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Abstract
The primary objective of this study is to present the temporal and spatial evolution dynamics of two- and three-dimensional 
phase-field models with Dirichlet boundary conditions on arbitrary shaped domains. We consider the Allen–Cahn (AC), 
Cahn–Hilliard (CH), nonlocal Cahn–Hilliard (nCH) equations among the phase-field models in this study. The AC equa-
tion has been used to model various phenomena, such as motion by mean curvature flows. It can be derived from the Gin-
zburg–Landau free-energy functional. The CH equation has been applied to many conservative physical phenomena, such 
as phase separation dynamics. As for the nCH equation, a fourth-order nonlocal nonlinear PDE, it models the microphase 
separation of diblock copolymers. For these phase-field models, there are various boundary conditions available, such as 
Neumann, periodic, Dirichlet boundary conditions. In this study, we investigate the phase transformation dynamics of the 
phase-field models using different Dirichlet boundary conditions. Furthermore, complex-shaped domains can be handled 
straightforwardly, and a perpendicular boundary condition can be effectively imposed by applying the zero Dirichlet bound-
ary condition. This approach proves to be highly useful and efficient in imposing the perpendicular boundary conditions for 
complex-shaped domains.

Keywords  Allen–Cahn equation · Dirichlet boundary condition · Cahn–Hilliard equation · Phase-field model · Nonlocal 
Cahn–Hilliard equation

1  Introduction

We consider the temporal evolution dynamics of phase-
field models with Dirichlet boundary conditions on arbi-
trary shaped domains. The following phase-field models 
(1)–(3) are the Allen–Cahn (AC) [1–9], Cahn–Hilliard (CH) 
[9–13], nonlocal Cahn–Hilliard (nCH) [14, 15] equations, 
respectively:

where � = �(x, t) is a phase-field, x ∈ Ω , and t > 0. We 
consider problems in two- and three-dimensional domains, 
Ω ⊂ ℝ

2 or ℝ3 . Here, F(�) = 0.25(�2 − 1)2 (see Fig. 1), � 
and � are positive constants, and 𝜓̄ = ∫

Ω
𝜓(x, 0)dx

/ ∫
Ω
dx.

(1)
��

�t
= −

F�(�)

�2
+ Δ� ,

(2)
��

�t
= Δ

[
F�(�) − �2Δ�

]
,

(3)
𝜕𝜓

𝜕t
= Δ

[
F�(𝜓) − 𝜖2Δ𝜓

]
− 𝛼(𝜓 − 𝜓̄),
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The AC equation (1) is a mathematical equation that 
models the process of anti-phase domain coarsening in crys-
talline solids [2]. It can be derived from the L2-gradient flow 
of the Ginzburg–Landau free-energy functional [16, 17]:

The AC equation satisfies the maximum principle, which 
means that if the initial condition is bounded by one, then 
the solution of the AC equation remains bounded by one 
for any time [18]. Furthermore, the energy functional (4) 
decreases with time, expressed as dE(�)∕dt ≤ 0 [18, 19]. 
The AC equation has been widely applied to various fields, 
including image segmentation [20], multiphase flow [21], 
crystal growth, volume repairing [22], motion by mean 
curvature [23], and volume inpainting [24]. Zhang et al. 
[25] developed a class of high-order maximum principle 
preserving schemes for solving the AC equation. Tan and 

(4)E(�) = ∫Ω

(
F(�)

�2
+

1

2
|∇�|2

)
dx.

Zhang [26] performed an analysis for a novel second-order 
numerical method for the AC equation. Zhang et al. [27] 
proposed non-iterative and temporally second-order accu-
rate numerical methods for the anisotropic conservative AC 
equation. Wang et al. [28] proposed a linear energy stable 
and maximum principle preserving scheme with a novel sta-
bilization approach for the AC equation. The CH equation 
(2) is a mathematical equation that describes the process 
of phase separation [10]. It can be derived from a gradient 
flow in a Hilbert space of the Ginzburg–Landau free-energy 
functional (4).

