
J. Korean Soc. Ind. Appl. Math. Vol.29, No.2, 171–183, 2025 https://doi.org/10.12941/jksiam.2025.29.171

PRACTICAL IMPLEMENTATION OF BOUNDARY CONDITIONS IN THE

THOMAS ALGORITHM

SOOBIN KWAK1†

1DEPARTMENT OF MATHEMATICS, KOREA UNIVERSITY, SOUTH KOREA

Email address: †soobin23@korea.ac.kr

ABSTRACT. The Thomas algorithm is widely used for efficiently solving tridiagonal systems

that arise from finite difference discretizations of partial differential equations. While the core

algorithm is well established, the practical treatment of boundary conditions, especially periodic

boundary, often requires careful implementation to maintain numerical stability and accuracy.

This paper presents a comprehensive discussion of practical strategies for incorporating various

boundary conditions into the Thomas algorithm. We compare different implementation ap-

proaches, analyze their computational implications, and provide code-level insights to facilitate

integration into numerical solvers. Benchmark tests on prototypical diffusion-type equations

demonstrate the effectiveness and robustness of the proposed methods.

1. INTRODUCTION

Tridiagonal linear systems frequently arise in the numerical solution of partial differen-

tial equations (PDEs), especially when using finite difference discretizations of diffusion-type

equations. The Thomas algorithm, also known as the tridiagonal matrix algorithm, is a classical

direct solver for such systems, offering both computational efficiency and numerical stability.

Owing to its simplicity and low computational cost, the Thomas algorithm remains a funda-

mental tool in the implementation of time-stepping schemes such as the implicit Euler [1] or

alternating direction implicit (ADI) method [2].

Despite the algorithm’s straightforward structure, its application requires careful handling

of boundary conditions, particularly when the boundaries do not follow simple Dirichlet or

Neumann specifications. Among these, periodic boundary conditions introduce cyclic coupling

across the domain boundaries, violating the strict tridiagonal structure required by the standard

Thomas algorithm. To address this issue, modifications such as the Sherman–Morrison formula

are often employed, allowing for the efficient solution of cyclic tridiagonal systems via rank-

one corrections.

Received June 15 2025; Revised June 19 2025; Accepted in revised form June 23 2025; Published online June

25 2025.

2020 Mathematics Subject Classification. 65M06.

Key words and phrases. Thomas algorithms, numerical boundary treatment, Sherman–Morrison correction.
† Corresponding author.

171

172 S. KWAK

This paper focuses on the practical implementation and comparison of boundary condition

treatments within the Thomas algorithm framework. We provide a detailed formulation of

the algorithm under periodic [3], Dirichlet [4, 5], and Neumann [6, 7] boundary conditions,

highlighting their respective impacts on matrix structure and solvability. Through illustrative

examples, we demonstrate how to adapt the algorithm using matrix decomposition techniques

and explain the implementation strategy in the context of two-dimensional problems solved

with the operator splitting method (OSM).

To validate and compare the accuracy and stability of these implementations, we conduct a

series of numerical experiments. These include convergence tests using the heat equation with

an exact solution, as well as phase separation dynamics modeled by the Allen–Cahn (AC) equa-

tion [8, 9]. The experiments showcase how different boundary conditions influence numerical

results, particularly in the evolution of sharp interfaces.

By bridging theoretical derivation and code-level practicality, this study aims to serve both as

a reference for implementing boundary-aware Thomas solvers and as a guide for understanding

the influence of boundary conditions in time-dependent PDE simulations.

The remainder of this paper is organized as follows. Section 2 introduces the numerical

method and boundary condition treatments. Section 3 presents numerical experiments to vali-

date and compare the proposed approach. A conclusion is given in Sec. 4, and the implemen-

tation code is provided in the Appendix.

2. NUMERICAL METHOD

We consider the heat equation in a d-dimensional domain Ω ⊂ R
d:

∂u(x, t)

∂t
= α∆u(x, t), x ∈ Ω, t > 0. (2.1)

Here, u(x, t) denotes the temperature field, and α > 0 is the diffusion coefficient. In this

work, we focus on the two-dimensional case (d = 2), where the domain is given by Ω =
(Lx, Rx)× (Ly, Ry). The governing equation becomes

∂u

∂t
= α

(

∂2u

∂x2
+

∂2u

∂y2

)

, (x, y) ∈ Ω, t > 0. (2.2)

We assume periodic boundary conditions in both spatial directions. To solve the governing

equation (2.2) numerically, the spatial domain is discretized using a uniform cell-centered grid.

