

wn
n

Cnþ1 − Cn

Dt
¼ cUnþ1 − lCnþ1 −

Xn−1

p¼1
wn

p
Cpþ1 − Cp

Dt
,

(12) 

Equations (10)–(12) are rewritten as

Snþ1 ¼
wn

nSn

Dt
þ lN −

Xn−1

p¼1
wn

p
Spþ1 − Sp

Dt

0

@

1

A

�
wn

n
Dt
þ

bUn

N
þ l

� �

,

(13) 

Unþ1 ¼
wn

nUn

Dt
þ b

Snþ1Un

N
−
Xn−1

p¼1
wn

p
Upþ1 − Up

Dt

0

@

1

A

�
wn

n
Dt
þ cþ l

� �

,

(14) 

Cnþ1 ¼
wn

nCn

Dt
þ cUnþ1 −

Xn−1

p¼1
wn

p
Cpþ1 − Cp

Dt

0

@

1

A

�
wn

n
Dt
þ l

� �

:

(15) 

We may use a high-order computational algorithm 
such as the Runge–Kutta method (Yang et al. 2024), 
which improves the accuracy of the approximation 
and is particularly useful for handling fractional-order 
systems over long time intervals where low-order 
methods may accumulate noticeable errors.

Figure 1. Schematic illustration of SUC model.
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4. Computational experiments

Computational results are obtained by solving 
Equations (13)–(15) with given initial conditions and 
parameter values. All calculations are conducted with 
a discrete temporal step size of Dt ¼ 0:01: Let us con
sider a steady state as t approaches infinity:

daSðtÞ
dta

¼
daUðtÞ

dta
¼

daCðtÞ
dta

¼ 0, (16) 

then Equations (1)–(3) become

lN − b
S�U�

N
− lS� ¼ 0, (17) 

b
S�U�

N
− cU� − lU� ¼ 0, (18) 

cU� − lC� ¼ 0, (19) 

where S� ¼ limt!1 SðtÞ; U� ¼ limt!1UðtÞ; and C� ¼
limt!1 CðtÞ: Solving Equations (17)–(19) results in 
the equilibrium solution:

S� ¼
ðcþ lÞN

b
, U� ¼

l

lþ c
ðN − S�Þ, and C� ¼

c

l
U�:

(20) 

Furthermore, let us define the basic reproduction 
number R0 (Chen et al. 2024) as

R0 ¼
b

lþ c
: (21) 

The following tests are based on parameter values 
intentionally chosen from hypothetical scenarios to 
demonstrate the qualitative dynamics of the proposed 
model, rather than to reproduce or fit specific empir
ical data from real-world epidemics.

Figure 2(a) illustrates the evolution of SðtÞ; UðtÞ;
and CðtÞ for a ¼ 1: Here, b ¼ 0:7; c ¼ 1=4;
S0 ¼ 9470; U0 ¼ 30; C0 ¼ 500; and T ¼ 90 are used. 
From these parameter values, we have S� ¼ 4286;
U� ¼ 952; C� ¼ 4762; and R0 ¼ 2:33:

The susceptible population, SðtÞ; begins at a high 
value, initially decreases sharply, undergoes oscilla
tions, and eventually stabilizes at a steady level. The 
unidentified infected group, UðtÞ; exhibits an early 
peak with a rapid increase, followed by an oscillatory 
decline as more individuals are likely identified over 
time. The confirmed infected group, CðtÞ; increases 
more gradually, experiences oscillatory decreases, and 
ultimately levels off after reaching its peak. Figure 
2(b) compares the temporal evolution of SðtÞ for dif
ferent values of a (1, 0.8, and 0.1). The susceptible 
population decreases faster when a ¼ 0:1; compared 
to the other values. As a increases to 0.8 and 1, the 
behavior of SðtÞ shows a gradual decline in its min
imum values over time, as seen in the figure. The plot 