There are various boundary conditions such as homoge-
neous Neumann [29–31], periodic [31–33], contact angle 
[34, 35], pinning [36], dynamic, crack, Robin-type [37], 
pseudo-Neumann [38, 39], reflecting [40], Dirichlet [41–43] 
boundary conditions for the phase-field models. Research 
on curvature-driven pattern formation on evolving domains 
has been conducted by adding phyllotaxis [44–46] to the 
CH-type phase-field model [47]. For example, the pinning 
boundary condition was used to simulate the coffee ring 
effect during the drying of a droplet [36], see Fig. 2(a) for 
a schematic illustration. Figure 2b shows the contact angle 
boundary condition [34]. Figure 2c, d display the Dirichlet 
and Neumann boundary conditions [48], respectively. For 
a more detailed explanation of the numerical treatments, 
please see the corresponding references.

The primary objective of the present study is to explore 
the temporal evolution dynamics of the phase-field models 
with Dirichlet boundary conditions on arbitrary shaped 
domains. The main finding is that we can effectively 
impose perpendicular boundary conditions by setting the 
zero Dirichlet boundary condition, which proves to be 

Fig. 1   Double-well potential free energy F(�) = 0.25(�2 − 1)2

Fig. 2   a Schematics of the 
pinning boundary condition 
in a 3D space, b the contact 
angle boundary condition, c the 
Dirichlet boundary condition, 
and d the Neumann boundary 
condition. Reprinted from [34, 
36, 48] with permission from 
the publisher
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highly useful and efficient in complex-shaped domains. 
Calculating perpendicular boundary conditions in domains 
with complex shapes is a challenging problem [48]. Meth-
ods such as interpolation and the use of indicator functions 
need to be considered; however, the method we propose 
is a simpler approach. This idea can be applied to other 
reaction-diffusion systems exhibiting Turing instability. 
Unstable critical values may be chosen as the Dirichlet 
boundary values to obtain effective perpendicular bound-
ary conditions.

The outline of this paper is as follows. Section  2 
describes the proposed numerical methodology. In Sect. 3, 
the computational experiments are conducted. Conclusions 
are provided in Sect. 4.

2 � Numerical method

2.1 � Two‑dimensional numerical method

L e t  Ω = (Lx,Rx) × (Ly,Ry)  b e  t h e 
d o m a i n  a n d  l e t  t h e  d i s c r e t e  d o m a i n  b e 
Ωh = {(xi = Lx + ih, yj = Ly + jh) | i = 0,… ,Nx, j = 0,… ,Ny} 
with h = (Rx − Lx)∕Nx ; see Fig. 3.

For simplicity of notation, let �n
ij
= �(xi, yj, nΔt) , where 

Δt is the time step. Since we use Dirichlet boundary condi-
t ion,  �0j = 0 ,  �Nxj

= 0 ,  �i0 = 0 ,  and �iNy
= 0 for 

i = 0, 1,… ,Nx , and j = 0, 1,… ,Ny when solving the AC 
equation. We note that � = −1 , 0, 1 are critical points, 
among which � = 0 is an unconditionally unstable critical 
point [50]. The primary finding of this study is to set the 
unconditionally unstable point as the boundary value and 
obtain the perpendicular effect at the boundary when 
phases separate.

Using the fully explicit Euler method, the AC Eq. (1) is 
discretized as follows:

where Δd�ij = (�i−1,j + �i+1,j − 4�ij + �i,j−1 + �i,j+1)∕h
2. 

Equation (5) can be rewritten as

The CH Eq. (2) is discretized using the linear convex split-
ting-type scheme [51]:

(5)�n+1
ij

− �n
ij

Δt
= −

(
�n
ij

)3

− �n
ij

�2
+ Δd�

n
ij
,

(6)�n+1
ij

= �n
ij
+ Δt

⎛⎜⎜⎜⎝
−

�
�n
ij

�3

− �n
ij

�2
+ Δd�

n
ij

⎞⎟⎟⎟⎠
.

where we have used the l inear  spl i t t ing of 
�3 − � = �3 − 3� + 2� and

Due to the use of the discrete biharmonic operator, an 
extended discrete domain is required, as illustrated in 
Fig. 4. When solving the CH and nCH equations, ghost 
points are needed: �−1,j = 0 , �0,j = 0 , �Nx,j

= 0 , �Nx+1,j
= 0 , 

�i,−1 = 0  ,  �i,0 = 0  ,  �i,Ny
= 0  ,  and  �i,Ny+1

= 0  fo r 
i = 0, 1,… ,Nx and j = 0, 1,… ,Ny . The use of ghost points, 
as depicted in Fig. 4, effectively introduces a homogeneous 
Neumann boundary condition, which ensures that the 
interface is perpendicular to the boundary [52].