Let Nx and Ny denote the number of grid cells in the x- and y-directions, respectively. The

spatial step size is given by h = (Rx − Lx)/Nx = (Ry − Ly)/Ny , and the cell centers are

located at xi = Lx + (i− 0.5)h, i = 1, . . . , Nx and yj = Ly + (j − 0.5)h, j = 1, . . . , Ny . We

denote the numerical approximation of u(xi, yj, t
n) by unij , where tn = n∆t.

For each time step, the numerical solution is advanced from unij to un+1
ij through two inter-

mediate substeps. The governing equation (2.2) is split into two parts using the OSM.

In the first substep, we solve the following equation implicitly in the x-direction:

u∗ij − unij
∆t

= α
u∗i−1,j − 2u∗ij + u∗i+1,j

h2
. (2.3)

PRACTICAL IMPLEMENTATION OF BOUNDARY CONDITIONS IN THE THOMAS ALGORITHM 173

In the second substep, the equation is solved implicitly in the y-direction using the interme-

diate solution u∗ij:

un+1
ij − u∗ij

∆t
= α

un+1
i,j−1 − 2un+1

ij + un+1
i,j+1

h2
. (2.4)

.

Equation (2.3) can be rewritten in matrix form as

Au∗

j = un
j , (2.5)

where

A =



















1 + 2r −r 0 · · · 0 −r
−r 1 + 2r −r 0 · · · 0

0 −r 1 + 2r −r
. . .

...
... 0

. . .
. . .

. . . 0
0 · · · 0 −r 1 + 2r −r
−r 0 · · · 0 −r 1 + 2r



















, u∗

j =



















u∗1j
u∗2j
u∗3j

...

u∗Nx−1,j

u∗Nxj



















, and un
j =



















un1j
un2j
un3j

...

unNx−1,j

unNxj



















.

Here, r = α∆t/h2. The matrix A is cyclic tridiagonal due to the periodic boundary conditions,

with nonzero elements in the top-right and bottom-left corners. Therefore, it cannot be directly

handled by the standard Thomas algorithm. For the efficient solution of such systems, the

cyclic tridiagonal matrix is decomposed into the sum of a modified tridiagonal matrix and a

rank-one correction. Equation (2.5) rewrites (Ã+ pqT)u∗

j = un
j , where

Ã =



















1 + 3r −r 0 · · · 0 0
−r 1 + 2r −r 0 · · · 0

0 −r 1 + 2r −r
. . .

...
... 0

. . .
. . .

. . . 0
0 · · · 0 −r 1 + 2r −r
0 0 · · · 0 −r 1 + 3r



















, p =



















1
0
0
...

0
1



















, and q =



















−r
0
0
...

0
−r



















.

We compute the solution u∗

j using the Sherman–Morrison formula [10].

Theorem 2.1 (Sherman–Morrison Formula). Let Ã ∈ R
n×n be a nonsingular matrix and let

p, q ∈ R
n be column vectors. Then the solution x to the linear system

(Ã+ pqT)x = b

is given by

x = Ã−1b− Ã−1pqT Ã−1b

1 + qT Ã−1p
.

174 S. KWAK

In our case, we compute fj = Ã−1un
j , g = Ã−1p, and obtain the solution u∗

j as

u∗

j = fj −
qT fj

1 + qTg
· g.

Since Ã is a tridiagonal matrix, we solve the systems Ãfj = un
j and Ãg = p using the Thomas

algorithm. A similar strategy is applied in the y-direction, where the corresponding tridiagonal

systems are solved column-wise using the Thomas algorithm with appropriate periodic bound-

ary corrections. Furthermore, even if the governing equation is extended to an N -dimensional

domain, the use of the OSM allows for a straightforward extension by applying similar strate-

gies along each spatial direction.

We note that the structure of the matrix A depends on the type of boundary condition im-

posed.

2.1. Dirichlet Boundary Condition. When Dirichlet boundary conditions are applied, the

values at the boundaries are prescribed explicitly, such as u0j = a, uNx+1,j = b. The unknowns

are defined only on the interior nodes, and the resulting matrix A is strictly tridiagonal. The

right-hand side vector un
j is modified to incorporate the Dirichlet boundary values:

A =

















1 + 2r −r 0 · · · 0

−r 1 + 2r −r
. . .

