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Abstract
In this study, we present a second-order time-accurate unconditionally stable numerical
method for a gradient flow for the Modica–Mortola functional with an equispaced multiple
well potential. The proposed second-order time-accurate unconditionally stable numerical
method is based on the operator splitting method. The nonlinear and linear terms in the gra-
dient flow are solved analytically and using the Fourier spectral method, respectively. The
numerical solutions in each step are bounded for any time step size and the overall scheme
is temporally second-order accurate. We prove theoretically the unconditional stability and
boundedness of the numerical solutions. In addition, several numerical tests are conducted
to demonstrate the performance of the proposed method.

Keywords Modica–Mortola functional · Fourier spectral method · Unconditionally stable
scheme

Mathematics Subject Classification 65M06 · 65M12 · 35B99

1 Introduction

In this study, we present a temporally second-order unconditionally stable numerical method
for a gradient flow for the Modica–Mortola (MM) functional with an equispaced multiple
well potential:

∂φ(x, t)
∂t

= −π

ε
sin

(
2πφ(x, t)

) + 2ε�φ(x, t), (1)

n · ∇φ = 0 on ∂�, (2)
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Fig. 1 sin2(πφ) on [−0.5, 4.5]

where φ(x, t) is an order parameter in space x ∈ � and time t , ε is a parameter which is
related to the thickness of the interfacial transition layer, n is the unit normal vector to the
domain boundary ∂�. Equation (1) is a gradient flow for the MM functional [10]:

E(φ) :=
∫

�

[
1

ε
sin2(πφ) + ε|∇φ|2

]
dx, (3)

where (1/ε) sin2(πφ) is the multiple periodic well potential, see Fig. 1.
Phase-field models have been extensively researched in various fields such as geometric

surface [19] and interface [1], materials science [3, 18, 20], dynamics of fluid flow [4, 5, 22],
and image process [2, 7, 16], etc. The multi-phase image segmentation was introduced using
phase-field model [2, 16]. An explicit time-stepping scheme to construct pattern formation in
reaction-diffusion systems on evolving surfaces is proposed [11]. Rong et al. [21] proposed an
adaptive method using total variation–Allen–Cahn type for multi-phase image segmentation.
The parallel algorithms for crystal evolution were introduced using a multi-physics phase-
field framework [7].Giga et al. [3] investigated the singular limit of single-wellMMfunctional
under Hausdorff distance of graphs convergence. They presented an explicit representation of
Kobayashi–Warren–Carter energy. Jin et al. [8] proposed a numerical method for electrical
impedance tomography. They took an MM-type functional that has double-well potential
to treat the adaptive finite element method (FEM). Ma et al. [18] presented a high order
method of a fast Fourier-transform based to solve multi-phase-field models in a periodic
domain. Second-order energy stable schemes were proposed for viscous fluid mixtures [4, 5,
22]. Li et al. [14] developed and analyzed a temporally second-order unconditionally stable
FEM for solving the Allen–Cahn (AC) equation. A high-order energy stable scheme for the
conservative AC equation with non local Lagrange multiplier by combining the concept of
energy quadratization and the Runge–Kutta method[13]. A parabolic sine-Gordon equation
of phase-field model was solved with a temporally second-order accurate unconditionally
stablemethod [6]. Zhang et al. performed energy stability analysis for stabilized semi-implicit
scheme for Cahn–Hilliard equation. Zheng and Li [24] proposed scalar auxiliary variable
scheme based on the Fourier spectral method for Cahn–Hilliard–Hele–Shaw system and
derived unconditional energy stability.