We use the following Saul’yev-type method [53] for 
Eq. (11), which is a better scheme than Fourier spectral 
method [54] on complex domains:

(7)
�n+1
ij

− �n
ij

Δt
=Δd

[(
�n
ij

)3

− 3�n
ij
+ 2�n+1

ij

]
− �2Δ2

d
�n+1
ij

(8)=Δd

[(
�n
ij

)3

− 3�n
ij

]
+ 2Δd�

n+1
ij

− �2Δ2

d
�n+1
ij

,

Δ2

d
�ij =Δd

(
Δd�ij

)

=
Δd�i−1,j + Δd�i+1,j − 4Δd�ij + Δd�i,j−1 + Δd�i,j+1

h2

=
[
�i−2,j + �i+2,j + �i,j−2 + �i,j+2

+ 2(�i−1,j−1 + �i−1,j+1 + �i+1,j−1

+ �i+1,j+1) − 8(�i−1,j + �i+1,j + �i,j−1

+ �i,j+1) + 20�ij

]
∕h4.

Fig. 3   Schematic illustrations of the discrete numerical domains Ωh 
for the AC equation
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We can simplify Eq. (9) as

(9)

For j = 1, 2,… ,Ny − 1, for i = 1, 2,… ,Nx − 1,

�n+1
ij

− �n
ij

Δt
= Δd

[
(�n

ij
)3 − 3�n

ij

]
+

2

h2

(
�n+1
i−1,j

+ �n
i+1,j

− 2�n
ij
− 2�n+1

ij

+ �n+1
i,j−1

+ �n
i,j+1

)
−

�2

h4

[
�n+1
i−2,j

+ �n
i+2,j

+ �n+1
i,j−2

+ �n
i,j+2

+ 2(�n+1
i−1,j−1

+ �n
i−1,j+1

+ �n+1
i+1,j−1

+ �n
i+1,j+1

) − 8(�n+1
i−1,j

+ �n
i+1,j

+ �n+1
i,j−1

+ �n
i,j+1

) + 10�n
ij
+ 10�n+1

ij

]
.

(10)

�n+1
ij

=
1

r

{�n
ij

Δt
+ Δd

[
(�n

ij
)3 − 3�n

ij

]

+
2

h2

(
�n+1
i−1,j

+ �n
i+1,j

− 2�n
ij

+ �n+1
i,j−1

+ �n
i,j+1

)
−

�2

h4

[
�n+1
i−2,j

+ �n
i+2,j

+ �n+1
i,j−2

+ �n
i,j+2

+ 2(�n+1
i−1,j−1

+ �n
i−1,j+1

+ �n+1
i+1,j−1

+ �n
i+1,j+1

) − 8(�n+1
i−1,j

+ �n
i+1,j

�n+1
i,j−1

+ �n
i,j+1

) + 10�n
ij

]}
,

where r = 1∕Δt + 4∕h2 + 10�2∕h4 . Figure 5 a visual expla-
nation of the loop of Eq. (9).The � values of each node used 
to obtain �n+1

ij
 are updated based on the loop.

