
Academic Editors: Dunhui Xiao and

Shuai Li

Received: 5 December 2024

Revised: 20 December 2024

Accepted: 24 December 2024

Published: 26 December 2024

Citation: Kim, H.; Kwak, S.;

Mohammed, M.; Kang, S.; Ham, S.;

Kim, J. An Efficient and Accurate

Adaptive Time-Stepping Method for

the Landau–Lifshitz Equation.

Algorithms 2025, 18, 1. https://

doi.org/10.3390/a18010001

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

algorithms

Article

An Efficient and Accurate Adaptive Time-Stepping Method for
the Landau–Lifshitz Equation
Hyundong Kim 1, Soobin Kwak 2, Moumni Mohammed 3, Seungyoon Kang 2, Seokjun Ham 2 and Junseok Kim 2,*

1 Department of Mathematics and Physics, Gangneung-Wonju National University,
Gangneung 25457, Republic of Korea; hdkim@gwnu.ac.kr

2 Department of Mathematics, Korea University, Seoul 02841, Republic of Korea; soobin23@korea.ac.kr (S.K.);
heroe2401@korea.ac.kr (S.K.); seokjun@korea.ac.kr (S.H.)

3 MAMCS Group, FST Errachidia, Moulay Ismail University of Meknes, Boutalamine, P.O. Box 509,
52000 Errachidia, Morocco; md.moumni@gmail.com

* Correspondence: cfdkim@korea.ac.kr; Tel.: +82-2-3290-3077

Abstract: This article presents an efficient and accurate adaptive time-stepping finite
difference method (FDM) for solving the Landau–Lifshitz (LL) equation, which is an
important mathematical model in understanding magnetic materials and processes. Our
proposed algorithm strategically selects an adaptive time step, ensuring that the maximum
displacement falls within a predefined tolerance threshold. Furthermore, this adaptive
approach allows the utilization of larger time steps near equilibrium states and results in
faster computations. For example, we introduce a numerical test where the adaptive time
step decreases from 3.05 × 10−7 to 3.52 × 10−9. If a uniform time step is applied, around a
100 times smaller time step must be applied at unnecessary cases. To demonstrate the high
performance of our proposed algorithm, we conduct several characteristic benchmark tests.
The computational results confirm that the proposed algorithm is efficient and accurate.
Overall, our adaptive time-stepping FDM offers a promising solution for accurately and
efficiently solving the LL equation and contributes to advancements in the understanding
and analysis of magnetic phenomena.

Keywords: adaptive time-stepping algorithm; Landau–Lifshitz equation; finite difference
method

1. Introduction
The Landau–Lifshitz (LL) equation, first proposed in 1935 by the distinguished physi-

cists Lev Landau and Evgeny Lifshitz in their seminal work [1], stands as a cornerstone
in the realm of theoretical physics, particularly in the study of ferromagnetism. This
mathematical framework has evolved into a fundamental tool, serving as a bedrock for un-
derstanding and predicting the behavior of magnetic materials, and has found widespread
applications, especially within the magnetic recording industry. The LL equation plays
a pivotal role in elucidating the dynamic properties of ferromagnetic materials, which
are characterized by the alignment of magnetic moments in parallel. Its significance lies
in providing a theoretical foundation for describing the evolution of magnetization in
response to external perturbations, such as magnetic fields or temperature changes. This
predictive capability is invaluable for designing and optimizing magnetic recording tech-
nologies, where the precise control of magnetization dynamics is crucial for achieving
high-performance data storage devices.

Over the years, advancements in our understanding of condensed matter physics
and computational capabilities have led to refinements and extensions of the LL equation.

Algorithms 2025, 18, 1 https://doi.org/10.3390/a18010001

https://doi.org/10.3390/a18010001
https://doi.org/10.3390/a18010001
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://doi.org/10.3390/a18010001
https://www.mdpi.com/article/10.3390/a18010001?type=check_update&version=1

Algorithms 2025, 18, 1 2 of 19

Researchers have incorporated additional factors, such as quantum mechanical effects and
spin transport phenomena, to enhance its accuracy and applicability to a broader range
of magnetic materials. This ongoing refinement ensures that the LL equation remains
a versatile and reliable tool in addressing contemporary challenges in materials science
and technology. Beyond its immediate applications in the magnetic recording industry,
the LL equation has contributed to the exploration of novel magnetic phenomena and exotic
states of matter. Researchers continue to leverage its theoretical framework to investigate
emergent magnetic behaviors in various systems, including spintronics and magnetic
nanoparticles. The equation’s adaptability and predictive power make it a valuable asset in
the quest for new materials with unique magnetic properties, holding promise for future
technological innovations.

The LL equation under consideration in this paper is expressed in a particular mathe-
matical form, and it is presented as follows:

∂m(x, t)
∂t

= −m(x, t)× ∆m(x, t) + f(x, t), x ∈ Ω, 0 < t ≤ T (1)

In the context of this formulation, the magnetization vector field is represented as
m(x, t) = (u(x, t), v(x, t), w(x, t)), where x is a spatial variable and t denotes time. The do-
main, denoted by Ω and defined as Ω = (Lx, Rx), encompasses the spatial extent of the
system. On the boundary of the domain, denoted as ∂Ω, we consider either the zero Neu-
mann boundary or periodic boundary conditions, depending on the specific requirements
of the analysis.

The classical LL equation stands as a sturdy theoretical foundation, offering valuable
quantitative insights into the intricate dynamics of magnetization within ferromagnetic
materials. While analytical solutions for the LL equation [2] are attainable under certain
limiting conditions, the inherent non-linearity of the equation demands numerical treat-
ments for a more expansive and realistic comprehension. Expanded models such as the
LL–Gilbert–Slonczewski equation [3] also require numerical solutions. The adoption of
numerical methods becomes imperative to delve into the nuanced and rich dynamics char-
acterizing the evolution of magnetization. In practical scenarios, where the LL equation
captures the complex interplay of magnetic moments in ferromagnets, relying solely on
analytical solutions may prove insufficient due to the intricate non-linearities involved.
Consequently, numerical methods emerge as indispensable tools, allowing researchers to
explore the dynamic evolution of magnetization in a broader parameter space and under
diverse conditions. The application of numerical treatments not only enhances the versa-
tility of studying the LL equation but also enables a more comprehensive investigation
into the various factors influencing magnetization dynamics. By leveraging numerical
methods, researchers can simulate and analyze complex scenarios that may be challeng-
ing or impractical to address solely through analytical means. This approach becomes
particularly crucial when dealing with real-world materials exhibiting diverse magnetic
behaviors, where the robustness and adaptability of numerical methods play a pivotal role
in uncovering the full spectrum of magnetization dynamics.