for a ¼ 0:1 (red dashed line) drops quickly and 
monotonically, in contrast to a ¼ 0:8 (black dotted 
line) and a ¼ 1 (blue solid line), which show oscilla
tory behavior. Both a ¼ 0:8 and a ¼ 1 show similar 
trends in decline, but a ¼ 1 exhibits a slower and 
more extended decrease before stabilizing. The results 
suggest that smaller a values result in a more rapid 
initial decrease in the susceptible population. The 
analysis indicates that smaller a values lead to a faster 
initial decrease in the susceptible population, while 
larger a values result in a slower, oscillatory decline 
with lower minimum values before stabilization. 
Figure 2(c) shows the temporal evolution of UðtÞ for 
different values of a: The unidentified infected popu
lation, UðtÞ; shows an initial increase in all cases but 
differs in magnitude and rate depending on a: For 
a ¼ 1; the peak of UðtÞ is higher and occurs later, 
while lower a values (0.8 and 0.1) show smaller peaks 
and faster growth. This indicates that the spread of 
infection varies with changes in a: Figure 2(d) dis
plays the temporal evolution of CðtÞ for different val
ues of a: The confirmed infected population, CðtÞ;
increases steadily for all values of a; but the rate of 
increase is initially faster when a ¼ 0:1: When a ¼ 1;
the confirmed cases increase more gradually, reach a 
peak, and then decrease to a steady state.

The computational results indicate that smaller a 

values lead to a faster initial decline in the susceptible 
population (SðtÞ) and a quicker rise in the unidenti
fied infected (UðtÞ) and confirmed infected popula
tions (CðtÞ), while larger a values, such as 1, result in 
slower, more oscillatory behavior across all groups. In 
particular, for a ¼ 1; the peaks in UðtÞ and CðtÞ are 
higher and occur later, with a gradual approach to 
steady states, while smaller a values result in smaller 
peaks and faster monotonic growth. This shows that 
the dynamics of infection spread are strongly influ
enced by the value of a:

Figure 3(a) displays the evolution of SðtÞ; UðtÞ;
and CðtÞ for a ¼ 1: Here, b ¼ 0:7; c ¼ 1=3;
S0 ¼ 9470; U0 ¼ 30; C0 ¼ 500; and T ¼ 90 are used. 
From these parameter values, we have S� ¼ 5476;
U� ¼ 590; C� ¼ 3934; and R0 ¼ 1:83: The susceptible 
population starts high and decreases sharply, followed 
by oscillations and eventual stabilization. However, 
the stabilization point occurs at a slightly higher value 
than in Figure 2(a), likely due to the change in c: The 
unidentified infected population UðtÞ reaches an early 
peak and then declines with oscillations, similar to 
Figure 2(a). The magnitude of the peak appears 
slightly lower. The confirmed infected population 
CðtÞ rises more gradually and eventually stabilizes 
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after reaching a peak. Compared to Figure 2(a), the 
increase is slower, and the final steady state is reached 
at a lower value, which indicates that the confirmed 
population stabilizes at a lower level in this scenario. 
Figure 3(b) shows a comparison of SðtÞ for different 
values of a (1, 0.8, 0.1). Smaller a values (like 0.1) 
lead to a faster decline in SðtÞ; while larger values of 
a (1) result in a slower decline with more pronounced 
oscillations. However, in this case, the minimum val
ues reached by SðtÞ are higher than in the previous 
case, which reflects the effect of changing c: Figure 
3(c) displays a comparison of UðtÞ for different values 
of a (1, 0.8, 0.1). The unidentified infected population 
UðtÞ with smaller a values results in earlier and 
smaller peaks, while larger a values delay the peak 
and increase its magnitude. However, the peaks in 
Figure 3(c) are slightly lower and occur later than 
those in Figure 2(c). Figure 3(d) shows a comparison 
of CðtÞ for different values of a (1, 0.8, 0.1). The con
firmed infected population CðtÞ grows steadily, but 
the rate of growth and the timing of the peak vary 
with a; as seen in Figure 2(d). In this case, the peak 
for a ¼ 1 is lower than in Figure 2(d). The confirmed 
cases stabilize at a lower level. The key differences 
between Figures 2 and 3 are as follows: In Figure 3, 
with c ¼ 1=3; the overall infection dynamics are 
slower, and the susceptible population tends to stabil
ize at higher values compared to Figure 2 (c ¼ 1=4). 
The peaks in both the unidentified and confirmed 

infected populations are delayed, which indicates a 
longer period of infection spread. The peaks in UðtÞ
and CðtÞ are generally lower in Figure 3, which sug
gests a less significant infection burden under the 
larger c value.