The other 7 cases come into being as following:

More details about the discretization of the CH equation can 
be found in the work of [53], which is an explicit version 
(alternating direction explicit, ADE) of an implicit formula-
tion (alternating direction implicit, ADI) [55]. A conserva-
tive Saul’yev method for Eq. (2) is discussed in detail in 
[53]. As for the nCH Eq. (3), it is discretized using the linear 
convex splitting-type method [56]:

Next, we use the following Saul’yev-type method [57] for 
Eq. (11):

Equation (12) is rewritten as

For j = 1, 2,… ,Ny − 1, for i = Nx − 1,Nx − 2,… , 1,

For j = Ny − 1,Ny − 2,… , 1, for i = 1, 2,… ,Nx − 1,

For j = Ny − 1,Ny − 2,… , 1, for i = Nx − 1,Nx − 2,… , 1,

For i = 1, 2,… ,Nx − 1, for j = 1, 2,… ,Ny − 1,

For i = Nx − 1,Nx − 2,… , 1, for j = 1, 2,… ,Ny − 1,

For i = 1, 2,… ,Nx − 1, for j = Ny − 1,Ny − 2,… , 1,

For i = Nx − 1,Nx − 2,… , 1, for j = Ny − 1,Ny − 2,… , 1.

(11)

𝜓n+1
ij

− 𝜓n
ij

Δt
= Δd

[(
𝜓n
ij

)3

− 3𝜓n
ij

]

+ 2Δd𝜓
n+1
ij

− 𝜖2Δ2

d
𝜓n+1
ij

− 𝛼

(
𝜓n+1
ij

− 𝜓̄

)
.

(12)

For j = 1, 2,… ,Ny − 1, for i = 1, 2,… ,Nx − 1,

𝜓n+1
ij

− 𝜓n
ij

Δt
= Δd

[(
𝜓n
ij

)3

− 3𝜓n
ij

]

+
2

h2

(
𝜓n+1
i−1,j

+ 𝜓n
i+1,j

− 2𝜓n
ij
− 2𝜓n+1

ij

)

+ 𝜓n+1
i,j−1

+ 𝜓n
i,j+1

−
𝜖2

h4

[
𝜓n+1
i−2,j

+ 𝜓n
i+2,j

+ 𝜓n+1
i,j−2

+ 𝜓n
i,j+2

+ 2

(
𝜓n+1
i−1,j−1

+ 𝜓n
i−1,j+1

)

+ 𝜓n+1
i+1,j−1

+ 𝜓n
i+1,j+1

− 8(𝜓n+1
i−1,j

+ 𝜓n
i+1,j

+ 𝜓n+1
i,j−1

+ 𝜓n
i,j+1

) + 10𝜓n
ij
+ 10𝜓n+1

ij

]

− 𝛼(𝜓n+1
ij

− 𝜓̄).

Fig. 4   Schematic illustrations of the discrete numerical domains Ωh 
for the CH and nCH equations
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where r = 1∕Δt + 4∕h2 + 10�2∕h4 + � . For the remaining 
seven cases, the loops are identical to those of the CH equa-
tion. For additional information about the discretization of 
the nCH equation using a conservative Saul’yev method, 
please refer to [57].

2.2 � Three‑dimensional numerical method

We consider  three-dimensional  (3D) numer i-
cal method for nCH equation. Let the domain be 
Ω = (Lx,Rx) × (Ly,Ry) × (Lz,Rz) and the discrete domain 
be Ωh = {(xi = Lx + ih, yj = Ly + jh, zk = Lz + kh)|i = 0, 1,
… ,Nx, j = 0, 1,… ,Ny, k = 0, 1,… ,Nz} , with uniform grid 
size h = (Rx − Lx)∕Nx = (Ry − Ly)∕Ny = (Rz − Lz)∕Nz . The 
nCH Eq. (3) is discretized using the linear convex splitting-
type method [56]:

Next, we use the following Saul’yev-type method [57] for 
Eq. (14):

(13)

𝜓n+1
ij

=
1

r

{𝜓n
ij

Δt
+ Δd

[
(𝜓n

ij
)3 − 3𝜓n

ij

]

+
2

h2

(
𝜓n+1
i−1,j

+ 𝜓n
i+1,j

− 2𝜓n
ij

+ 𝜓n+1
i,j−1

+ 𝜓n
i,j+1

)
−

𝜖2

h4

[
𝜓n+1
i−2,j

+ 𝜓n
i+2,j

+ 𝜓n+1
i,j−2

+ 𝜓n
i,j+2

+ 2(𝜓n+1
i−1,j−1

+ 𝜓n
i−1,j+1

+ 𝜓n+1
i+1,j−1

+ 𝜓n
i+1,j+1

) − 8(𝜓n+1
i−1,j

+ 𝜓n
i+1,j

+ 𝜓n+1
i,j−1

+ 𝜓n
i,j+1

) + 10𝜓n
ij

]
+ 𝛼𝜓̄

}
.

