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Abstract
In this article, we present a simple and accurate computational scheme for motion by mean
curvature with constraints using a modified Allen–Cahn (AC) equation. The modified AC
equation contains a nonlinear source term which enforces the constraints such as volume and
average mean curvature. We use a linear convex splitting-type method with Fourier spectral
method to numerically solve the modified AC equation. We perform several characteristic
computational tests to demonstrate the efficiency and accuracy of the proposed method. The
computational results confirm the robust and high performance of the proposed algorithm.

Keywords Motion by mean curvature · Phase-field model · Fourier spectral method · Finite
difference method

1 Introduction

In this article, we develop a simple computational scheme for motion by mean curvature with
constraints using a modified Allen–Cahn (AC) equation.

∂φ(x, t)
∂t

= − F ′(φ(x, t))
ε2

+ �φ(x, t) + α tanh

(
βT − β(φ)

γ

) √
2F(φ(x, t))

ε
, (1)

where an order parameter is φ(x, t). Here, F(φ) = 0.25(φ2 −1)2, ε is a parameter related to
the interfacial transition thickness, α is a fidelity strength parameter, γ is a scaling parameter,
βT is the target value, and β(φ) is the current value at time t . In general, a variational energy
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structure is not available for Eq. (1) because β(φ) is a non-local variable. However, if we use

a frozen coefficient method for the term α tanh
(

βT −β(φ)
γ

)
, then Eq. (1) can be derived from

the following total free energy functional as a gradient flow:

E(φ) =
∫

	

[
F(φ)

ε2
+ 1

2
|∇φ|2 + α tanh

(
βT − β(φ)

γ

)
1√
2ε

(
φ3

3
− φ

)]
dx. (2)

In the frozen coefficient method as used in [35], we keep α tanh
(

βT −β(φ)
γ

)
fixed, and mini-

mize E(φ). Then, as a gradient flow, we can obtain Eq. (1) as follows:

∂φ

∂t
= −δE(φ)

δφ
= − F ′(φ)

ε2
+ �φ + α tanh

(
βT − β(φ)

γ

)
1 − φ2

√
2ε

. (3)

Note that Eq. (1) becomes the classical AC equation [8] if α = 0. The AC equation
is a fundamental reaction-diffusion equation that is utilized as a stepping stone in various
numerical analysis, such as maximal principle preserving by Zhang et al. [48], and gradient
flows by Liu et al. [34].

The triply periodic minimal surface (TPMS) is used to describe the structure or state
of substance in nature, e.g., Cidaris rugosa and Dendraster excentricus [38], soap films
and soap bubbles, interface between two grains [9], porous fluids and lipid bilayers [36,
40], and chemical bonding [10]. The structure of specific substances such as the above
existing in nature can be represented as the intrinsic property of the minimal surface. In
recent years, TPMS is applied and numerically researched in fields of cellular or mechanical
materials design [1, 2, 6], biological materials design such as porous scaffolds [5, 27, 45, 47],
and functionally graded scaffolds [7, 37, 49]. These properties are also applied in structure
sciences, and numerically studied by CAD [46], solid T-splines [18], multigrid [33], finite
element approach [3, 4, 39, 44], phase-fieldmethod [11, 31, 32, 43], etc. In this study, we shall
use the initial conditions for TPMS such as Schwarz P, Schwarz D, Schoen G, and Schoen I-
WP surfaces on the computational domain	 to demonstrate the efficiency and accuracy of the
proposedmethod.The contents of this paper are as follows. InSect. 2,weprovide the proposed
numerical solution algorithm. In Sect. 3, we present several characteristic computational
results. In Sect. 5, conclusions are given.

2 Numerical Solution Algorithm

Now, we present the numerical solution algorithm of the proposed phase-field equation.
There have been many numerical methods such as finite difference method [14, 28], finite
element method [20, 21], Fourier spectral method [15, 16, 31] for the phase-field models. For
simplicity of exposition,we use a Fourier spectralmethod. Let	 = (lx , rx )×(ly, ry)×(lz, rz)
be the computational domain. Let Nx , Ny , Nz be the number of grid points, and Lx = rx −lx ,
Ly = ry−ly , Lz = rz−lz be the length of each direction, respectively.We denote discretized
points by (xm, yn, zo) = (lx+(m−0.5)hx , ly+(n−0.5)hy, lz+(o−0.5)hz) for 1 ≤ m ≤ Nx ,
1 ≤ n ≤ Ny , 1 ≤ o ≤ Nz , where hx = Lx/Nx , hy = Ly/Ny , hz = Lz/Nz . For tk = k�t ,
φ(xm, yn, zo, tk) is denoted by φk

mno, where �t is the temporal step. We apply the linearly
stabilized splitting-type method [42] to Eq. (1).