...

0
. . .

. . .
. . . 0

...
. . . −r 1 + 2r −r

0 · · · 0 −r 1 + 2r

















, un
j =



















un1j + ra

un2j
un3j

...

unNx−1,j

unNxj
+ rb



















.

The standard Thomas algorithm can be directly applied in this case.

2.2. Neumann Boundary Condition. For homogeneous Neumann boundary conditions, which

specify zero normal derivative at the boundaries, such as

∂u

∂x

∣

∣

∣

∣

x=Lx

= 0,
∂u

∂x

∣

∣

∣

∣

x=Rx

= 0,

a common approach is to introduce ghost points and approximate the boundary derivatives

using central differences. This results in conditions like u0j = u1j and uNx+1,j = uNxj , and

modifies the first and last rows of the system. The resulting matrix A is given by:

A =

















1 + r −r 0 · · · 0

−r 1 + 2r −r
. . .

...

0
. . .

. . .
. . . 0

...
. . . −r 1 + 2r −r

0 · · · 0 −r 1 + r

















.

PRACTICAL IMPLEMENTATION OF BOUNDARY CONDITIONS IN THE THOMAS ALGORITHM 175

Although A is not strictly tridiagonal, it retains a banded structure, and the Thomas algorithm

can still be used.

Each boundary condition results in a different structure. Unlike the periodic case, neither

Dirichlet nor Neumann boundary conditions introduce cyclic coupling. Therefore, the stan-

dard Thomas algorithm can be applied directly without the need for any correction or matrix

modification.

3. NUMERICAL EXPERIMENTS

In this section, we perform a convergence test for the Thomas algorithm with periodic

boundary conditions. We also compare the numerical behavior under Dirichlet, Neumann,

and periodic boundary conditions by solving the Allen–Cahn (AC) equation. The AC equation

is given by

∂u

∂t
= ∆u− F ′(u)

ǫ2
,

where u = u(x, y, t), F (u) = 0.25(u2 − 1)2 is a double-well potential, and ǫ > 0 is a small

parameter that controls the thickness of the diffuse interface.

To numerically solve the AC equation, we use an OSM, in which the linear diffusion term

is treated implicitly using the Thomas algorithm, while the nonlinear reaction term is handled

analytically [11]. Specifically, if u∗∗ denotes the intermediate solution obtained after solving

the diffusion step, then the final solution at the next time level is given by

un+1 =
u∗∗

√

(1− (u∗∗)2) e

(

−
2∆t

ǫ2

)

+ (u∗∗)2
.

This expression represents the exact solution of the reaction part of the equation, with ini-

tial u∗∗, and contributes to maintaining accuracy and stability when dealing with stiff non-

linearities. In our simulations, we use the interface thickness parameter ǫ = ǫm, where

ǫm = mh/(2
√
2 tanh−1(0.9)) [12].

3.1. Convergence test. To verify the accuracy of the proposed numerical method, we perform

convergence tests using the two-dimensional heat equation with a known analytical solution.

The computational domain is set to Ω = (−0.125, 1.875)×(−0.25, 0.75). The initial condition

is chosen as

u(x, y, 0) = cos(πx) cos(πy),

for which the exact solution is given by

uexact(x, y, t) = cos(πx) cos(πy)e(−2απ2t)

with the diffusion coefficient α = 1. We first perform simulations for a sequence of grid

resolutions Nx = Ny = 2k, where k = 3, 4, . . . , 8, with a fixed time step size ∆t = 1.e-7 and

176 S. KWAK

final time T = 0.04. The numerical solution is compared with exact solution at the final time,

and the discrete ℓ2-error is computed as

‖eh‖ℓ2 =

√

√

√

√

1

NxNy

Nx
∑

i=1

Ny
∑

j=1

(

uNt

ij − uexact(xi, yj , Nt∆t)
)2

,

where Nt = T/∆t denotes number of iteration. Figure 1(a) shows the ℓ2-error with respect

to the mesh size h on a log-log scale. The observed convergence rate is approximately second

order, which is consistent with the theoretical accuracy of the finite difference discretization

and the OSM.