(14)

𝜓n+1
ijk

− 𝜓n
ijk

Δt
= Δd

[(
𝜓n
ijk

)3

− 3𝜓n
ijk

]

+ 2Δd𝜓
n+1
ijk

− 𝜖2Δ2

d
𝜓n+1
ijk

− 𝛼(𝜓n+1
ijk

− 𝜓̄).

For k = 1, 2,… ,Nz − 1 , for j = 1, 2,… ,Ny − 1 , for 
i = 1, 2,… ,Nx − 1

Equation (15) is rewritten as

where r = 1∕Δt + 6∕h2 + 21�2∕h4 + � . For the other 47 
cases, the loops are identical to those of the CH equation. 
Refer [57] to find details about the discretization using a 
conservative Saul’yev method for the nCH equation.

(15)
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}
,

Fig. 5   Schematic visualization of the loop: For j = 1, 2,… ,Ny − 1 , 
for i = 1, 2,… ,Nx − 1
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3 � Numerical experiments

We perform various computational tests in different com-
putational domains to investigate the temporal evolution 
dynamics of the phase-field models with Dirichlet bound-
ary conditions.

3.1 � Pattern formations in a rectangular domain

First, we consider the temporal evolutions of the com-
putational solutions of the phase-field models on a sim-
ple rectangular domain Ω = (0, 1) × (0, 1) . The dis-
crete computational domain for the AC equation is 
Ωh = {(xi, yj)|xi = hi, yj = hj, for i = 0,… ,Nx, j = 0,… ,Ny}   , 
where h = 0.01 and Nx = Ny = 100 . For the CH and nCH 
equations, Ωh = {(xi, yj)|xi = hi, yj = hj, for i = −1,… ,
Nx + 1, j = −1,… ,Ny + 1} is used. We use the initial 
condition

where rand(xi, yj) is a uniformly distribution random number 
in interval (−1, 1) . The parameters are Δt = 0.1h2 , � = h , 
𝜓̄ = 0 , and � = 1000.

Figure 6a–c show the numerical simulation result for 
the AC equation at times t = 10Δt, 50Δt , and 200Δt , 
respectively. Here, the zero Dirichlet boundary condition 
is applied. We can observe the interface of the phases con-
tacts perpendicularly the domain boundary except a couple 

(17)�0

ij
= 0.15 rand (xi, yj),

of grids. Figure 6d shows plots of �200

0∶Nx,j
 at j = 0, 1, 2, and 

7. At the domain boundary j = 0 , the phase-field is zero 
as we prescribed. On grid cell inside the domain, the 
phase-field takes non-zero values because zero is not sta-
ble value. As the j-index progressively increases, the 
phase-field approaches plus one or minus one with transi-
tion layers. Consequently, the interface (zero-level set of 
the phase-field) effectively forms perpendicular to the 
domain boundary.

Figure 7a–c show the numerical simulation results for 
the CH equation with homogeneous Dirichlet boundary 
condition at times t = 400Δt, 1200Δt , and 24, 000Δt , 
respectively. We can observe the interface of the phases 
contacts perpendicularly the domain boundary except a 
couple of grids and phase separation occurs inside domain. 
Figure 7d shows plots of �24000

0∶Nx,j
 at j = 0, 1, 2, and 7. The 

profiles are similar to the case of the AC equation.
Figure 8a–c show the numerical simulation results for 

the nCH equation with zero Dirichlet boundary condition 
at times t = 400Δt, 1200Δt , and 40000Δt , respectively. We 
can observe the interface of the phases contacts perpen-
dicularly the domain boundary except a couple of grids, 
phase separation occurs inside domain, and lamellar struc-
tures are formed. Figure  8d shows plots of �40,000

0∶Nx,j
 at 

j = 0, 1, 2, and 7. The profiles are similar to the cases of 
the AC and CH equations except that the maximum and 
minimum values are limited by some value less than one 
and greater than minus one, respectively.