Before immersing ourselves in the intricacies of the adaptive time-stepping method
tailored for the LL Equation (1), it is instructive to survey some noteworthy prior investiga-
tions in the field. Jeong and Kim, for instance, introduced a Crank–Nicolson scheme and
an innovative, robust, accurate, and rapid numerical method as solutions for the LL equa-
tion [4,5]. Sharma et al. [6] adopted the adaptive time-step variational integrator to preserve
momentum and energy. Moumni and Tilioua [7] contributed to the discourse by presenting
a semi-implicit finite difference method (FDM) designed for the mathematical model that
encapsulates the dynamics of magnetization, incorporating inertial effects into their frame-

Algorithms 2025, 18, 1 3 of 19

work. Li et al. proposed a Gauss–Seidel projection method with unconditional stability
for the numerical solution of the LL equation, employing the Gauss–Seidel method [8].
Janneli [9] proposed an adaptive procedure with a step size selection function to solve
time-fractional advection–diffusion–reaction models. Step sizes are adapted according to
the behavior of the solution. Wang et al. devised a methodology combining a Gauss–Seidel
method of an implicit fractional-step solver for the gyromagnetic term with the projection
scheme to address the heat flow of harmonic maps [10]. Adaptive methods can be applied
to other areas such as the adaptive signal for time-frequency domain to conduct quilted
frames [11]. Meanwhile, Alouges et al. explored the numerical solution using the finite
element method (FEM) in their works [12–14]. A Fourier spectral method was employed by
Moumni et al. to approximate the solution of the LL equation, showcasing the versatility
of different numerical approaches [15]. For a comprehensive exploration of numerical
methods applicable to the LL equation, a plethora of references are available. Wang and
Wang’s work [16], Yang’s stability analysis [17], Carstensen’s insights [18], Bastos et al.’s
magnetic domain modeling [19], and Cai et al.’s exploration of error analysis [20] provide
detailed insights into the diverse methodologies employed to tackle the challenges posed by
the LL equation. Chen et al. [21] proposed a second-order semi-implicit method based on
the backward difference method for the LL equation. They conducted a thorough analysis
of their proposed scheme and presented the results of convergence tests. These references
collectively offer a rich tapestry of numerical strategies, laying the groundwork for a deeper
understanding and development of effective solution methodologies for the LL equation.

In real-world applications, finding solutions to boundary value problems involving
partial differential equations often necessitates the application of numerical techniques.
Among the predominant methodologies utilized are the FEM [22], finite volume method
(FVM), FDM [23–26], and spectral method (SM) [27]. Krivovichev [26] proposed an opti-
mized Runge–Kutta scheme with higher-order derivatives to solve parabolic and hyperbolic
partial differential equations. Numerical simulations compared the Mead and Renaut meth-
ods with the proposed method by solving the linear advection equation, showing superior
stability and applicability. Christou et al. [27] proposed an SM using the Christov func-
tions to solve the problem formulated by the LL and magnetostatic equations. Numerical
simulations showed good agreement between the exact and numerical solution. These
numerical approaches typically employ a fixed step size, which may not be optimal across
a diverse array of problems. Recent developments have introduced alternative techniques,
particularly those based on adaptive time-stepping methods, offering distinct advantages
over traditional approaches such as FEM, FVM, FDM, and SM. Adaptive time-stepping
methods automatically adjust the size of temporal step according to the local characteristics
of the problem, allowing for dynamic adaptation to the varying complexities inherent in
the solution [28]. Cheng and Shen [29] proposed an adaptive time stepping method based
on the energy decreasing scheme, which is an unconditionally energy stable method for the
LL equation. As shown through the numerical results, the adaptive time-stepping method
is computationally more efficient than a typical semi-implicit method.

Recently, He et al. [30] presented a family of high-order computation methods for the
Landau–Lifshitz–Gilbert equation, using Gauss–Legendre quadrature to achieve arbitrary-
order accuracy while preserving geometrical properties such as constant magnetization
magnitude and Lyapunov structure, validated through theoretical analysis and numerical
experiments. Cai et al. [20] analyzed a second-order accurate, linear computational method
for the LL equation with large damping parameters, and they provided a rigorous error esti-
mate and addressed the stability challenges of the non-linear projection step, which ensures
efficiency by solving only a linear system with constant coefficients at each time step.

Algorithms 2025, 18, 1 4 of 19

The primary purpose of this study is to propose an efficient and simple adaptive
time-stepping FDM for solving the LL equation by strategically selecting time steps to
maintain displacement within a tolerance, which enables larger steps near equilibrium for
faster computations. Unlike traditional adaptive time-stepping methods, the proposed
approach does not rely on an iterative process to determine the appropriate time step within
a specified tolerance. Instead, the proposed method is a single-step method. Cheng and
Shen [29] developed two classes of length-preserving methods for the LL equation using dis-
tinct Lagrange multiplier approaches, including efficient higher-order predictor-corrector
methods and energy-dissipative schemes, validated through numerical experiments and
comparisons with existing methods.

The structure of this paper is delineated as follows: Section 2 introduces the algorithm
proposed in this study for the numerical solution. Computational experiments conducted
with the proposed method are detailed in Section 3. The paper concludes with summarizing
remarks in Section 4.

2. Numerical Method
2.1. Discretization

We shall discretize the given domain Ω = (Lx, Rx) as Ωh = {xi|xi = Lx + (i −
0.5)h, i = 1, . . . , Nx}, where h = (Rx − Lx)/Nx is a space step size and Nx is the number
of grid points; see Figure 1.

Figure 1. Cell centered computational domain grid.

We simply denote a numerical solution as

mn
i = m(xi, tn) = (un

i , vn
i , wn

i) = (u(xi, tn), v(xi, tn), w(xi, tn)),

where tn = tn−1 + ∆tn, for n ≥ 1, ∆tn is the nonuniform time step size, and t0 = 0. The
visualization of mn

i is shown in Figure 2.

Figure 2. Schematic illustration of m(xi, tn).

Algorithms 2025, 18, 1 5 of 19

Similarly, fn
i = f(xi, tn). The explicit Euler scheme is given as

mn+1
i − mn

i
∆tn+1 = −mn

i × ∆hmn
i + fn

i , 1 ≤ i ≤ Nx and 0 ≤ n ≤ Nt. (2)

where the discrete Laplacian is defined as ∆hmn
i = (mn

i+1 − 2mn
i + mn

i−1)/h2, and Nt is the
number of iterations. The periodic boundary condition (mn

0 = mn
Nx

and mn
Nx+1 = mn

1) is
applied for n ≥ 0. That is,

∆hmn
1 =

mn
2 − 2mn

1 + mn
0

h2 =
mn

2 − 2mn
1 + mn

Nx

h2 ,

∆hmn
Nx

=
mn

Nx+1 − 2mn
Nx

+ mn
Nx−1

h2 =
mn

1 − 2mn
Nx

+ mn
Nx−1

h2 .

Define the discrete energy function [31] as follows:

E(mn) = h
Nx

∑
i=1

|∇mn
i |

2 = h
Nx

∑
i=1

∣∣∣∣mn
i+1 − mn

i
h

∣∣∣∣2
=

1
h

Nx

∑
i=1

[
(un

i+1 − un
i)

2 + (vn
i+1 − vn

i)
2 + (wn

i+1 − wn
i)

2
]
.

In particular, the energy function is conserved when the forcing term f = 0 [23].