5. Conclusions

The proposed normalized time-fractional SUC math
ematical equation presented epidemiological dynamics 
by effectively integrating memory effects through frac
tional calculus. This model resolved the limitations of 
traditional integer-order models by capturing the per
sistent influence of past epidemic stages on current 
disease transmission and provided a more accurate 
representation of real-world infection patterns. Our 
simulation results demonstrated the critical role of the 
fractional order parameter a and the confirmation 
parameter c in computing the epidemic’s progression. 
From the computational experiments, smaller a values 
lead to a faster initial decline in the susceptible popu
lation and a quicker rise in unidentified and con
firmed infected cases. Larger a values result in slower, 
more oscillatory dynamics. This highlights the sensi
tivity of the infection model to the fractional order of 
the time derivatives. The change in c from 1=4 
(Figure 2) to 1=3 (Figure 3) results in slower dynam
ics overall, with more extended oscillations and a 
higher steady-state value of the susceptible 

Figure 2. (a) Is the evolution of SðtÞ; UðtÞ; and CðtÞ with a ¼ 1: (b), (c), and (d) are the evolutions of SðtÞ; UðtÞ; and CðtÞ;
respectively, with a ¼ 1, 0:8; and 0.1. Here, b ¼ 0:7; c ¼ 1=4; S0 ¼ 9470; U0 ¼ 30; C0 ¼ 500; and T ¼ 90 are used.
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population. These findings show that the model can 
help understand and predict infectious disease pro
gression and provide useful insights for public health 
and control strategies. Future work should include 
validation with real epidemiological data, the incorp
oration of demographic changes and additional com
partments such as recovered and vaccinated groups, 
and a thorough sensitivity analysis of the fractional 
order parameter. Furthermore, an extension of the 
model to a spatially heterogeneous setting would 
improve its practical applicability.
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Appendix

The MATLAB code is provided as follows:

clear ;  % Clear workspace
T¼ 90;  % Total simulation time
dt ¼ 1.0 e −1; % Initial time step size
Nt¼ round (T / dt);  % Number of time steps (rounded)
dt¼ T / Nt ;  % Recompute dt so that Nt�dt¼ T exactly
b¼ 0.7;  % Infection/contact rate parameter
g¼ 0.25;  % Recovery rate parameter
mu ¼ 0.05;  % Natural removal rate parameter
N¼ 10000;  % Total population size
U (1) ¼ 30;  % Initial number of U individuals
C (1) ¼ 500;  % Initial number of C individuals
S (1) ¼ N - U (1) - C (1);  % Initial number of S individuals
R0¼ b / (gþmu);  % Basic reproduction number
SS¼N / R0;  % Disease-free equilibrium for S
US¼mu � N � (R0 − 1) / b;   % Equilibrium for U
CS¼N - SS - US;  % Equilibrium for C
alphadata ¼ [1 0.1 0.8]; % Array of fractional orders alpha to simulate

for k¼ 1: length (alphadata)
if k =¼ 1

flag ¼ 1;  % Use standard Euler scheme for alpha ¼ 1
else

flag ¼ 2;  % Use fractional update scheme for 0< alpha < 1
end
beta¼ alphadata (k);  % Current fractional order alpha

for iter ¼ 1: Nt
% Compute fractional weights w(q) for memory term

for q¼ 1: it
w (q)¼((it þ1- q)^(1- beta)-(it - q)^(1- beta))/ it ^(1- beta);