Fig. 6   Temporal evolution of 
the computational solutions 
of the AC equation: a–c are 
at times t = 10Δt, 50Δt , and 
200Δt , respectively. d Plots of 
�200

0∶Nx ,j
 at j = 0, 1, 2, and 7
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3.2 � Pattern formations in an elliptical domain

This subsection is concerned with pattern forma-
tions in an elliptical domain Ω which is embedded in 
Ωe = (−10, 10) × (−10, 10) . Here, the parameters are 

Nx = Ny = 500 , h = 0.04 , Δt = 0.1h2 , � = h , 𝜓̄ = 0 , and 
� = 100 . The discrete computational domain is given as

Fig. 7   Temporal evolution of 
the computational solutions 
of the CH equation: a–c are at 
times t = 400Δt, 1200Δt , and 
24000Δt , respectively. (d) Plots 
of �24000

0∶Nx ,j
 at j = 0, 1, 2, and 7

Fig. 8   Temporal evolution 
of the numerical solutions of 
the nCH equation: a–c are 
at t = 400Δt, 1200Δt , and 
40, 000Δt , respectively. d Plots 
of �40000

0∶Nx ,j
 at j = 0, 1, 2, and 7
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where xi = −10 + hi for i = 0,… ,Nx and yj = −10 + hj for 
j = 0,… ,Ny . We use the initial condition

Outside the domain, a zero Dirichlet boundary value is 
assigned, and we only update the values within the domain 
Ωh.

Figure 9a–c display the temporal evolutions of the com-
putational solutions of Eqs. (1)–(3), respectively. We can 
observe that the zero Dirichlet boundary condition effec-
tively and efficiently achieves the perpendicular Neumann 

(18)Ωh =

{
(xi, yj)

|||||

(
2xi

9

)2

+

(
2yj

11

)2

< 1

}
,

(19)�0

ij
= 0.15 rand (xi, yj), for (xi, yj) ∈ Ωh.

boundary condition slightly away from the domain bound-
ary. Implementing a conventional zero Neumann boundary 
condition in this case would be more complex.

3.3 � Pattern formations in complex domains

Next, we present the results of computational experiments 
in more complex domains with Dirichlet boundary condi-
tions. Let Ω be an arbitrary shaped open domain, and �Ω 
be its boundary of Ω , as shown in Fig. 10a. Addition-
ally, let Ωh be a discrete numerical domain, �Ωh be its 
discrete boundary. For the AC equation, we use the dis-
crete domain with a one-layer boundary, as illustrated in 
Fig. 10b. Because of the biharmonic term in the CH and 

Fig. 9   Temporal evolutions of 
the computational solutions 
of a the AC, b CH, and c nCH 
equations. The times are shown 
below each figure
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nCH equations, we use the discrete domain with two-layer 
boundaries, as depicted in Fig. 10c.

Let us consider an arbitrary shaped domain Ω embed-
ded in Ωe = (−10, 10) × (−10, 10) . Figure 11a–c display 
the numerical results of Eqs. (1)–(3) with zero Dirichlet 
boundary condition, respectively. The parameters specified 
are Nx = Ny = 500 , h = 0.04 , Δt = 0.1h2 , � = h , 𝜓̄ = 0 , and 
� = 100 . The initial condition is

We observe similar pattern formation results in the arbitrar-
ily shaped domain when compared with the computational 
results in the rectangular domain.

Furthermore, we consider more complex domain with 
an elliptical hole inside, as shown in Fig. 12. We apply the 
homogeneous Dirichlet boundary condition in this case. 
The parameters specified are Nx = Ny = 500 , h = 0.04 , 

(20)�0

ij
= 0.15 rand(xi, yj), for (xi, yj) ∈ Ωh.