Li and Kim [17] proposed a phase-field model for multiphase image segmentation using
periodic quartic polynomial as a potential energy. The proposed phase-field model was
implicitly solved using the operator splitting method (OSM) with a multigrid method and
closed-form solution. Li et al. [16] presented a gradient flow equation of the MM functional
formultiphase image segmentation. They used an explicit Eulermethod to solve the presented
equation. Therefore, the presented numerical method has time step restriction. In this paper,
we use gradient flow of the MM functional which has multiple-well potentials to represent
multi-phase solutions. By using the Strang-type splitting method, we obtain second-order
accurate approximations for a gradient flow for the MM functional. The main difficulty of
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this work is to find a closed-form solution for periodic nonlinear term in the gradient flow
of the MM functional. It makes the proposed numerical method accurate and stable. By the
boundedness of the numerical solutions, we show the unconditional stability of the proposed
scheme.

The contents of this paper are as follows. In Sect. 2, the numerical solution algorithm
is described. In Sect. 4, the numerical experiments are presented. In Sect. 3, unconditional
stability and boundedness of the proposed numerical method are proved. In Sect. 5, the
conclusions are given.

2 Numerical Solution Algorithm

In this section, we describe the temporally second-order unconditionally stable numerical
method for a gradient flow for theMMfunctionalwith an equispacedmultiplewell potential in
two-dimensional (2D) space. We numerically solve Eq. (1) in� = (Lx , Rx )× (Ly, Ry). Let
us discretize the computational domain as�h = {(xi , y j ) : xi = Lx +(i−0.5)h, y j = Ly+
( j − 0.5)h, | 1 ≤ i ≤ Nx , 1 ≤ j ≤ Ny}, where Nx , Ny be integers and h = (Rx − Lx )/Nx

be the grid size. Let φn
i j := φ(xi , y j , n�t), where �t is the time step. To numerically solve

Eq. (1), we use the OSM and rewrite it as

∂φ(x, t)
∂t

= N (
φ(x, t)

) + L(
φ(x, t)

)
, (4)

whereN (
φ(x, t)

) = −(π/ε) sin
(
2πφ(x, t)

)
andL(

φ(x, t)
) = 2ε�φ(x, t). Then, a second-

order OSM [12] is as follows: We solve Eq. (5) with ψ1(x, 0) = φ(x, n�t) for a given value
φ(x, n�t) to get ψ1(x,�t/2).

∂ψ1(x, t)
∂t

= N (
ψ1(x, t)

)
. (5)

Then, using ψ1(x,�t/2), we solve Eq. (6) with ψ2(x, 0) = ψ1(x,�t/2) to get ψ2(x,�t).

∂ψ2(x, t)
∂t

= L(
ψ2(x, t)

)
. (6)

Analogously, using ψ2(x,�t), we solve (7) with ψ3(x, 0) = ψ2(x,�t) to get ψ3(x,�t/2).

∂ψ3(x, t)
∂t

= N (
ψ3(x, t)

)
. (7)

Finally, we set φ(x, (n + 1)�t) = ψ3(x,�t/2).
Now, we describe its steps in detail. First, we consider Eq. (5) with an initial condition

ψ1(x, 0) = φ(x, n�t).

∂ψ1(x, t)
∂t

= −π

ε
sin

(
2πψ1(x, t)

)
. (8)

Equation (8) has an analytic solution and Fig. 2 schematically shows −(π/ε) sin(2πv) term
in Eq. (8).

If sin
(
2πψ1(x, t)

) = 0, then

ψ1(x, t) = ψ1(x, 0). (9)

Otherwise, sin
(
2πψ1(x, t)

) �= 0, we can rewrite Eq. (8) in the form as

dψ1

sin(2πψ1)
= −π

ε
dt . (10)
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Fig. 2 −π
ε sin(2πv) respect to v

For simplicity of the notation, we omitted the argument (x,t). Multiplying by sin(2πψ1) on
both the denominator and numerator of the left-hand side of Eq. (10) by, we have

sin(2πψ1)

sin2(2πψ1)
dψ1 = −π

ε
dt . (11)

Using the Pythagorean trigonometric identity, we have

sin(2πψ1)

1 − cos2(2πψ1)
dψ1 = −π

ε
dt . (12)

Then, by using partial fraction expansion on the left side and integrating both sides, we obtain
∫

1

2

(
sin(2πψ1)