end
G1¼ 0; G2¼ 0;  % Initialize convolution sums
if it > 1  % Compute history integrals for S and U

for q¼ 1: it −1
G1¼G1þw (q) � (S (qþ 1) - S (q)) / dt ;
G2¼G2þw (q) � (U (qþ 1) - U (q)) / dt ;

end
end
if flag =¼ 1

% Classical Euler update (alpha ¼ 1)
S (it þ1)¼ S (it)þ dt �(mu � N - b � S (it)� U (it)/ N - mu � S (it));
U (it þ1)¼ U (it)þ dt �(b � S (it)� U (it)/ N - g � U (it)- mu � U (it));
else

% Fractional update (0< alpha < 1) using weight w(it)
S (it þ1)¼(w (it)� S (it)/ dtþmu � N - G1)/(w (it)/ dtþ b � U (it)/ Nþmu);
U (it þ1)¼(w (it)� U (it)/ dtþ b � S (it þ1)� U (it)/ N - G2)/(w (it)/ dtþ g þ mu);

end
end
C¼N - S - U ;  % Compute C from conservation
DS (:, k) ¼ S ‘;  % Store S time series for plotting
DU(:,k) ¼ U’;  % Store U time series
DC(:,k) ¼ C’;  % Store C time series

end
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% Plot results for alpha ¼ 1
Figure (1); clf;
t¼ linspace(0, dt�Nt, Nt þ 1); % Time vector
set(gcf, ‘position’, [200 500 600 300])
plot(t, DS(:,1), ‘r:’); hold on; grid on
plot(t, DU(:,1), ‘b-’); plot(t, DC(:,1), ‘m–’);
set(gca, ‘fontsize’, 17);
lgd¼ legend(‘SðtÞ‘,’UðtÞ‘,’CðtÞ‘,’Interpreter’, …

‘latex’,’fontsize’,13);
set(lgd, ‘Position’, [0.7, 0.7, 0.15, 0.15]); axis([0 T 0 N])
xlabel(‘Time $ t $’, ‘Interpreter’, ‘latex’, ‘FontSize’, 20);
% Plot comparison across fractional orders
for i¼ 2:4

figure(i); clf;
set(gcf, ‘position’, [200 500 600 300])
if i =¼ 2 % Plot S(t) for alpha ¼ 1.0, 0.8, 0.1

plot(t, DS(:,1), ‘b-’); hold on;
plot(t, DS(:,3), ‘k:’); plot(t, DS(:,2), ‘r–’);

elseif i =¼ 3 % Plot U(t) for alpha ¼ 1.0, 0.8, 0.1
plot(t, DU(:,1), ‘b-’); hold on;
plot(t, DU(:,3), ‘k:’); plot(t, DU(:,2), ‘r–’);

else % Plot C(t) for alpha ¼ 1.0, 0.8, 0.1
plot(t, DC(:,1), ‘b-’); hold on;
plot(t, DC(:,3), ‘k:’); plot(t, DC(:,2), ‘r–’);

end
grid on; set(gca, ‘fontsize’, 17);
lgd¼ legend(‘$\alpha¼ 1.0$‘ , ’$\alpha¼ 0.8$‘ , ’$\alpha¼ 0.1$‘, …

‘Interpreter’ , ‘latex’ , ‘fontsize’ , 13);
set(lgd, ‘Position’, [0.7, 0.7, 0.15, 0.15]);
xlabel(‘Time $ t $’, ‘Interpreter’, ‘latex’, ‘FontSize’, 20);
% Label the variable on the plot
if i =¼ 2

ylabel(‘SðtÞ‘, ‘Interpreter’, ‘latex’, ‘FontSize’, 16);
elseif i =¼ 3

ylabel(‘UðtÞ‘, ‘Interpreter’, ‘latex’, ‘FontSize’, 16);
else

ylabel(‘CðtÞ‘, ‘Interpreter’, ‘latex’, ‘FontSize’, 16);
end
axis([0 T 0 N])

end
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