Fig. 10   a Complex domain Ω 
and its boundary �Ω , b discrete 
complex domain Ωh with one 
layer boundary for the AC 
equation and c discrete complex 
domain Ωh with two layer 
boundaries for the CH and nCH 
equations

Fig. 11   Temporal evolution 
results of the numerical solu-
tions of a the AC equation, b 
the CH equation and c the nCH 
equation in complex domain
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Δt = 0.1h2 , � = h , 𝜓̄ = 0 , and � = 100 . The initial condi-
tion is

We can observe that all cases demonstrate the effective per-
pendicular Neumann boundary condition, even in the pres-
ence of a more complex domain with an elliptical hole.

Next, we explore the scenario where different non-zero 
Dirichlet boundary values are assigned inside and outside 
domain boundaries. Specifically, we set the boundary values 
as −1 inside the domain and 1 outside the domain. The com-
putational results depicting the pattern formation are shown 
in Fig. 13. Figure 13a, b show that each boundary value 
dominates the corresponding phase region. Figure 13(c) 
shows that the pattern formation starts from the boundaries 
and results in alternating lamellar structures.

Numerical tests conducted in this study show a linear 
pattern for the nCH equation. Thus, we observe pattern for-
mation in the nCH equation in more diverse domains. Set 
up the zebra-shaped domain and set the initial conditions to 

�0

ij
= 0.15 rand(xi, yj), for (xi, yj) ∈ Ωh.

Eq. (20). The result is shown in Fig. 14. The zero Neumann 
boundary conditions are used and parameters are used as 
Nx = 371 , Ny = 331 , h = 0.1 , Δt = 0.1h2 , � = h , 𝜓̄ = 0 , and 
� = 10 . Figure 14c shows results similar to other tests con-
ducted earlier in this paper.

3.4 � Pattern formations with the 3D nCH equation

Finally, we consider three-dimensional numerical experi-
ments to investigate pattern formation using the 3D 
nCH equation. First, the numerical test is proceeded 
in an ellipsoid domain. The domain is embedded in 
Ωe = (−2, 2) × (−2, 2) × (−2, 2) . We consider s computa-
tional domain

(21)

Ωh =

⎧
⎪⎪⎨⎪⎪⎩

(xi, yj, zk)

����������

tanh

⎛⎜⎜⎜⎜⎝

1 −

�
x2
i

3.61
+

y2
j

1.96
+

z2
k

1.96√
2𝜖

⎞⎟⎟⎟⎟⎠
> 0

⎫
⎪⎪⎬⎪⎪⎭

,

Fig. 12   Temporal evolution 
results of the numerical solu-
tions of a the AC equation, 
b the CH equation, and c the 
nCH equation in more complex 
domain
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for i = 0,… ,Nx , j = 0,… ,Ny , and k = 0,… ,Nz . We set the 
initial condition of �(x, 0) as random values between −0.15 
and 0.15. The parameters specified are Nx = Ny = Nz = 200 , 
h = 0.02 , Δt = h , � = h , 𝜓̄ = 0 , and � = 100 . Figure  15 
shows pattern formation for the D nCH equation in an 
ellipsoid domain. We also observe results similar to the 2D 
results for the nCH equation.

Furthermore, we consider a more complex domain Ω that 
is embedded in Ωe = (−1.5, 1.5) × (−1.5, 1.5) × (−1.5, 1.5) . 
The parameters specified are h = 0.02 , Δt = h , � = h , 𝜓̄ = 0 , 
and � = 100 . Initial state of �(x, 0) is randomly assigned 
values between −0.15 and 0.15. In Fig. 16, the characteristic 
pattern formation of the nCH equation can be confirmed 
even in the complex domain. It can be seen that the nCH 
equation shows similar pattern formation for initial random 
values with Dirichlet boundary conditions.

3.5 � Equilibrium states with various values of �

We consider the equilibrium states for various values of � . 
The AC equation is solved in a complex computational 

d o m a i n  w i t h  a  r a n d o m  i n i t i a l  c o n d i t i o n 
�0

ij
= 0.5 + 0.5rand(xi, yj) . In Ωe = (−5, 5) × (−5, 5) , the 

parameters specified are h = 0.04 , Δt = 1.e-4, and tol = 1.e

-7. The error is defined as follows:

We assume that �n is in an equilibrium state if ‖errn‖∞ < tol 
for some n.