φk+1
mno − φk

mno

�t
= −2φk+1

mno

ε2
+ (�φk+1)mno + f kmno, (4)
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where

f kmno = 3φk
mno − (φk

mno)
3

ε2
+ α(βT − β(φk))

√
2F(φk

mno)

ε
. (5)

For the given data {φk
mno | m = 1, . . . , Nx , n = 1, . . . , Ny , o = 1, . . . , Nz} the discrete

Fourier transform is defined as

φ̂k
pqr =

Nx∑
m=1

Ny∑
n=1

Nz∑
o=1

φk
mnoe

−i(ξpxm+ηq yn+ωr zo), (6)

−Nx

2
+ 1 ≤ p ≤ Nx

2
, − Ny

2
+ 1 ≤ q ≤ Ny

2
, − Nz

2
+ 1 ≤ r ≤ Nz

2
, (7)

where ξp = 2π p/Lx , ηq = 2πq/Ly , ωr = 2πr/Lz . The inverse discrete Fourier transform
is

φk
mno =

Nx
2∑

p=− Nx
2 +1

Ny
2∑

q=− Ny
2 +1

Nz
2∑

r=− Nz
2 +1

φ̂k
pqr

ei(ξpxm+ηq yn+ωr zo)

Nx NyNz
. (8)

Let φ(x, y, z, t) be continuous version of φk
mno. Therefore, we can obtain the following

results:

∂2φ(x, y, z, t)

∂x2
= −

Nx
2∑

p=− Nx
2 +1

Ny
2∑

q=− Ny
2 +1

Nz
2∑

r=− Nz
2 +1

ξ2pφ̂(ξp, ηq , ωr , t)
ei(ξpx+ηq y+ωr z)

Nx NyNz
,

(9)

∂2φ(x, y, z, t)

∂ y2
= −

Nx
2∑

p=− Nx
2 +1

Ny
2∑

q=− Ny
2 +1

Nz
2∑

r=− Nz
2 +1

η2q φ̂(ξp, ηq , ωr , t)
ei(ξpx+ηq y+ωr z)

Nx NyNz
,

(10)

∂2φ(x, y, z, t)

∂z2
= −

Nx
2∑

p=− Nx
2 +1

Ny
2∑

q=− Ny
2 +1

Nz
2∑

r=− Nz
2 +1

ω2
r φ̂(ξp, ηq , ωr , t)

ei(ξpx+ηq y+ωr z)

Nx NyNz

(11)

and

�φ(x, y, z, t) =
Nx
2∑

p=− Nx
2 +1

Ny
2∑

q=− Ny
2 +1

Nz
2∑

r=− Nz
2 +1

�̂φ(ξp, ηq , ωr , t)
ei(ξp x+ηq y+ωr z)

Nx NyNz
(12)

=
Nx
2∑

p=− Nx
2 +1

Ny
2∑

q=− Ny
2 +1

Nz
2∑

r=− Nz
2 +1

−(ξ2p + η2q + ω2
r )φ̂(ξp, ηq , ωr , t)

ei(ξp x+ηq y+ωr z)

Nx NyNz
,
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where the left-hand side is the definition of the inverse Fourier transform and the right-hand
side is the sum of Eqs. (9)–(11). After applying Eqs. (8) and (12), we have

φ̂k+1
pqr − φ̂k

pqr

�t
= −2φ̂k+1

pqr

ε2
− (ξ2p + η2q + ω2

r )φ̂
k+1
pqr + f̂ kpqr . (13)

Equation (13) can be rewritten as

φ̂k+1
pqr = φ̂k

pqr/�t + f̂ kpqr
1/�t + 2/ε2 + ξ2p + η2q + ω2

r
. (14)

Then, the updated numerical solution φk+1
mno can be computed using Eq. (8):

φk+1
mno =

Nx
2∑

p=− Nx
2 +1

Ny
2∑

q=− Ny
2 +1

Nz
2∑

r=− Nz
2 +1

φ̂k+1
pqr

ei(ξpxm+ηq yn+ωr zo)

Nx NyNz
. (15)