1 + cos(2πψ1)
+ sin(2πψ1)

1 − cos(2πψ1)

)
dψ1 = −

∫
π

ε
dt, (13)

which results in

1

4π
ln

1 − cos(2πψ1)

1 + cos(2πψ1)
= −π

ε
t + C(x), (14)

where

C(x) = 1

4π
ln

1 − cos
(
2πψ1(x, 0)

)

1 + cos
(
2πψ1(x, 0)

) . (15)

The solution to Eq. (14) is given as

ψ1(x, t) = �φ(x, n�t)� + 1 + sgn(φ̄(x, n�t) − 0.5)

2

+ sgn
(
0.5 − φ̄(x, n�t)

)

2π
cos−1

⎛

⎝1 − e− 4π2
ε

t+4πC(x)

1 + e− 4π2
ε

t+4πC(x)

⎞

⎠ , (16)

where

C(x) = 1

4π
ln

1 − cos
(
2πφ(x,�t)

)

1 + cos
(
2πφ(x,�t)

) and φ̄(x,�t) = φ(x,�t) − �φ(x, n�t)�.

Here, sgn(x) is the sign function and �x� is thefloor function i.e., �x� = max{m ∈ Z |m ≤ x}.
Now, using the analytic solution form (16), we can obtain ψ1(x,�t/2).

Next, we solve Eq. (6)

∂ψ2(x, t)
∂t

= 2ε�ψ2(x, t), (17)

using the Fourier spectral methodwith an initial conditionψ2(x, 0) = ψ1(x,�t/2). To apply
the homogeneous Neumann boundary condition (2), we use the discrete cosine transform.
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For the given data {u(xi , y j )|i = 1, · · · , Nx and j = 1, · · · , Ny}, the discrete cosine
transform is defined as follows:

û(p, q) = αpβq

Nx∑

i=1

Ny∑

j=1

u(xi , y j ) cos
(
ξpπ(xi − Lx )

)
cos

(
ηqπ(y j − Ly)

)

for p = 0, . . . , Nx − 1 and q = 0, . . . , Ny − 1. The inverse discrete cosine transform is

u(xi , y j ) =
Nx∑

p=1

Ny∑

q=1

αpβq û(p, q) cos
(
ξpπ(xi − Lx )

)
cos

(
ηqπ(y j − Ly)

)
, (18)

where

αp =
⎧
⎨

⎩

√
1
Nx

(p = 1)
√

2
Nx

(p ≥ 2)
, βq =

⎧
⎨

⎩

√
1
Ny

(q = 1)
√

2
Ny

(q ≥ 2)
(19)

and ξp = (p − 1)/(Rx − Lx ), ηq = (q − 1)/(Ry − Ly). Let us assume that

ψ2(xi , y j , t) =
Nx∑

p=1

Ny∑

q=1

αpβq ψ̂2(p, q, t) cos
(
ξpπ(xi − Lx )

)
cos

(
ηqπ(y j − Ly)

)
. (20)

Applying Eq. (20) in Eq. (17), we have

dψ̂2(p, q, t)

dt
= −2ε[(ξpπ

)2 + (
ηqπ

)2]ψ̂2(p, q, t). (21)

Hence, in the Fourier space, the solution of Eq. (21) is given as

ψ̂2(p, q, t) = ψ̂2(p, q, 0)e−2εt[(ξpπ)2+(ηqπ)2] (22)

= ψ̂1(p, q,�t/2)e−2εt[(ξpπ)2+(ηqπ)2]. (23)

Applying the inverse discrete cosine transform (18), the solution of Eq. (17) is obtained:

ψ2(xi , y j , t) =
Nx∑

p=1

Ny∑

q=1

αpβq ψ̂2(p, q, t) cos
(
ξpπ(xi − Lx )

)
cos

(
ηqπ(y j − Ly)

)
. (24)

As a last step, we consider the last operator in Eq. (7)withψ3(x, 0) = ψ2(x,�t). Equation
(7) also can be solved analogously as (16):