Figure 17 shows the numerical solution of � in a complex 
computational domain for three different values of � : 

√
h , √

10h , and 
√
24h . Dai et al. [58] conducted a rigorous analy-

sis of the equilibrium state that minimizes the energy func-
tional based on the use of the Dirichlet boundary condition 
and the parameter � , which represents the interface thick-
ness. Similar dynamics of the equilibrium state with respect 
to � values are observed in the results shown in Fig. 17.

errn
ij
=
�n
i+1,j

+ �n
i−1,j

+ �n
i,j+1

+ �n
i,j−1

− 4�n
i,j

h2

−
(�n

ij
)3 − �n

ij

�2
.

Fig. 13   Temporal evolution 
results of the numerical solu-
tions of a the AC equation, 
b the CH equation, and c the 
nCH equation with non-zero 
Dirichlet boundary condition in 
more complex domain
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3.6 � Non‑rectangular mesh

In this section, we present a computational domain shaped 
like a dolphin as an example of triangulating a complex 

domain with an arbitrary geometry. The triangulated compu-
tational domain is illustrated in Fig. 18a. In the triangulated 
domain with N node points xi = (xi, yi) , the AC equation is 
discretized as follows:

Fig. 14   Temporal evolution 
results when a 40Δt , b 400Δt , 
and c 4000Δt

Fig. 15   a is random initial 
statement. Temporal evolution 
results when b t = 4.8 , and c 
t = 622.08

Fig. 16   a Random initial 
statement. Temporal evolution 
results when b t = 24 , and c 
t = 1152
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where �n
i
= �(xi, nΔt) and ΔM is the discrete Laplace opera-

tor [59], which is defined as

�n+1
i

− �n

i

Δt
= −

(�n

i
)3 − �n

i

�2
+ Δ

M
�n

i
, for 1 ≤ i ≤ N,

ΔM�i =
3

A(xi)

Ni∑
m=1

cot �im + cot �im

2
(�im

− �i).

Here, xm for 1 ≤ m ≤ Ni are 1-ring neighbor vertices of ver-
tex xi , �im and �im are the angles formed by xi , xm , and the 
vertices adjacent to xm , respectively and A(xi) is the sum 
of areas of triangles surrounding vertex xi . Figures 18b–d 
show the temporal evolution of the numerical solutions to 
the AC equation on a dolphin-shaped domain with randomly 
perturbed initial condition �(x, 0) = rand(x) at t = 100Δt , 
t = 520Δt , and t = 1760Δt , where rand(x) is random value 
between −0.1 and 0.1. Here, we use 3058 nodes points, 
Δt = 1e-5, and � = 0.01.

Fig. 17   Equilibrium states in 
an arbitrary domain with a 
� =

√
h , b � =

√
10h , and c 

� =
√
24h

Fig. 18   a Triangulated com-
putational domain in the shape 
of a dolphin. b–d Temporal 
evolution of the numerical 
solutions to the AC equation on 
a dolphin-shaped domain with 
randomly perturbed initial con-
dition at t = 100Δt , t = 520Δt , 
and t = 1760Δt , respectively
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4 � Conclusions

In this paper, we have investigated both 2D and 3D tempo-
ral and spatial evolution dynamics of the phase-field mod-
els such as the AC, CH, and nCH equations with the Dir-
ichlet boundary conditions on arbitrary shaped domains. 
Using different Dirichlet boundary conditions, we could 
successfully control the phase transformation dynamics 
of the phase-field models. For the nCH, labyrinth-type 
pattern formations were implemented through numerical 
simulations. We could effectively impose perpendicular 
boundary conditions by setting the zero Dirichlet boundary 
condition, which proven to be highly useful and efficient, 
especially in the complex-shaped domains. Consequently, 
our findings shed new light on the effective utilization of 
the zero Dirichlet boundary condition, demonstrating its 
superior utility and efficiency compared to alternative 
approaches. The successful imposition of perpendicular 
boundary conditions using the method opens up new pos-
sibilities for the exploration and analysis of phase-field 
models in complex-shaped domains.
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