2.2. Adaptive Time-Stepping Algorithm

Now, we present the adaptive time-stepping method. We set a maximum displacement
of the numerical solution within a single time step by a tolerance tol. Multiplying both
sides of Equation (16) by ∆tn+1, we obtain

mn+1
i − mn

i = ∆tn+1(− mn
i × ∆hmn

i + fn
i
)
, 1 ≤ i ≤ Nx. (3)

A maximum norm is defined as follows:

∥m∥∞ = max
1≤i≤Nx

|mi|. (4)

Then, from Equation (3), we require that the following condition be satisfied:

∥mn+1 − mn∥∞ = ∆tn+1∥ − mn × ∆hmn + fn∥∞ ≤ tol. (5)

In this study, we use the maximum norm instead of the l2-norm, which measures the
average, because the maximum norm is more effective for assessing the largest individual
component in a vector and ensures that no single variable dominates the vector’s magnitude.
From Equation (5), we have the constraint of the time step sizes:

∆tn+1 ≤ tol
∥ − mn × ∆hmn + fn∥∞

. (6)

Then, we use

∆tn+1 = min
(

tol
∥ − mn × ∆hmn + fn∥∞

, ∆tmax

)
, (7)

Algorithms 2025, 18, 1 6 of 19

where ∆tmax is a given maximum time step size that guarantees stability. From Equation (3),
we have the next time solution:

mn+1
i = mn

i + ∆tn+1(− mn
i × ∆hmn

i + fn
i
)
, 1 ≤ i ≤ Nx. (8)

However, generally, |mn+1
i | ̸= 1 for some i. We normalize it as

mn+1
i =

mn+1
i

|mn+1
i |

, 1 ≤ i ≤ Nx. (9)

Repeat this process while tn + ∆tn+1 ≤ T to calculate the numerical approach of
m(x, T). When determining adaptive time steps, tn+1 can exceed the desired final time.
In order to avoid such circumstance, if tn+1 = tn + ∆tn+1 > T, then set ∆tn+1 = T − tn.

We present a detailed numerical algorithm for each step of the proposed method in
Algorithm 1.

Algorithm 1: Adaptive scheme for the LL equation
INPUT endpoints Lx, Rx; number of grid points Nx; initial condition; final time T;
tolerance tol; maximum time step size ∆tmax; forcing term (fu, fv, fw).

OUTPUT approximation of m(x, T) = (u(x, T), v(x, T), w(x, T)).
Step 1 Initialization

Set h = (Rx − Lx)/Nx and t = 0
For i = 1, . . . , Nx do

xi = Lx + (i − 0.5)h
u0

i = u0(xi), v0
i = v0(xi), w0

i = w0(xi)
Step 2 While (t < T), do Steps 3–7.

Step 3 For i = 1, . . . , Nx do
∆hun

i = (un
i+1 − 2un

i + un
i−1)/h2;

∆hvn
i = (vn

i+1 − 2vn
i + vn

i−1)/h2;
∆hwn

i = (wn
i+1 − 2wn

i + wn
i−1)/h2.

Use periodic boundary condition
Step 4 Set sn

u,i = wn
i ∆hvn

i − vn
i ∆hwn

i + f n
u,i;

sn
v,i = un

i ∆hwn
i − wn

i ∆hun
i + f n

v,i;
sn

w,i = vn
i ∆hun

i − un
i ∆hvn

i + f n
w,i.

Step 5 Set dis = max
1≤i≤Nx

|(sn
u,i, sn

v,i, sn
w,i)|;

∆t = min(0.99 tol/dis, ∆tmax).
If t + ∆t > T, then ∆t = T − t.

Step 6 Set u∗
i = un

i + ∆t sn
u,i

v∗i = vn
i + ∆t sn

v,i
w∗

i = wn
i + ∆t sn

w,i.
Step 7 Set un+1

i = u∗
i /|(u∗

i , v∗i , w∗
i)|

vn+1
i = v∗i /|(u∗

i , v∗i , w∗
i)|

wn+1
i = w∗

i /|(u∗
i , v∗i , w∗

i)|.
t = t + ∆t.

Step 8 OUTPUT u(x, T), v(x, T), w(x, T)
STOP.

Remark 1. We use the maximum norm between mn+1 and mn for the criterion for selecting an
adaptive time step, which ensures that the maximum displacement falls within a predefined tolerance
threshold. The rationale for using the maximum norm between mn+1 and mn is to decrease the time
step when the temporal evolution is rapid and to increase it when the evolution is slow.

Algorithms 2025, 18, 1 7 of 19

Remark 2. The proposed time adaptivity method is different from a well-known method such as
the adaptive Runge–Kutta–Fehlberg (RKF) method, which is based on both higher- and lower-order
numerical schemes [32]. The adaptive RKF method has been successfully applied for the Allen–Cahn
equation [28]. The RKF method is a numerical technique with higher order than our proposed
method. If we assume that the numerical solution changes rapidly, the local error generated by
the adaptive time-stepping method based on the RKF method will be relatively smaller than that
of our proposed method. However, when calculating the time step size adaptively, the adaptive
time-stepping method based on the RKF method cannot calculate it at once because it does not know
the time step size advance.

Although our proposed time adaptivity method has lower-order than the adaptive time-stepping
method based on the RKF method, it is easy and simple to numerically implement, and it has the
advantage of being computationally efficient, because it does not require recomputing numerical
solutions when the updated solution does not satisfy a certain condition, as is done in [28]. Our
proposed updating algorithm is a one-step method. In addition, our proposed method can contin-
uously reduce the time step size as the numerical solution is updated, which is a drawback that
can be compensated for by separately considering the conditions for determining the lower bound.
In [33], an optimization of explicit Runge–Kutta schemes up to six-order accuracy was presented for
ordinary differential equation. The authors proposed a method for selecting optimal free coefficients
based on minimizing residual terms and ensuring interpolational properties.

3. Computational Experiments
We shall study the achievement of the proposed adaptive time-stepping method

through several computational experiments. We begin with the comparison study between
the numerical and analytic solution for the forcing term.

3.1. Without Forcing Term f ≡ 0

Now, we perform a convergence test when f ≡ 0 on a computational domain
Ω = (0, 1) and h = 1/100. The analytic solution [4] of the equation can be defined as

ue(x, t) = sin(α) cos(kx + tk2 cos(α)),

ve(x, t) = sin(α) sin(kx + tk2 cos(α)),

we(x, t) = cos(α),

where α = 0.25π, k = 2π. The boundary condition with periodic recurrence is considered
as m0 = mNx and mNx+1 = m1. An initial condition is given as follows:

(u(x, 0), v(x, 0), w(x, 0)) = (sin(α) cos(kx), sin(α) sin(kx), cos(α)).

Then, we can observe that m(x, t) = (ue(x, t), ve(x, t), we(x, t)) meets Equation (1), the ini-
tial condition, and the periodic boundary condition.