Next, the discrete surface area and surface averaged mean curvature are defined. The
normal vector of the top right back vertex of the cell is defined as

mi+ 1
2 , j+ 1

2 ,k+ 1
2

=
(
mx

i+ 1
2 , j+ 1

2 ,k+ 1
2
,my

i+ 1
2 , j+ 1

2 ,k+ 1
2
,mz

i+ 1
2 , j+ 1

2 ,k+ 1
2

)
,

where

mx
i+ 1

2 , j+ 1
2 ,k+ 1

2
= φi+1, j,k + φi+1, j,k+1 + φi+1, j+1,k + φi+1, j+1,k+1

4h

−φi jk + φi, j,k+1 + φi, j+1,k + φi, j+1,k+1

4h

and the other terms are defined similarly. The mean curvature κ(φi jk) specified as follows is
calculated from the cell-center of the vertex-centered normals

κ(φi jk) = ∇d ·
(

m
| m |

)
i jk

= 1

4h

(
(mx + my + mz)i+ 1

2 , j+ 1
2 ,k+ 1

2

| mi+ 1
2 , j+ 1

2 ,k+ 1
2

| +
(mx + my − mz)i+ 1

2 , j+ 1
2 ,k− 1

2

| mi+ 1
2 , j+ 1

2 ,k− 1
2

|

+
(mx − my + mz)i+ 1

2 , j− 1
2 ,k+ 1

2

| mi+ 1
2 , j− 1

2 ,k+ 1
2

| +
(mx − my − mz)i+ 1

2 , j− 1
2 ,k− 1

2

| mi+ 1
2 , j− 1

2 ,k− 1
2

|

−
(mx − my − mz)i− 1

2 , j+ 1
2 ,k+ 1

2

| mi− 1
2 , j+ 1

2 ,k+ 1
2

| −
(mx − my + mz)i− 1

2 , j+ 1
2 ,k− 1

2

| mi− 1
2 , j+ 1

2 ,k− 1
2

|

−
(mx + my − mz)i− 1

2 , j− 1
2 ,k+ 1

2

| mi− 1
2 , j− 1

2 ,k+ 1
2

| −
(mx + my + mz)i− 1

2 , j− 1
2 ,k− 1

2

| mi− 1
2 , j− 1

2 ,k− 1
2

|

)
.

The cell-centered normal expressed as follows is the average of vertex normals,
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∇dφi jk =
(

φi−2, j,k − 8φi−1, j,k + 8φi+1, j,k − φi+2, j,k

12h
,

φi, j−2,k − 8φi, j−1,k + 8φi, j+1,k − φi, j+2,k

12h
,

φi, j,k−2 − 8φi, j,k−1 + 8φi, j,k+1 − φi, j,k+2

12h

)
.

Therefore, the discretized surface area of A [29] is

Nx∑
i=1

Ny∑
j=1

Nz∑
k=1

3
√
2ε

4
| ∇dφi jk |2h3 ≈ A (φ)

and

−
∑Nx

i=1

∑Ny
j=1

∑Nz
k=1 0.75

√
2εκ(φi jk)| ∇dφi jk |2h3

A (φ)
≈ κ̄(φ)

is the averaged mean curvature. The target value βT can be set as a surface area value or
mean curvature, and β(φ) is A (φ) and κ̄(φ), respectively. The discrete l2-norm is defined
as

|| φ ||2=

√√√√√
Nx∑
i=1

Ny∑
j=1

Nz∑
k=1

φ2
i jk

Nx NyNz
.

3 Computational Results

3.1 Spherical Surface

We first consider the term, tanh
[
(βT − β(φ))/γ

]
, in Eq. (1) and its effect of the evolutionary

dynamics. Figure 1 shows the profiles of the hyperbolic tangent function tanh(x/γ ) with
different γ parameter values. It can be observed that the transition width increases as the
value of γ increases.

Figure 2 shows the effect of γ value on the evolutionary dynamics. In 	 = (−1.5, 1.5)×
(−1.5, 1.5) × (−1.5, 1.5), the initial conditions used are

φ(x, y, z, 0) = tanh

(
1 − √

x2 + y2 + z2√
2ε

)
.