ψ3(x, t) = �ψ2(x, n�t)� + 1 + sgn(ψ̄2(x, n�t) − 0.5)

2

+ sgn
(
0.5 − ψ̄2(x, n�t)

)

2π
cos−1

⎛

⎝1 − e− 4π2
ε

t+4πC(x)

1 + e− 4π2
ε

t+4πC(x)

⎞

⎠ , (25)

where

C(x) = 1

4π
ln

1 − cos
(
2πψ2(x,�t)

)

1 + cos
(
2πψ2(x,�t)

) and ψ̄2(x,�t) = ψ2(x,�t) − �ψ2(x, n�t)�.

Finally, we get φ(x, (n + 1)�t) = ψ3(x,�t/2).
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3 Numerical Analysis

In this section, we prove that the proposed method is unconditionally stable and bounded in
a step-by-step manner. For 1 ≤ i ≤ Nx and 1 ≤ j ≤ Ny , we suppose that numerical solution
of n-th time φ(xi , y j , n�t) is bounded by some integers Nmin and Nmax, i.e.,

Nmin ≤ φ(xi , y j , n�t) ≤ Nmax, (26)

where Nmin = min{�φ(xi , y j , n�t)�|1 ≤ i ≤ Nx , 1 ≤ j ≤ Ny} − 1 and Nmax =
max{	φ(xi , y j , n�t)
|1 ≤ i ≤ Nx , 1 ≤ j ≤ Ny} + 1. Here, �x� and 	x
 are floor and
ceiling functions, respectively.

In the first step (5), for each i and j , we take mi j as mi j ≤ φ(xi , y j , n�t) < mi j +
1, where mi j = �φ(xi , y j , n�t)�. Here, mi j satisfies Nmin + 1 ≤ mi j < Nmax − 1. If
φ(xi , y j , n�t) = Nmax − 1 for some i and j , then ψ1(xi , y j , t) = Nmax − 1 for any time t
from Eq. (16). From Eq. (16), we consider following three cases for each i and j as follows:
ψ̄1(xi , y j ,�t/2) < 0.5, ψ̄1(xi , y j ,�t/2) = 0.5, and ψ̄1(xi , y j ,�t/2) > 0.5. Using the

condition 0 < cos−1

⎛

⎝1 − e− 4π2
ε

t+4πC(x)

1 + e− 4π2
ε

t+4πC(x)

⎞

⎠ < π and Eq. (16), we can derive the following

equation and inequalities for the three cases from Eq. (16):
⎧
⎨

⎩

mi j ≤ ψ1(xi , y j , t) < mi j + 0.5, if φ̄(xi , y j , n�t) < 0.5,
ψ1(xi , y j , t) = mi j + 0.5, if φ̄1(xi , y j , n�t) = 0.5,
mi j + 0.5 < ψ1(xi , y j , t) < mi j + 1, if φ̄(xi , y j , n�t) > 0.5.

(27)

Therefore, the solution ψ1(xi , y j , t) is bounded for any t > 0:

mi j ≤ ψ2(xi , y j , t) < mi j + 1.

Because Nmin < mi j and mi j + 1 < Nmax, ψ2 is also bounded as

Nmin < ψ2(xi , y j , t) < Nmax

for any time t .
In the second step (6), the initial condition is obtained as ψ2(x, y, 0) = ψ1(x, y,�t/2).

We denote that 
2(x, y, 0) is a continuous representation of the smooth numerical solution
ψ2(xi , y j , 0) by using discrete cosine transform as follows:


2(x, y, 0) =
Nx∑

p=1

Ny∑

q=1

αpβq ψ̂2(p, q, 0) cos
(
ξpπ(x − Lx )

)
cos

(
ηqπ(y − Ly)

)
, (28)

which also satisfies the solution for the discrete points xi and y j for 1 ≤ i ≤ Nx and
1 ≤ j ≤ Ny . Then, the continuous representation of an initial condition 
2(x, y, n�0) is
bounded by Nmin and Nmax, i.e.,

Nmin ≤ 
2(xi , y j , 0) ≤ Nmax. (29)

The boundedness of continuous representation in Eq. (29) guarantees the following bound-
edness of numerical solution.