Figure 3a–c display the snapshots of the computational results of m(x, t) at t = 0.01,
0.07, and 0.1, respectively. Figure 3d–f display the numerical solutions to u(x, t), v(x, t),
and w(x, t) with the matching exact solutions at t = 0.1, respectively. The differences
between the exact solution and the computational solutions u(x, t), v(x, t), and w(x, t),
shown in Figure 3g–i, respectively, are evaluated at t = 0.1. Here, we use tolerance
tol = 10−6, α = 0.25π and maximum time step size ∆tmax = 0.5h2. In case f = 0, we verify
that the energy is conserved. Figure 3j shows the discrete energy variation over time.

Algorithms 2025, 18, 1 8 of 19

(a) (b) (c)

0 0.5 1
-1

-0.5

0

0.5

1

(d)
0 0.5 1

-1

-0.5

0

0.5

1

(e)
0 0.5 1

0.5

0.6

0.7

0.8

0.9

1

(f)

0 0.5 1
0

2

4

6

8
10

-4

(g)
0 0.5 1

0

2

4

6

8
10

-4

(h)
0 0.5 1

6.9064

6.9066

6.9068

6.907
10

-7

(i)

0 0.02 0.04 0.06 0.08 0.1

39.05

39.06

39.07

39.08

39.09

(j)

Figure 3. Numerical solutions at (a) t = 0.01, (b) t = 0.07, and (c) t = 0.1. Numerical and analytic
solutions of (d) u(x, t), (e) v(x, t), and (f) w(x, t) at t = 0.1. The differences between the exact solution
and the computational solutions (g) u(x, t), (h) v(x, t), and (i) w(x, t) at t = 0.1. (j) The time evolution
of discrete energy.

3.2. Periodic Forcing Term

We consider a one-dimensional LL equation on domain Ω = (0, 1), Nx = 100 and
h = 1/100 with a forcing term

mt = −m × mxx + f, (10)

which has an exact solution [4]

me(x, t) =

ue(x, t)
ve(x, t)
we(x, t)

 =

cos(x2(1 − x)2) sin(t)
sin(x2(1 − x)2) sin(t)

cos(t)

. (11)

Algorithms 2025, 18, 1 9 of 19

Therefore, a corresponding forcing term is adopted for the governing LL equation.
For brevity, we used X = x2(1 − x)2.

f = mt + m × mxx

=

cos(X) cos(t) + [(X′)2 sin(X)− X′′ cos(X)] sin(t) cos(t)
sin(X) cos(t) + [(X′)2 cos(X) + X′′ sin(X)] sin(t) cos(t)

− sin(t) + X′′ sin2(t)

.

The computational domain is defined as explained in Section 2.1. For final time T = 0.1,
tolerance tol = 10−7 and maximum time step size ∆tmax = 0.5h2 are selected as appropriate
parameter values. Figure 4a–c show the snapshots of the computational results of m(x, t)
at t = 0.01, 0.07, and 0.1, respectively. Figure 4d–f and g–i display the numerical solutions
and differences of u(x, t), v(x, t), and w(x, t) with the matching exact solutions at t = 0.1,
respectively. Computational results are represented by a circle, and analytic solutions are
represented by solid lines. We can see that the results from the proposed method show good
agreement with the exact solution. See Appendix A Table A1 for enumerated parameters.

(a) (b) (c)

0 0.5 1
0.0996

0.0997

0.0998

0.0999

(d)
0 0.2 0.4 0.6 0.8 1

0

0.001

0.002

0.003

0.004

0.005

0.006

(e)
0 0.5 1

0.99

0.995

1

(f)

(g)
0 0.2 0.4 0.6 0.8 1

0

2

4

6

8

10
10

-7

(h) (i)

Figure 4. Numerical solution at (a) t = 0.01, (b) t = 0.07, and (c) t = 0.1. Numerical and analytic
solutions of (d) u, (e) v, and (f) w at t = 0.1. The differences between the exact solution and the
numerical solutions (g) u, (h) v, and (i) w at t = 0.1.

Algorithms 2025, 18, 1 10 of 19

3.3. Non-Periodic Forcing Term

In this section, we present a computational experiment that rapidly changes over time.
The proposed time adaptive approach has its strength where the change of the solution
is rapid and diverse during the numerical simulation. Therefore, we apply the following
exact solution and corresponding forcing term in Equation (10):

me(x, t) =

ue(x, t)
ve(x, t)
we(x, t)

 =

cos(x2(1 − x)2) sin(100t2)

sin(x2(1 − x)2) sin(100t2)

cos(100t2)

, (12)

f = mt + m × mxx (13)

=

200t cos(X) cos(100t2) + [(X′)2 sin(X)− X′′ cos(X)] sin(100t2) cos(100t2)

200t sin(X) cos(100t2) + [(X′)2 cos(X) + X′′ sin(X)] sin(100t2) cos(100t2)

−200t sin(100t2) + X′′ sin2(100t2)

. (14)

To show the rapid change of the solution over time, Figure 5 illustrates the exact
solution we(x, t) = cos(100t2). The forcing term introduced in this section is no longer
periodic. Therefore, we use the homogeneous Neumann boundary condition instead of the
periodic boundary condition. Therefore, m0 = m1 and mNx+1 = mNx is applied. On the
computational domain (0, 1) with h = 1/128, we apply tolerance 5 × 10−7, maximum time
step size ∆tmax = 0.005h2 and find the numerical solution at final time T = 0.3. Snapshots of
the computational results at t = 0.01, 0.07 and 0.1 are illustrated in Figure 6a–c, respectively.
Figure 6d–i shows the numerical solutions and difference between the numerical solution
and exact solution of u, v and w from left to right. For error comparison, we use the discrete
maximum error defined as follows:

∥m − me∥ = max{|u − ue|+ |v − ve|+ |w − we|}.

The execution time is 767.9768 s, and the maximum error is 1.5237 × 10−5.

0 0.05 0.1 0.15 0.2 0.25 0.3

-1

-0.5

0

0.5

1

Figure 5. Exact solution we(x, t) = cos(100t2) in Equation (13)

Figure 7 illustrates the temporal evolution of the adaptive time step until final time T.
The time step decreases as evolution processes, and we can find the major advantage of our
proposed model. If a constant time step is applied, the minimum value of ∆t in Figure 7
must be used, which is unnecessary in most of the evolution. For example, before time
t = 0.05, the required time step ∆t is around six times the size of the initial step size.
The time step size applied at t = 0.3 is 3.52 × 10−9, which is approximately 100 times
smaller than the initial time step. Assume that a constant time step is applied, which is
the minimum step size in Figure 7. Because the adaptive step size decreases exponentially,
a smaller time step must be applied for the constant time step method, which will decrease
the efficiency of the calculation. Therefore, the proposed adaptive time step not only shows
a better performance than the constant time step method but also increases the efficiency as
a bigger total time is applied.