Here, Nx = 128, Ny = 128, Nz = 128, �t = 0.001, and ε = 0.034 are used. We set

β(φ) = 0.5
∑Nx

i=1

∑Ny
j=1

∑Nz
k=1(1+ φi jk)h3 and βT = (4/3)π(1.2)3 which is the volume of

the sphere of radius 1.2. It can be observed that if γ is large, then the evolution of the volume
β(φ) oscillates around the target volume. If γ is small, then the evolution of the volume β(φ)

is very slowly approaching the target volume. The value γ = 0.5 gives an appropriate result.
For stable and fast computation, an appropriate γ value should be selected to obtain the

computational resultswithout oscillation as shown inFig. 2. Tofind a suitableγ value, letλ =|
βT −β(φ0) | /γ . Figure 3 shows tanh(λ) values for the three different γ = 0.05, 0.5, and 5
values. When γ = 0.5, we have tanh(λ) = 0.999983371996023. Therefore, an appropriate
γ value can be chosen as λ = tanh−1(0.99999), i.e., γ =| βT − β(φ0) | / tanh−1(0.99999).
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Fig. 1 Effect of γ parameter on the profile of the hyperbolic tangent function, tanh(x/γ ) . Here, γ = 0.05,
0.2, and 0.4 are used

Fig. 2 Effect of γ value on the evolutionary dynamics of the volume β(φ)

Figure 4 shows the effect of α value on the evolutionary dynamics. All the parameter
values are the same to the previous test except α and γ values. γ = 0.5 is fixed, and α value
changes. We can observe that if α is large, then the evolution of the volume β(φ) oscillates
around the target volume. If α is small, then the evolution of the volume β(φ) is very slowly
approaching the target volume. The value α = 50 gives an appropriate result.

In Fig. 5, the evolution of the curvature is observed by setting the target value β as the
curvature. The initial conditions and parameters we used are as follows:

φ(x, y, z, 0) = tanh

(
max(min(min(0.8 − |x |, 0.8 − |y|), 0.8 − |z|),−0.8)√

2ε

)
,

	 = (−1, 1) × (−1, 1) × (−1, 1), Nx = 128, Ny = 128, Nz = 128, �t = 0.001 and ε =
0.0225. We set β(φ) = κ̄(φ) and βT = 4. The simulation stops when ||φn+1 − φn ||2 < tol.
Here, the tolerance tol is used as 1.0e−3. We confirmed that as the curvature evolves, the
cube of the initial state changes to a spherical surface.
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Fig. 3 Values of tanh(λ) for different λ values. Here, λ =| βT − β(φ0) | /γ for the three different γ =
0.05, 0.5, and 5 values

Fig. 4 Effect of α value on the evolutionary dynamics of the volume β(φ)

Fig. 5 Evolution of the curvature for cube
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Fig. 6 Initial configurations of a Schwarz P, b Schwarz D, c Schoen G, and d Schoen I-WP surfaces

3.2 Triply Periodic Constant Mean Curvature Surfaces

Next, we present generations of triply periodic constant mean curvature surfaces with pre-
scribed volume andmean curvature from the periodic nodal surface (PNS) approximations of
the Schwarz P, Schwarz D, Schoen G, and Schoen I-WP surfaces [22]. We take the following
initial conditions for the Schwarz P, Schwarz D, Schoen G, and Schoen I-WP surfaces on the
computational domain 	 = (0, 1) × (0, 1) × (0, 1).

P(x, y, z) = − tanh

(
cos 2πx + cos 2π y + cos 2π z

4
√
2ε

)
, (16)

D(x, y, z) = − tanh

(
cos 2πx cos 2π y cos 2π z − sin 2πx sin 2π y sin 2π z

4
√
2ε

)
, (17)

G(x, y, z) = − tanh

(
sin 2πx cos 2π y + sin 2π y cos 2π z + sin 2π z cos 2πx

4
√
2ε

)
,

I−WP(x, y, z) = − tanh
[(
2 cos 2πx cos 2π y + 2 cos 2πx cos 2π y (18)

+ 2 cos 2πx cos 2π y − cos 4πx − cos 4πx − cos 4πx
)
/
(
4
√
2ε

)]
. (19)

Here, Nx = Ny = Nz = 200, h = 1/200, �t = 0.001, ε = 0.01, α = 50, and γ = 0.05
are used. Figure 6a–d illustrate the initial configurations of Eqs. (16), (17), (18), and (19),
respectively.

First, we consider β(φ) as the volume of the phase. It means that the numerical solution
converges towards the prescribed target volume βT . We set the stopping criterion as ||φn+1−
φn ||2 < tol, and tol = 1.0e−3. Figure 7 shows the numerical results of the three surfaces for
three different target volumes: βT = 0.5, 0.35, and 0.65 (from top to bottom). The numerical
results indicate that we can generate a family of the Schwarz P, Schwarz D, Schoen G, and
Schoen I-WP surfaces with prescribed target volumes βT .