10-2 100

10-5

10-3

10-1

(a)

10-4 10-3 10-2
10-4

10-3

10-2

(b)

Figure 1: (a) Spatial convergence error with various spatial step size h. (b) Temporal conver-

gence error with respect to time step ∆t.

The detailed error values corresponding to each mesh size are reported in Table 1.

Table 1: Discrete ℓ2-errors and observed convergence rates with respect to mesh size h.

h 1/4 1/8 1/16 1/32 1/64 1/128

‖eh‖ℓ2 9.2087e-3 2.3034e-3 5.7596e-4 1.4406e-4 3.6081e-5 9.0866e-6
rate 1.9992 1.9997 1.9993 1.9973 1.9894

In addition, we investigate the temporal convergence errors by fixing the spatial grid size

h = 0.004 and varying the time step ∆t = 0.01/2k for k = 1, 2, . . . , 6. The final time is set to

T = 0.04, and the ℓ2-error is evaluated similarly. As shown in Fig. 1(b), the method exhibits

first-order convergence in time. Corresponding numerical values are summarized in Table 2.

Figure 2 illustrates the comparison between the initial condition, the numerical solution, and

the exact solution at final time T = 0.04, used in the convergence test. Figure 2(a) displays

PRACTICAL IMPLEMENTATION OF BOUNDARY CONDITIONS IN THE THOMAS ALGORITHM 177

Table 2: Discrete ℓ2-errors and observed convergence rates with respect to time step size ∆t.

∆t 1/200 1/400 1/800 1/1600 1/3200 1/6400
‖eh‖ℓ2 4.3254e-3 2.1885e-3 1.1017e-3 5.5360e-4 2.7838e-4 1.4047e-4

rate 0.9829 0.9902 0.9928 0.9918 0.9868

the initial condition, which is smooth and periodic over the computational domain. Figure 2(b)

presents the numerical solution obtained using the Thomas algorithm with periodic boundary

conditions, a spatial resolution of h = 0.004 and time step size ∆t = 1/6400. Figure 2(c)

shows the exact solution, which is used to evaluate the accuracy of the numerical approxima-

tion. The numerical solution in Fig. 2(b) matches closely with the exact solution in Fig. 2(c),

capturing both the amplitude and the shape of the decaying cosine profile. This visual agree-

ment confirms the second-order spatial accuracy and the robustness of the periodic Thomas

algorithm.

0 0.5 1 1.5

0

0.5

1

1.5

-1

-0.5

0

0.5

1

(a)

0 0.5 1 1.5

0

0.5

1

1.5

-1

-0.5

0

0.5

1

(b)

0 0.5 1 1.5

0

0.5

1

1.5

-1

-0.5

0

0.5

1

(c)

Figure 2: (a) Initial condition. (b) Numerical solution. (c) Exact solution.

3.2. Comparison of different boundary conditions. We investigate how different bound-

ary conditions influence the numerical behavior of the AC equation. Using the same initial

condition and discretization parameters, we compare the results under Dirichlet, Neumann,

and periodic boundary conditions. These experiments are designed to highlight how boundary

treatment affects the evolution and stability of the interface. In particular, we observe quali-

tative differences in interface motion near the domain boundaries, which reflect the intrinsic

characteristics of each type of boundary condition.

The initial condition is chosen as a diffuse circular interface centered at (0.4, 0.4), modeled

by

u(x, y, 0) =
1

2
+

1

2
tanh

(

r0 −
√

(x− 0.4)2 + (y − 0.4)2

2
√
2ǫ

)

,

178 S. KWAK

where r0 = 0.3 and ǫ = ǫ4. The computational domain is (0, 2) × (0, 2), discretized with

h = 0.01, and the time step is set to ∆t = 0.5h2. The total simulation time is T = 0.005, and

the AC equation is solved using the OSM introduced earlier.

Figure 3 compares the temporal evolution of the AC equation under three different boundary

conditions: periodic, Dirichlet, and Neumann. All simulations start from the same initial con-

dition, consisting of a circular interface centered near the lower-left corner of the domain. The

three columns correspond to time snapshots at t = 0, t = 40∆t, and t = 80∆t, respectively.