Algorithms 2025, 18, 1 11 of 19

(a) (b) (c)

0 0.2 0.4 0.6 0.8 1

0.4112

0.4114

0.4116

0.4118

0.412

0.4122

(d)
0 0.2 0.4 0.6 0.8 1

0

0.005

0.01

0.015

0.02

0.025

0.03

(e)
0 0.2 0.4 0.6 0.8 1

-1.1

-1

-0.9

-0.8

-0.7

(f)

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5
10

-5

(g)
0 0.2 0.4 0.6 0.8 1

0

2

4

6

8
10

-6

(h)
0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

6
10

-6

(i)

Figure 6. Numerical solutions for the proposed adaptive method at (a) t = 0.01, (b) t = 0.07,
and (c) t = 0.1. Numerical and analytic solutions of (d) u, (e) v, and (f) w at t = 0.3. The differences
between the exact solution and the numerical solutions (g) u, (h) v, and (i) w at t = 0.3.

0 0.05 0.1 0.15 0.2 0.25 0.3
0 10

0

1 10
-7

2 10
-7

3 10
-7

Figure 7. Desired adaptive time step ∆t for each time. Adaptive time steps enhance the efficiency of
the method.

Next, we present a comparison between the proposed adaptive time step method
and the constant time step methods: the explicit method and the Crank–Nicolson
method studied by Jeong and Kim [4]. Jeong and Kim proposed a finite difference
method for the LL equation using the Crank–Nicolson method and multigrid method
for handling nonlinearities.

Figure 8 shows the numerical results for the explicit method with constant time step
∆t = 1.3737 × 10−8. Figure 8a–c show the temporal evolution of the numerical solutions at
t = 0.01, t = 0.07, and t = 0.1, respectively. Figure 8d–f show the numerical and analytic
solutions of u, v, and w at t = 0.3. Figure 8g–i show the difference between the numerical
and analytic solutions for u, v, and w. The execution time is 901.6647 s, and the maximum
error is 1.57 × 10−5.

Algorithms 2025, 18, 1 12 of 19

(a) (b) (c)

0 0.2 0.4 0.6 0.8 1

0.4112

0.4114

0.4116

0.4118

0.412

0.4122

(d)
0 0.2 0.4 0.6 0.8 1

0

0.005

0.01

0.015

0.02

0.025

0.03

(e)
0 0.2 0.4 0.6 0.8 1

-1.1

-1

-0.9

-0.8

-0.7

(f)

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5
10

-5

(g)
0 0.2 0.4 0.6 0.8 1

0

2

4

6

8
10

-6

(h)
0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

6
10

-6

(i)

Figure 8. Numerical solutions for the explicit method with constant time step ∆t = 1.3737 × 10−8 at
(a) t = 0.01, (b) t = 0.07, and (c) t = 0.1. Numerical and analytic solutions of (d) u, (e) v, and (f) w at
t = 0.3. The differences between the exact solution and the numerical solutions (g) u, (h) v, and (i) w
at t = 0.3.

Under the equal benchmark problem, we applied constant time step ∆t = 2 × 10−8.
Figure 9 shows numerical results for the Crank–Nicolson method with a constant time
step. The first row of Figure 9 shows the temporal evolution of the numerical solutions at
t = 0.01, t = 0.07, and t = 0.1. The second row of Figure 9 shows the numerical and analytic
solutions of u, v, and w at t = 0.3. The last row of Figure 9 shows the difference between
the numerical and analytic solutions for u, v, and w. The execution time is 1123.6650 s,
and the maximum error is 1.02 × 10−5.

Through Figures 6, 8 and 9, we compared the results of the explicit adaptive time step
method, the constant time step method, and the Crank–Nicolson method for a rapidly
changing solution. From these results, the adaptive time step method proved to be better
than the constant time step method in terms of both execution time and error. While
the first-order adaptive time step method showed slightly larger errors compared to the
second-order Crank–Nicolson method, it achieve a similar level of error with significantly
less execution time. Furthermore, the proposed adaptive method has the advantage that
the trial and error of finding a suitable time step is unnecessary. If a desired tolerance is
given, the adaptive time step size is automatically given. However, when applying the
Crank–Nicolson method, attempts for finding a suitable time step must be previously
performed. Therefore, if we include this procedure in account, the proposed method has a
superiority compared to the Crank–Nicolson method.

Algorithms 2025, 18, 1 13 of 19

(a) (b) (c)

0 0.2 0.4 0.6 0.8 1

0.4112

0.4114

0.4116

0.4118

0.412

0.4122

(d)
0 0.2 0.4 0.6 0.8 1

0

0.005

0.01

0.015

0.02

0.025

0.03

(e)
0 0.2 0.4 0.6 0.8 1

-1.1

-1

-0.9

-0.8

-0.7

(f)

0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5
10

-6

(g)
0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

2.5

3
10

-6

(h)
0 0.2 0.4 0.6 0.8 1

7

7.5

8

8.5

9
10

-6

(i)

Figure 9. Numerical solutions for the Crank–Nicolson method with constant time step ∆t = 2 × 10−8

at (a) t = 0.01, (b) t = 0.07, and (c) t = 0.1. Numerical and analytic solutions of (d) u, (e) v, and (f) w
at t = 0.3. The differences between the exact solution and the numerical solutions (g) u, (h) v, and (i)
w at t = 0.3.

In concluding this section, we shall provide the maximum error as a function of the
tolerance in order to illustrate the behavior of the controller for many levels of accuracy.
We used the exact solution and forcing term introduced in this section on the computa-
tional domain (0, 1) with h = 1/128 at final time T = 0.1. Under maximum step size
∆tmax = 0.5h2, maximum errors at tolerance tol = 10−7, 1.2 × 10−6, 2.3 × 10−6, 2.3 × 10−6,
3.4 × 10−6, 4.5 × 10−6, 5.6 × 10−6, 6.7 × 10−6, 7.8 × 10−6, 8.9 × 10−6, 10−5 are illustrated in
Figure 10. We can see that after the first data, the maximum error linearly grows with
the tolerance.

10
-7

10
-6

10
-5

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

Figure 10. Maximum errors as a function of the tolerance. Tolerance values range from 10−7 to 10−5.

Algorithms 2025, 18, 1 14 of 19

3.4. Damping Forcing Term

Next, we consider a one-dimensional LL equation on domain Ω = (0, 2π) with a
damping forcing term. The exact solution and corresponding forcing term are given
as follows:

me(x, t) =

ue(x, t)
ve(x, t)
we(x, t)

 =

sech(αt) cos(x)
sech(αt) sin(x)

tanh(αt)

,

f(x, t) = me
t(x, t) + me(x, t)× me

xx(x, t) =

(ve(x, t)− αue(x, t))we(x, t)
(ue(x, t)− αve(x, t))we(x, t)

α[1 − (we(x, t))2]

.

Figure 11a–c show the snapshots of the computational results of m(x, t) at t = 0.0001,
0.0007, and 0.001, respectively. Figure 11d–f display the numerical approximations of
u(x, t), v(x, t), and w(x, t) with the corresponding exact solutions at t = 0.01, respectively.
Figure 11g–i illustrate the difference of u(x, t), v(x, t), and w(x, t) with the matching exact
solutions at t = 0.01, respectively. Here, we use Nx = 100, h = 2π/Nx, α = 1000,
tol = 10−5, and ∆tmax = 0.5h2.