The proposed numerical solutions can be manufactured as a real-life 3D model using a
3D printer. When a 3D digital model is inserted to a 3D printer, the model is sliced into piles
of 2D layers. Then, the 3D printer prints out the 2D layers from bottom to top, forming a 3D
build. If a top layer is overwhelming in size compared to the bottom layer, there is a chance
of the top layer falling down. Cases like these require supporting pillars for the top layer. In
our numerical results, Schwarz D, Schoen G, and Schoen I-WP surfaces required additional
supporting pillars for 3D printing. Figure 8 exhibits the manufactured models of previously
described numerical solutions via 3D printing. These 3D printed TPMS can be widely used
in various fields, such as mechanical materials design, bio-scaffold design, and functionally
graded scaffold design.
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Fig. 7 Final configurations of a Schwarz P, b Schwarz D, c Schoen G, and d Schoen I-WP surfaces. From top
to bottom, target volumes are βT = 0.5, 0.35, and 0.65, respectively

Fig. 8 3D printed model of numerical results shown in Fig. 7
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Fig. 9 Convergence of
spectral-order accurate method in
space

102
10-3

10-2

10-1

Table 1 l2-norm errors and
convergence rates in time

(�t , �t/2) l2-norm error Rate

(2.5000e−7, 1.2500e−7) 3.3452e−5

(1.2500e−7, 6.2500e−8) 1.6988e−5 0.98

(6.2500e−8, 3.1250e−8) 8.5610e−6 0.99

(3.1250e−8, 1.5625e−8) 4.2975e−6 0.99

We conduct the convergence test in time and space using the initial condition (16). The
proposed method is first-order accurate in time and spectral-order accurate in space. For
the convergence rate in time, the target volume is taken as βT = 0.65 and the final time is
fixed as T = Nt�t = 2.5e−6, and other parameters not mentioned are used as described
above. The discrete error is defined as E (�t,�t/2)

i jk = φ
Nt
i jk − φ

2Nt
i jk and its discrete l2-norm is

used. The rate of convergence is defined as log2
(||E (�t,�t/2)||2/||E (�t/2,�t/4)||2

)
. As the

temporal step size �t is reduced by twice, the rate of convergence is listed in Table 1. For
the convergence rate in space, we take �t = 1.0e−8, T = 1.0e−7, and βT = 0.65. The
discrete error is defined as E (h,h/2)

i jk = φh
i jk −0.125(φh/2

i jk +φ
h/2
i+1, jk +φ

h/2
i, j+1,k +φ

h/2
i+1, j+1,k +

φ
h/2
i j,k+1 + φ

h/2
i+1, j,k+1 + φ

h/2
i, j+1,k+1 + φ

h/2
i+1, j+1,k+1). As doubling the number of mesh grid

N = Nx = Ny = Nz from 1 to 512, we observe the spatial spectral accuracy [25] as shown
Fig. 9.

We compute the mean curvatures, surface areas, and CPU times while changing the target
volumes from 0.35 to 0.65 with 0.05 interval. Then, the computational results of Schwarz
P, Schwarz D, and Schoen G are compared with the results reported by Jung et al. [26],
which were obtained from the level-set method. Here, the surface averaged mean curvature
is defined as 0.5κ̄(φ) in order to compare with the test of the reference. Figure 10a, b show
the mean curvature and the surface area according to the target volume, respectively. The
results in Fig. 10 show that our proposed method agrees well with those from the method
of Jung et al. Figure 10c shows the CPU times it takes to carry out each computation with
tol = 1.0e−6. For Schwarz P and Schwarz D, they take about 36 min and about 15 min
respectively. Meanwhile, the method proposed in Jung et al. [26] described 29 h and 30 h.
Note that Jung et al. utilized 4 node parallel calculations on the Opteron cluster, while we
use a single computer, an Intel(R) Core(TM) i7-10700 CPU@2.90GHz with 32GB memory,
and MATLAB R2020b software. From the results, our proposed method is extremely fast,
specifically, the computational cost is reduced by more than 48 orders.
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Fig. 10 Volume β(φ): For the local equilibrium of the Schwarz P, Schwarz D, and Schoen G surfaces, volume
fraction versus a mean curvature, b surface area, and c CPU time (s)

Second,weconsiderβ(φ) as the averagedmean curvature of the surface.All the parameters
are the same to the previous test except the definition of the constraint β(φ). As shown in
Fig. 11, the initial condition is taken as

φ(x, y, z, 0) =
⎧⎨
⎩
1 if (|x | < 0.25, |y| < 0.25) or (|y| < 0.25, |z| < 0.25) or

(|x | < 0.25, |z| < 0.25),
−1 otherwise

(20)

on the computational domain 	 = (−0.5, 0.5) × (−0.5, 0.5) × (−0.5, 0.5). Here, Nx =
Ny = Nz = 100, h = 1/100, �t = 0.001, ε = 0.01, α = −50, γ = 0.1, and
tol = 1.0e−4 are used. Unlike the previous test where the target value is set to the volume,
α is a negative value because the curvature is inversely proportional to the volume.