In the periodic case (top row), the circular interface shrinks while maintaining its shape and

reenters the domain smoothly from the opposite side as it crosses the boundary. This behavior

confirms the correct implementation of periodic boundary conditions, preserving topological

continuity. Under Dirichlet boundary conditions (middle row), the interface deforms signif-

icantly as it approaches the fixed boundaries. Since the solution is constrained to be −1 at

the boundary, the circular profile becomes increasingly distorted and exhibits angular features

where it encounters the boundary. This constraint enforces a lower potential value than the

interior, causing an asymmetrical flattening of the interface and accelerating curvature change

near the edge. Such artificial influence alters the natural curvature-driven evolution of the in-

terface. In contrast, the Neumann boundary condition (bottom row) allows the interface to

approach the domain boundary more naturally. The shape remains smooth and symmetric,

and the interface motion slows down as it reaches the boundary, consistent with the zero-flux

condition that prevents material from leaving or entering the domain. These results highlight

the significant influence of boundary conditions on the phase evolution described by the AC

equation. While periodic and Neumann boundaries preserve the natural curvature-driven be-

havior, Dirichlet boundaries with a fixed value of −1 introduce artificial distortion due to their

enforced asymmetry.

To provide a quantitative assessment of the computational complexity associated with each

boundary condition, Table 3 presents the measured CPU time for simulations conducted under

Dirichlet, Neumann, and periodic boundary conditions. This simulation is performed on a

desktop computer equipped with an Intel Core i9-13900K CPU and 32 GB of RAM, running

MATLAB R2023b.

Table 3: CPU time (in seconds) for simulations under different boundary conditions: Dirichlet,

Neumann, and periodic.

Dirichelt Neumann periodic

CPU time 0.1131 0.1106 0.1203

4. CONCLUSION

This paper has presented a detailed and practical guide to implementing the Thomas algo-

rithm under various boundary conditions, with particular emphasis on cases that are often over-

looked in standard numerical treatments, such as periodic boundaries. For periodic systems,

we demonstrated how to apply the Sherman–Morrison formula to efficiently and accurately

PRACTICAL IMPLEMENTATION OF BOUNDARY CONDITIONS IN THE THOMAS ALGORITHM 179

(a)

0 0.5 1 1.5 2
0

0.5

1

1.5

2

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2
0

0.5

1

1.5

2

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2
0

0.5

1

1.5

2

0

0.2

0.4

0.6

0.8

1

(b)

0 0.5 1 1.5 2
0

0.5

1

1.5

2

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2
0

0.5

1

1.5

2

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2
0

0.5

1

1.5

2

0

0.2

0.4

0.6

0.8

1

(c)

0 0.5 1 1.5 2
0

0.5

1

1.5

2

0

0.2

0.4

0.6

0.8

1

t = 0
0 0.5 1 1.5 2

0

0.5

1

1.5

2

0

0.2

0.4

0.6

0.8

1

t = 40∆t
0 0.5 1 1.5 2

0

0.5

1

1.5

2

0

0.2

0.4

0.6

0.8

1

t = 80∆t

Figure 3: Temporal evolution of the AC equation with various boundary conditions. Rows

correspond to different boundary conditions: (a) periodic, (b) Dirichlet, and (c) Neumann.

Columns represent time at t = 0, 40∆t, and 80∆t.

solve the resulting cyclic tridiagonal systems. The governing equation is decomposed using an

OSM and discretized using cell-centered finite differences. A series of numerical experiments

was conducted to validate the proposed methods. Convergence tests with the heat equation

confirmed the expected accuracy of the scheme. Simulations of the AC equation under Dirich-

let, Neumann, and periodic boundary conditions further illustrated how boundary treatments

can significantly affect the qualitative behavior of the interface. Beyond providing accurate

results, the goal of this work is to serve as a clear and accessible reference for students and

researchers who are learning to implement boundary-aware tridiagonal solvers. By carefully

180 S. KWAK

documenting the modifications required for different boundary conditions and supporting the

discussion with reproducible MATLAB code (available in the Appendix), we hope this work

can aid future efforts in scientific computing and numerical PDEs. By carefully documenting

the algorithmic modifications required for each type of boundary condition and supporting the

discussion with reproducible MATLAB code (available in the Appendix), this work aims to

provide a useful reference for students and practitioners implementing tridiagonal solvers in

the context of PDEs.

ACKNOWLEDGMENTS

The author would like to thank editor and reviewers for helpful discussions and constructive

comments that improved the manuscript.