(a) (b) (c)

0 2 4 6

-0.5

0

0.5

(d)
0 2 4 6

-0.5

0

0.5

(e)
0 2 4 6

0.72

0.74

0.76

0.78

0.8

(f)

(g)
0 2 4 6

0

2

4

6

8
10

-4

(h) (i)

Figure 11. Simulation of damping forcing term. Numerical solution at (a) t = 0.0001, (b) t = 0.0007,
and (c) t = 0.001. Numerical and analytic solutions of (d) u, (e) v, and (f) w at t = 0.001. The differ-
ences between the exact solution and the numerical solutions (g) u, (h) v, and (i) w at t = 0.001.

Lastly, we simulate the case where the forcing term is constant, f = (0, 0, 1)T

with the same computational domain as the last numerical simulation. Tolerance 10−7

is applied. The constant forcing term represents the constant one directional external
magnetic field that is applied to the dynamics of magnetization. The initial condition is
given as m(x, 0) = (cos(x)/

√
2, sin(x)/

√
2, 1/

√
2)T . Figure 12a–c show the snapshots of

Algorithms 2025, 18, 1 15 of 19

the computational results of m(x, t) at t = 0.001, 0.007, and 0.01, respectively. Figure 12d–f
display the numerical approximations of u(x, t), v(x, t), and w(x, t) with the corresponding
exact solutions at t = 0.01, respectively. We can see the numerical results are stable and
therefore capable of simulating this application.

(a) (b) (c)

0 0.2 0.4 0.6 0.8 1

0.645

0.65

0.655

0.66

0.665

0.67

(d)
0 0.2 0.4 0.6 0.8 1

0.01

0.015

0.02

0.025

0.03

0.035

0.04

(e)
0 0.2 0.4 0.6 0.8 1

0.74

0.745

0.75

0.755

0.76

0.765

(f)

Figure 12. Simulation of constant forcing term. Numerical solution at (a) t = 0.001, (b) t = 0.007,
and (c) t = 0.01. Numerical solutions of (d) u, (e) v, and (f) w at t = 0.01.

4. Conclusions
The article introduced a new adaptive time-stepping FDM for solving the LL equation,

which is crucial for investigating magnetic materials and processes. The method strategi-
cally selects time steps to keep displacement within a tolerance and allows larger steps near
equilibrium states for faster computations. Benchmark tests demonstrated the algorithm’s
efficiency and accuracy and showed its potential for advancing magnetic phenomena
analysis. We expect that the proposed time-stepping adaptive method can be applied to
various equations which can be numerically approximated. Reaction–diffusion equations
such as the Allen–Cahn equation can make good use of the proposed method because the
displacement of the numerical solution is determined by the time step size. Furthermore,
the evolution of the numerical solution varies during the numerical simulation, which
indicates that the adaptive time step can be an efficient solution.

In this paper, we considered a one-dimensional LL equation. Extending the proposed
method to multi-dimensional problems presents challenges for explicit methods in terms
of stability, which is a limitation of this study. Oscillations have already been reported in
one-dimensional problems. We expect that adopting an implicit method combined with
the adaptive time-stepping method could provide a solution for the multi-dimensional LL
problem. In future work, we will present an efficient adaptive time-stepping method for
the LL Equation (1) in two- and three-dimensional spaces. As a preliminary model, we
consider the two-dimensional case as follows. In two-dimensional space, Equation (1) on
Ω = (Lx, Rx)× (Ly, Ry) is defined as

∂m(x, y, t)
∂t

= −m(x, y, t)× ∆m(x, y, t) + f(x, y, t), (x, y) ∈ Ω, 0 < t ≤ T. (15)

Algorithms 2025, 18, 1 16 of 19

Let Nx and Ny be positive integers. The discrete computational domain is defined as
Ωh = {(xi = Lx +(i− 0.5)h, yj = Ly +(j− 0.5)h) | i = 1, 2, . . . , Nx, j = 1, 2, . . . , Ny}, where
the spatial step size h = (Rx − Lx)/Nx = (Ry − Ly)/Ny. We discretize Equation (15) as

mn+1
ij − mn

ij

∆tn+1 = −mn
ij ×

mn
i+1,j + mn

i−1,j + mn
i,j+1 + mn

i,j−1 − 4mn
ij

h2 + fn
ij.

We consider the case without the forcing term, where f ≡ 0. An exact solution of
Equation (15) is given by [4]

ue(x, y, t) = sin
(π

24

)
cos

(
2π(x + y) + 8πt cos

(π

24

))
,

ve(x, y, t) = sin
(π

24

)
sin

(
2π(x + y) + 8πt cos

(π

24

))
,

we(x, y, t) = cos
(π

24

)
.

The initial condition on the Ω = (0, 1)× (0, 1) is given by

(u(x, y, 0), v(x, y, 0), w(x, y, 0)) =
(

sin
(π

24

)
cos(2π(x + y)), sin

(π

24

)
sin(2π(x + y)), cos

(π

24

))
.

We used the parameters Nx = Ny = 32, tol = 10−6, ∆tmax = 0.2h2, and the final time
T = 0.1. For visualization of the numerical solution at time t = 0.1, we used the scaled
numerical solution 0.25mij for i = 1, 3, 5, . . . , 31, j = 1, 3, 5, . . . , 31. Figure 13 shows the
scaled numerical solutions at t = 0 and t = 0.1 using the adaptive time-stepping method.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(a) Initial
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(b) t = 0.1

Figure 13. Numerical solution at (a) t = 0 and (b) t = 0.1 using the adaptive time-stepping method.

Future work will focus on extending the proposed adaptive method to another class
of partial differential equations with a similar structure, particularly those involving fast
and slow evolutions such as the Allen–Cahn equation [34], the Black–Scholes equation [35],
and the Susceptible–Infected–Recovered (SIR) epidemic model [36].

Author Contributions: Conceptualization, J.K. and H.K.; methodology, J.K., H.K. and S.K. (Soobin
Kwak); software, H.K., S.K. (Soobin Kwak), M.M., S.K. (Seungyoon Kang) and S.H.; validation, M.M.,
S.K. (Soobin Kwak) and S.H.; formal analysis, H.K. and J.K.; investigation, S.K. (Seungyoon Kang)
and M.M.; resources, S.K. (Seungyoon Kang) and S.H.; data curation, S.K. (Seungyoon Kang) and
S.H.; writing—original draft, H.K., S.K. (Soobin Kwak), M.M., S.K. (Seungyoon Kang), S.H. and J.K.;
writing—review and editing, H.K., S.K. (Soobin Kwak), S.H., S.K. (Seungyoon Kang) and J.K.;
visualization, S.K. (Soobin Kwak) and S.H.; supervision, H.K. and J.K.; project administration, J.K.;

Algorithms 2025, 18, 1 17 of 19

funding acquisition, H.K. and J.K. All authors have read and agreed to the published version of
the manuscript.

Funding: The first author (Hyundong Kim) was supported by the Basic Science Research Program
through the National Research Foundation of Korea (NRF) funded by the Ministry of Education
(2021R1A6A1A03044326). The corresponding author (J.S. Kim) received support from the Brain Korea
21 (BK 21) FOUR program funded by the Ministry of Education.