Nmin ≤ ψ2(xi , y j , 0) ≤ Nmax. (30)
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Substituting Eq. (23) into Eq. (24),

ψ2(xi , y j , t) =
Nx∑

p=1

Ny∑

q=1

αpβq ψ̂2(p, q, 0)e−2εt[(ξpπ)2+(ηqπ)2] cos(ξpπxi ) cos(ηqπ y j ).

(31)
In Eq. (31), ψ2(xi , y j , t) is a solution of the heat equation with the initial condition
ψ2(xi , y j , 0) = ψ1(xi , y j ,�t/2). The numerical solution of the heat equation using Fourier
spectral method with the zero Neumann boundary condition satisfies the discrete maximum
and minimum principle:

Nmin ≤ min
i j


2(x, y, 0) ≤ ψ2(xi , y j , t) ≤ max
i j


2(x, y, 0) ≤ Nmax, (32)

which results in Nmin ≤ ψ2(xi , y j , t) ≤ Nmax for any time t > 0. In particular, Nmin ≤
ψ2(xi , y j ,�t) ≤ Nmax.

In the third step (7), becauseψ3(xi , y j , 0) = ψ2(xi , y j ,�t) is bounded by Nmin and Nmax

for any time t , the following inequality holds using the similar procedure used in the first
step:

Nmin ≤ ψ3(xi , y j , t) ≤ Nmax. (33)

Finally, φn+1
i j is obtained as φ(xi , y j , n�t) = ψ3(xi , y j ,�t/2), for n = 0, 1, 2, · · · . Hence,

the proposed scheme is unconditionally stable and the numerical solutions are bounded
below and above by Nmin and Nmax, respectively, for any time step size, which implies the
boundedness of the computational solutions.

4 Numerical Experiments

Now, we perform numerical experiments for the gradient flow of MM functional using the
operator splitting scheme.Unless otherwise noted,weuse numerical parameters as Nx = 128,
and h = 2/Nx for grid points of the uniform spatial discretization to one-dimensional com-
putational domain � = (−1, 1). In two-dimensional computational domain � = (−1, 1)2,
we use numerical parameter as Nx = Ny = 128 and h = 2/Nx = 2/Ny for the uniform
spatial discretization.

4.1 Estimation of�

First, we define a thickness of the interfacial transition layer as L = |x2 − x1|, where
φ(x1) = 0.05 and φ(x2) = 0.95 in one-dimensional space as illustrated in Fig. 3.

To investigate a convergence of the interfacial transition layer, we consider the following
two different initial conditions,

φ1(x, 0) = 1

2
(x + 1), (34)

φ2(x, 0) =
{
0, if x < 0,
1, otherwise,

(35)

in the computational domain � = (−1, 1). We assume that φn is a numerical equilibrium
solution if ||φn − φn−1||2 < 10−6, here the tolerance is 10−6. Figure4 shows that the two
equilibrium solutions φn

1 and φn
2 , which have two different initial conditions, coincide.
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Fig. 3 Schematic for thickness of interfacial transition layer

Fig. 4 a Snapshots and b equilibrium solutions of φ1 and φ2 with �t = 0.5 h2, Nx = 256, and ε = 60h

Table 1 Thickness of the interface transition layer with various ε values. Here, Nx = 256, h = 2/Nx , and
�t = 0.1h2

Case ε = 2h ε = 4h ε = 6h ε = 8h ε = 10h ε = 12h

Thickness(L) 3.2254h 6.6192h 9.8478h 12.9754h 16.2875h 19.5066h

Then, we estimate the relation between ε and thickness of the interfacial transition layer.
Table 1 lists the thickness of the interface layer of equilibrium solution for various ε values. In
this case, we take φ2(x, 0) in Eq. (34) as the initial condition. We use the linear interpolation
to find x1 and x2, which satisfy φ(x1) = 0.05 and φ(x2) = 0.95. Then we obtain thickness
as L = |x2 − x1|.