APPENDIX

The code provided in the Appendix is also available online at https://github.com/

skwak/skwak.github.io.

c l e a r ;

Lx = 0 ; Rx = 2 ; Ly = 0 ; Ry = 2 ; Nx = 2 0 0 ; Ny = Nx ; h = (Rx−Lx) / Nx ;

x = l i n s p a c e (Lx +0.5* h , Rx −0.5* h , Nx) ;

y = l i n s p a c e (Ly +0.5* h , Ry −0.5* h , Ny) ;

[X,Y] = n d g r i d (x , y) ; ep = 4*h / (2 * s q r t (2) * atanh (0 . 9)) ;

d t = 0 . 5 * h ˆ 2 ; T = 100* d t ; Nt = round (T / d t) ;

% I n i t i a l c o n d i t i o n

r0 = 0 . 3 ;

u = 0 . 5 + 0 . 5 * tanh ((r0 − s q r t ((X− 0 . 4) . ˆ 2 + (Y− 0 . 4) . ˆ 2)) / (2 * s q r t (2) * ep)) ;

% Boundary c o n d i t i o n

bc = ” p e r i o d i c ” ;

% T r i d i a g o n a l c o e f f i c i e n t s

r = d t / h ˆ 2 ;

ax = − r * ones (Nx , 1) ; bx = (1+2* r)* ones (Nx , 1) ; cx = − r * ones (Nx , 1) ;

ay = − r * ones (Ny , 1) ; by = (1+2* r)* ones (Ny , 1) ; cy = − r * ones (Ny , 1) ;

s w i t c h bc

c a s e ” p e r i o d i c ”

bx (1) = bx (1) − cx (Nx) ; bx (Nx) = bx (Nx) − ax (1) ;

by (1) = by (1) − cy (Ny) ; by (Ny) = by (Ny) − ay (1) ;

c a s e ” d i r i c h l e t ”

bx (1) = 1 + 2* r ; bx (Nx) = 1 + 2* r ;

by (1) = 1 + 2* r ; by (Ny) = 1 + 2* r ;

a = −1; b = −1;

c a s e ” neumann”

PRACTICAL IMPLEMENTATION OF BOUNDARY CONDITIONS IN THE THOMAS ALGORITHM 181

bx (1) = 1 + r ; bx (Nx) = 1 + r ;

by (1) = 1 + r ; by (Ny) = 1 + r ;

end

% c o e f f i c i e n t s f o r Sherman−Morrison f o r m u l a

px = z e r o s (Nx , 1) ; px (1) = 1 ; px (Nx) = 1 ;

qx = z e r o s (Nx , 1) ; qx (1) = ax (Nx) ; qx (Nx) = cx (1) ;

gx = thomas (ax , bx , cx , px) ;

py = z e r o s (Ny , 1) ; py (1) = 1 ; py (Ny) = 1 ;

qy = z e r o s (Ny , 1) ; qy (1) = ay (Ny) ; qy (Ny) = cy (1) ;

gy = thomas (ay , by , cy , py) ;

% V i s u a l i z a t i o n

f i g u r e (1) ; c l f ; hold on ; view (2) ; box on ;

colormap j e t ; c l im ([0 , 1]) ; co lo rba r

s u r f (X, Y, u , ’ EdgeColor ’ , ’ none ’) ;

a x i s image ; a x i s ([Lx , Rx , Ly , Ry])

f o r n = 1 : Nt

u s t a r = z e r o s (Nx , Ny) ;

f o r j = 1 :Ny

s w i t c h bc

c a s e ” p e r i o d i c ”

f j = thomas (ax , bx , cx , u (: , j)) ;

u s t a r (: , j) = f j − ((qx ’* f j) / (1 + qx ’* gx)) * gx ;

c a s e ” d i r i c h l e t ”

f j = u (: , j) ;

f j (1) = f j (1) + r * a ; f j (end) = f j (end)+ r *b ;

u s t a r (: , j) = thomas (ax , bx , cx , f j) ;

c a s e ” neumann”

u s t a r (: , j) = thomas (ax , bx , cx , u (: , j)) ;

end

end

f o r i = 1 :Nx

s w i t c h bc

c a s e ” p e r i o d i c ”

f i = thomas (ay , by , cy , u s t a r (i , :) ’) ;

u (i , :) = (f i − ((qy ’* f i) / (1 + qy ’* gy)) * gy) ’ ;

c a s e ” d i r i c h l e t ”

f i = u s t a r (i , :) ’ ;

f i (1) = f i (1) + r * a ; f i (end) = f i (end)+ r *b ;

u (i , :) = thomas (ay , by , cy , f i) ’ ;

c a s e ” neumann”

u (i , :) = thomas (ay , by , cy , u s t a r (i , :) ’) ’ ;

end

182 S. KWAK

end

u = u . / s q r t ((1 − u . ˆ 2) . * exp (−2* d t / ep ˆ 2) + u . ˆ 2) ;