Data Availability Statement: The raw data supporting the conclusions of this article will be made
available by the authors on request.

Acknowledgments: The authors thank the reviewers for their constructive and helpful comments on
the revision of this article.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A
The following MATLAB code produces the results shown in Figure 3, and the parameters

are enumerated in Table A1. The code can also be downloaded from https://mathematicians.
korea.ac.kr/cfdkim/open-source-codes/ (accessed on 23 December 2024). Compared to other
programs in the market, MATLAB is highly beneficial in a way that it serves as a unified
platform that can provide powerful numerical computation through coding and a com-
prehensive set of tools for data visualization. Because both functionalities are available,
the user can interactively check and modify variables in the workspace and memory and
visualize it instantaneously. Moreover, MATLAB boasts an extensive functionality through
extensional toolboxes and built-in functions that can boost the work speed of the user.

In this paper, the LL equation in a small scale is simulated through MATLAB. We
expect that the proposed method can be expanded to larger-scale problems that handle
practical engineering applications with the help of additional computational methods such
as parallel computing.

Table A1. Parameters used for the 1D LL equation.

Parameters Description

Nx number of grid points on the x-axis
Lx minimum value on the x-axis
Rx maximum value on the x-axis
h space step size
T final time
maxdt maximum time step size
tol tolerance

c l e a r ;
Nx=100; Lx =0; Rx=1; h=(Rx−Lx) /Nx ; x= l i n s p a c e (Lx + 0 . 5 * h , Rx − 0 .5 * h , Nx) ;
XX=(x . ^ 2) . * ((1 − x) . ^ 2) ; dXX=2*x −6*x .^2+4* x . ^ 3 ; ddXX=2−12*x+12*x . ^ 2 ;
ue=@(t) s i n (t) . * cos (XX) ;
ve=@(t) s in (t) . * s i n (XX) ;
we=@(t) cos (t) . * ones (1 ,Nx) ;
T=1. e −1; maxdt = 0 . 5 * h^2; t =0; u=ue (0) ; v=ve (0) ; w=we(0) ; t o l =1. e −7;
while t <T

Lapu (1) =(u (2) −2*u (1) +u (Nx)) /h^2;
Lapv (1) =(v (2) −2*v (1) +v (Nx)) /h^2;
Lapw (1) =(w(2) −2*w(1) +w(Nx)) /h^2;
f o r i =2:Nx−1

Lapu (i) =(u (i +1) −2*u (i) +u (i −1)) /h^2;
Lapv (i) =(v (i +1) −2*v (i) +v (i −1)) /h^2;
Lapw(i) =(w(i +1) −2*w(i) +w(i −1)) /h^2;

https://mathematicians.korea.ac.kr/cfdkim/open-source-codes/
https://mathematicians.korea.ac.kr/cfdkim/open-source-codes/

Algorithms 2025, 18, 1 18 of 19

end
Lapu (Nx) =(u (1) −2*u (Nx) +u (Nx−1)) /h^2;
Lapv (Nx) =(v (1) −2*v (Nx) +v (Nx−1)) /h^2;
Lapw(Nx) =(w(1) −2*w(Nx) +w(Nx−1)) /h^2;
fu=cos (XX) . * cos (t) +(dXX . ^ 2 . * s i n (XX) −ddXX . * cos (XX)) * s in (t) * cos (t) ;
fv=s i n (XX) . * cos (t) −(dXX . ^ 2 . * cos (XX) +ddXX . * s in (XX)) * s in (t) * cos (t) ;
fw=−s in (t) +ddXX* s in (t) . ^ 2 ;
su=v . * Lapw−w. * Lapv−fu ;
sv=w. * Lapu−u . * Lapw−fv ;
sw=u . * Lapv−v . * Lapu−fw ;
en=max(s q r t (su .^2+ sv .^2+sw. ^ 2)) ;
dt =0 .99* t o l /en ; dt=min (dt , maxdt) ;
i f (t +dt >T)

dt=T− t ;
end
t = t +dt ;
nu=u−dt * su ; nv=v−dt * sv ; nw=w−dt *sw ;
u=nu ; v=nv ; w=nw;
A=[u ' v ' w'] ;
f o r i =1 :Nx

B (i) =norm (A(i , :)) ;
end
u=u./B ; v=v ./B ; w=w./B ;

end

References
1. Landau, L.; Lifshitz, E. On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Phys. Z. Sowjetunion

1935, 8, 101–114.
2. Bertotti, G.; Mayergoyz, I.D.; Serpico, C. Analytical solutions of Landau–Lifshitz equation for precessional dynamics. Physica B

2004, 343, 325–330. [CrossRef]
3. García-Ñustes, M.A.; Humire, F.R.; Leon, A.O. Self-organization in the one-dimensional Landau–Lifshitz–Gilbert–Slonczewski

equation with non-uniform anisotropy fields. Commun. Nonlinear Sci. Numer. Simul. 2021, 96, 105674. [CrossRef]
4. Jeong, D.; Kim, J. A Crank–Nicolson scheme for the Landau–Lifshitz equation without damping. J. Comput. Appl. Math. 2010,

234, 613–623. [CrossRef]
5. Jeong, D.; Kim, J. An accurate and robust numerical method for micromagnetics simulations. Curr. Appl. Phys. 2014, 14, 476–483.

[CrossRef]
6. Sharma, H.; Borggaard, J.; Patil, M.; Woolsey, C. Performance assessment of energy-preserving, adaptive time-step variational

integrators. Commun. Nonlinear Sci. Numer. Simul. 2022, 114, 106646. [CrossRef]
7. Moumni, M.; Tilioua, M. A finite-difference scheme for a model of magnetization dynamics with inertial effects. J. Eng. Math.

2016, 100, 95–106. [CrossRef]
8. Li, P.; Xie, C.; Du, R.; Chen, J.; Wang, X.P. Two improved Gauss-Seidel projection methods for Landau–Lifshitz–Gilbert equation.

J. Comput. Phys. 2020, 401, 109046. [CrossRef]
9. Jannelli, A. Adaptive numerical solutions of time-fractional advection–diffusion–reaction equations. Commun. Nonlinear Sci.

Numer. Simul. 2022, 105, 106073. [CrossRef]
10. Wang, X.P.; García-Cervera, C.J.; Weinan, E. A Gauss–Seidel projection method for micromagnetics simulations. J. Comput. Phys.

2001, 171, 357–372. [CrossRef]
11. Dörfler, M. Quilted Gabor frames—A new concept for adaptive time-frequency representation. Adv. Appl. Math. 2011, 47, 668–687.

[CrossRef]
12. Alouges, F. A new finite element scheme for Landau–Lifshitz equations. Discrete Contin. Dyn. Syst. Ser. S 2008, 1, 187–196.
13. Alouges, F.; Jaisson, P. Convergence of a finite element discretization for the Landau–Lifshitz equations in micromagnetism. Math.