The numerical tests are performed using three different target values βT = 0, − 1, and
1. The temporal evolutions are shown in Fig. 13 whose target values are βT = 0, − 1,
and 1 from top to bottom. The final times of Fig. 13d are t = 492�t, 636�t, and 636�t ,
respectively.
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Fig. 11 Initial configuration of
Eq. (20)

4 Discussion

In this paper, we focused on a new phase-field model and its simple numerical method.
We may consider a higher-order numerical scheme and an adaptive algorithm for improved
accuracy and robustness of the algorithm.

4.1 Crank–Nicolson Scheme

The AC equation has been long studied to approximate the mean curvature motion, as the
interfacial width parameter approaches to 0. In the convergence estimate for the AC equa-
tion, the convergence constant better depends on ε−1 in a polynomial pattern, instead of an
exponential growth one [19]. It is better to have higher-order numerical schemes for accurate
computations. The second-order accurate stable numerical methods have been developed,
for example, [17, 23, 41]. For a higher-order numerical scheme for Eq. (1), we may consider
a Crank–Nicolson type finite difference method as follows:

φk+1
mno − φk

mno

�t
= − F ′(φk+1

mno)

2ε2
+ 1

2
�hφ

k+1
mno + α

2
tanh

(
βT − β(φk+ 1

2 )

γ

) √
2F(φk+1

mno)

ε

− F ′(φk
mno)

2ε2
+ 1

2
�hφ

k
mno + α

2
tanh

(
βT − β(φk+ 1

2 )

γ

) √
2F(φk

mno)

ε
,

where �hφ
k
mno = (φk

m+1,no + φk
m−1,no + φk

m,n+1,o + φk
m,n−1,o + φk

mn,o+1 + φk
mn,o−1 −

6φk
mno)/h

2 and φk+ 1
2 = (3φk − φk−1)/2. φ

1
2 can be obtained from an iterative update. The

implicit part of the discrete equation can be solved using a nonlinear multigrid method [28].
We note that if the governing equation can be derived from an energy functional, then we
may consider a second-order numerical scheme with energy stability for the equation as done
in [24].

4.2 Adaptive Algorithm

Some numerical results show that oscillations occur for some choices of the parameters. For
further improvement of the proposed algorithm, we can consider an adaptive methodology
which is robust with respect to model parameters. The adaptive algorithm is as follows. We
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Fig. 12 Temporal volution of the volume β(φ) using the adaptive algorithm for three different initial α values

Fig. 13 Temporal evolutions with the prescribed averaged mean curvature. Times are shown below each
column. From top to bottom, βT = 0, −1, 1 and the final times are t = 492�t, 636�t, 636�t , respectively

adaptively change α value in the following term in Eq. (5) according to sign of (βT −β(φk)):

α(βT − β(φk))

√
2F(φk

mno)

ε
. (21)

If (βT −β(φk)) < 0, thenwe resetα = α/2 and recompute the numerical solution; otherwise,
we increase α = 1.1α to speed up the computation of the next time update. Figure 12 shows
the temporal volution of the volume β(φ) using the adaptive algorithm for the three different
initial α values depending on the sign of (βT − β(φk)). We can observe the good results for
all the case with initial α values, i.e., α = 5, 50, and 120.
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5 Conclusions

In this paper, we presented a simple and accurate computational algorithm for motion by
mean curvature with constraints using a modified AC equation. The modified AC equation
contains a nonlinear source term which enforces the constraints such as volume and aver-
age mean curvature. A linear convex splitting method with Fourier spectral method is used
to numerically solve the modified AC equation. We performed several characteristic com-
putational tests to demonstrate the efficiency and accuracy of the proposed algorithm. The
computational results confirmed the robust and high performance of the proposed algorithm.
In a future work, it would be interesting to develop an unconditionally stable scheme [12, 13,
30] using an operator splitting method. Specifically, the governing equation (1) is split into
three parts: diffusion, nonlinear, and fidelity equations; and then each equation is solved by
using the unconditionally stable scheme.
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