% V i s u a l i z a t i o n

i f mod (n ,1 0)==0

f i g u r e (1) ; c l f ; hold on ; view (2) ; box on ;

colormap j e t ; c l im ([0 , 1]) ; co lo rba r

s u r f (X, Y, u , ’ EdgeColor ’ , ’ none ’) ;

a x i s image ; a x i s ([Lx , Rx , Ly , Ry])

drawnow

end

end

f u n c t i o n x = thomas (a lp h a , beta , gamma , f)

n = l e n g t h (f) ; b e t a = beta ; f = f ;

x = z e r o s (n , 1) ;

f o r i = 2 : n

mul t = a l p h a (i) / b e t a (i − 1) ;

b e t a (i) = b e t a (i) − mul t *gamma(i − 1) ;

f (i) = f (i) − mul t * f (i − 1) ;

end

x (n) = f (n) / b e t a (n) ;

f o r i = n −1: −1:1

x (i) = (f (i) −gamma(i) * x (i + 1)) / b e t a (i) ;

end

end

REFERENCES

[1] B.I. Yun, An improved implicit Euler method for solving initial value problems, Journal of the Korean Society

for Industrial and Applied Mathematics, 26(3) (2022), 138–155.

[2] G. Birkhoff, R.S. Varga, and D. Young, Alternating direction implicit methods, Advances in computers 3, pp.

189–273, Elsevier, 1962.

[3] G. Russell, K.D. Harkins, T.W. Secomb, J.P. Galons, and T.P. Trouard, A finite difference method with periodic

boundary conditions for simulations of diffusion-weighted magnetic resonance experiments in tissue, Physics

in Medicine & Biology, 57(4) (2012), N35.

[4] D. Jeong, Y. Nam, M. Bang, H. Kim, and J. Kim, Reconstructing piecewise constant local volatility surfaces,

Journal of the Korean Society for Industrial and Applied Mathematics, 29(1) (2025), 26–36.

[5] S. Kwak, S. Ham, J. Wang, H. Kim, and J. Kim, Effective perpendicular boundary conditions in phase-field

models using Dirichlet boundary conditions, Engineering with Computers, (2025) 1–16.

[6] B.J. Szekeres, and F. Izsák, A finite difference method for fractional diffusion equations with Neumann bound-

ary conditions, Open Mathematics, 13(1) (2015), 000010151520150056.

[7] W. Dai, A new accurate finite difference scheme for Neumann (insulated) boundary condition of heat conduc-

tion, International Journal of Thermal Sciences, 49(3) (2010), 571–579.

[8] S.M. Allen, and J.W. Cahn, Ground state structures in ordered binary alloys with second neighbor interac-

tions, Acta Metallurgica, 20(3) (1972), 423–433.

PRACTICAL IMPLEMENTATION OF BOUNDARY CONDITIONS IN THE THOMAS ALGORITHM 183

[9] Y. Kim, G. Ryu, and Y. Choi, Fast and accurate numerical solution of Allen–Cahn equation, Mathematical

Problems in Engineering, 2021(1) (2021), 5263989.

[10] J. Sherman, and W.J. Morrison, Adjustment of an inverse matrix corresponding to a change in one element of

a given matrix, The Annals of Mathematical Statistics, 21(1) (1950), 124–127.

[11] Y. Li, H.G. Lee, D. Jeong, and J. Kim, An unconditionally stable hybrid numerical method for solving the

Allen–Cahn equation, Computers & Mathematics with Applications, 60(6) (2010), 1591–1606.

[12] G. Lee and S. Lee, Study on decouled projection method for Cahn–Hilliard equation, Journal of the Korean

Society for Industrial and Applied Mathematics, 27(4) (2023), 272–280.