Models Methods Appl. Sci. 2006, 16, 299–316. [CrossRef]
14. Mohammed, M.; Mouhcine, T. A finite element approximation of a current-induced magnetization dynamics model. J. Math.

Model. 2022, 10, 53–69.
15. Moumni, M.; Douiri, S.M.; Kim, J.S. Fourier-spectral method for the Landau–Lifshitz–Gilbert equation in micromagnetism.

Results Appl. Math. 2023, 19, 100380. [CrossRef]
16. Weinan, E.; Wang, X.P. Numerical methods for the Landau–Lifshitz equation. SIAM J. Numer. Anal. 2001, 39, 1647–1665.

http://doi.org/10.1016/j.physb.2003.08.064
http://dx.doi.org/10.1016/j.cnsns.2020.105674
http://dx.doi.org/10.1016/j.cam.2010.01.002
http://dx.doi.org/10.1016/j.cap.2013.12.028
http://dx.doi.org/10.1016/j.cnsns.2022.106646
http://dx.doi.org/10.1007/s10665-015-9836-4
http://dx.doi.org/10.1016/j.jcp.2019.109046
http://dx.doi.org/10.1016/j.cnsns.2021.106073
http://dx.doi.org/10.1006/jcph.2001.6793
http://dx.doi.org/10.1016/j.aam.2011.02.007
http://dx.doi.org/10.1142/S0218202506001169
http://dx.doi.org/10.1016/j.rinam.2023.100380

Algorithms 2025, 18, 1 19 of 19

17. Yang, W.; Wang, D.; Yang, L. A stable numerical method for space fractional Landau–Lifshitz equations. Appl. Math. Lett. 2016,
61, 149–155. [CrossRef]

18. Cimrák, I. A survey on the numerics and computations for the Landau–Lifshitz equation of micromagnetism. Arch. Comput.
Methods Eng. 2007, 15, 1–37. [CrossRef]

19. Bastos, J.P.A.; Sadowski, N. Magnetic Materials and 3D Finite Element Modeling; CRC Press: Boca Raton, FL, USA, 2017.
20. Cai, Y.; Chen, J.; Wang, C.; Xie, C. Error analysis of a linear numerical scheme for the Landau–Lifshitz equation with large

damping parameters. Math. Methods Appl. Sci. 2023, 46, 18952–18974. [CrossRef]
21. Chen, J.; Wang, C.; Xie, C. Convergence analysis of a second-order semi-implicit projection method for Landa–Lifshitz equation.

Appl. Numer. Math. 2021, 168, 55–74. [CrossRef]
22. Yang, Y.B.; Jiang, Y.L. Unconditional optimal error estimates of linearized second-order BDF Galerkin FEMs for the Landau–

Lifshitz equation. Appl. Numer. Math. 2021, 159, 21–45. [CrossRef]
23. Fuwa, A.; Ishiwata, T.; Tsutsumi, M. Finite difference scheme for the Landau–Lifshitz equation. Jpn. J. Ind. Appl. Math. 2012,

29, 83–110. [CrossRef]
24. Magaletti, F.; Gallo, M.; Perez, S.P.; Carrillo, J.A.; Kalliadasis, S. A positivity-preserving scheme for fluctuating hydrodynamics.

J. Comput. Phys. 2022, 463, 111248. [CrossRef]
25. Daribayev, B.; Mukhanbet, A.; Azatbekuly, N.; Imankulov, T. A quantum approach for exploring the numerical results of the heat

equation. Algorithms 2024, 17, 327. [CrossRef]
26. Krivovichev, G.V. Stability optimization of explicit Runge–Kutta methods with higher-order derivatives. Algorithms 2024, 17, 535.

[CrossRef]
27. Christou, M.A.; Papanicolaou, N.C.; Sophocleous, C. An efficient and highly accurate spectral method for modeling the

propagation of solitary magnetic spin waves in thin films. Comput. Appl. Math. 2020, 39, 205. [CrossRef]
28. Lee, C.; Park, J.; Kwak, S.; Kim, S.; Choi, Y.; Ham, S.; Kim, J. An adaptive time-stepping algorithm for the Allen–Cahn equation.

J. Funct. Spaces 2022, 2022, 2731593. [CrossRef]
29. Cheng, Q.; Shen, J. Length preserving numerical schemes for Landau–Lifshitz equation based on Lagrange multiplier approaches.

SIAM J. Sci. Comput. 2023, 45, A530–A553. [CrossRef]
30. He, J.; Yang, L.; Zhan, J. Temporal High-Order Accurate Numerical Scheme for the Landau–Lifshitz–Gilbert Equation. Mathematics

2024, 12, 1179. [CrossRef]
31. De Laire, A. Recent results for the Landau–Lifshitz equation. SeMA J. 2022, 79, 253–295. [CrossRef]
32. Atkinson, K.; Han, W.; Stewart, D.E. Numerical Solution of Ordinary Differential Equations, 2nd ed.; John Wiley & Sons: Hoboken,

NJ, USA, 2009.
33. Alshina, E.A.; Zaks, E.M.; Kalitkin, N.N. Optimal first-to sixth-order accurate Runge-Kutta schemes. Comput. Math. Math. Phys.

2008, 48, 395–405. [CrossRef]
34. Ham, S.; Kim, J. Stability analysis for a maximum principle preserving explicit scheme of the Allen–Cahn equation. Math. Comput.

Simul. 2023, 207, 453–465. [CrossRef]
35. Lee, C.; Kwak, S.; Hwang, Y.; Kim, J. Accurate and efficient finite difference method for the Black–Scholes model with no far-field

boundary conditions. Comput. Econ. 2023, 61, 1207–1224. [CrossRef]
36. Dieguez, G.; Batistela, C.; Piqueira, J.R.C. Controlling COVID-19 spreading: A three-level algorithm. Mathematics 2023, 11, 3766.

[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.aml.2016.05.014
http://dx.doi.org/10.1007/BF03024947
http://dx.doi.org/10.1002/mma.9601
http://dx.doi.org/10.1016/j.apnum.2021.05.027
http://dx.doi.org/10.1016/j.apnum.2020.08.014
http://dx.doi.org/10.1007/s13160-011-0054-9
http://dx.doi.org/10.1016/j.jcp.2022.111248
http://dx.doi.org/10.3390/a17080327
http://dx.doi.org/10.3390/a17120535
http://dx.doi.org/10.1007/s40314-020-01230-7
http://dx.doi.org/10.1155/2022/2731593
http://dx.doi.org/10.1137/22M1501143
http://dx.doi.org/10.3390/math12081179
http://dx.doi.org/10.1007/s40324-021-00254-1
http://dx.doi.org/10.1134/S0965542508030068
http://dx.doi.org/10.1016/j.matcom.2023.01.016
http://dx.doi.org/10.1007/s10614-022-10242-w
http://dx.doi.org/10.3390/math11173766

	Introduction
	Numerical Method
	Discretization
	Adaptive Time-Stepping Algorithm

	Computational Experiments
	Without Forcing Term f0
	Periodic Forcing Term
	Non-Periodic Forcing Term
	Damping Forcing Term

	Conclusions
	Appendix A
	References