For convenience of calculation, we want to derive a formula ε(m, h) = amh which can
have a given interface thickness L if ε = ε(m, h), where m = L/h. By least-square curve
fitting to the data in Table 1 as a linear function through the origin, we can estimate ε(m, h)

using the following linear equation:

ε(m, h) = 0.61405mh. (36)

In Fig. 5, data given from Table 1 and the corresponding linear fitted function are illustrated.
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Fig. 5 Linear fitting function of ε/h = am respect to m, where a = 0.61405

4.2 Stability Test

We test the numerical stability and boundedness of the proposed scheme for the gradient flow
of MM functional in two-dimensional space in Figs. 6 and 7. In two-dimensional computa-
tional domain (−1, 1) × (−1, 1), we use ε = ε(5, h), h = 2/128, and an initial condition

φ(x, y, 0) = 1

2
(x + 1)2 + (y + 1)2 + rand(x, y), (37)

where ‘rand(x, y)’ is uniformly distributed randomnumber between−0.5 and 0.5. The initial
condition (37) has random perturbation between −0.5 and 0.5 as shown in the first columns
of Fig. 6. Figures6(a)–(c) illustrate the temporal dynamics of two-dimensional gradient flow
of MM functional with three different time steps �t1 = 0.01 h2, �t2 = h2, and �t3 =
100 h2, respectively. The last column of Figs. 6(a)–(c) are the numerical solutions up to time
t = 0.0244, t = 0.0244, and t = 0.0488, respectively. The solution does not blow up with a
large time step as �t3 = 100h2 and seems consistent with solutions using small time steps.

To validate the pointwise boundedness of numerical solutions, we define discrete maxi-
mum and minimum as follows:

φmax = max
1≤i≤Nx ,1≤ j≤Ny

φi j , (38)

φmin = min
1≤i≤Nx ,1≤ j≤Ny

φi j . (39)

Fig. 7 shows a temporal evolution of maximum and minimum values for the numerical solu-
tions with the random initial condition (37) up to time t = 0.0244. As shown in Fig. 7, the
maximum and minimum values of the solutions are bounded by Nmax and Nmin for all three
different time steps �t1 = 0.01 h2, �t2 = h2, and �t3 = 100h2. From the result in Fig. 7,
it is confirmed that the numerical solutions are bounded by Nmin and Nmax point-wisely for
several time step sizes.
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Fig. 6 Snapshots of temporal dynamics of two-dimensional gradient flow for theMMfunctional using different
time steps as a �t1 = 0.01h2, b �t2 = h2, and c �t3 = 100 h2

Fig. 7 Temporal evolution of maximum and minimum values for the numerical solutions with three different
time steps �t1 = 0.01 h2, �t2 = h2, and �t3 = 100 h2

4.3 Convergence Test

In this section, We numerically demonstrate that the numerical scheme described in Sect. 2
is temporally second-order accurate and spatially spectral-order accurate in space. For the
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Fig. 8 Temporal evolution of Eq. (40) at y = h

Table 2 Errors and rates of
convergence in time

(�t , �t/2) Error Rate

(1.00e−4, 5.00e−5) 2.5839e−7

(5.00e−5, 2.50e−5) 6.4592e−8 2.00

(2.50e−5, 1.25e−5) 1.6157e−8 2.00

(1.25e−5, 6.25e−6) 4.0655e−9 1.99

test, the initial condition is defined as follows:

φ(x, y, 0) = 0.25

[
4 − tanh

(
x + 0.6

0.04

)
− tanh

(
x + 0.1

0.04

)

− tanh

(
x − 0.1

0.04

)
− tanh

(
x − 0.6

0.04

)]
, (40)

on� = (−1, 1)2. Figure8 shows the initial, numerical, and equilibrium solutions of Eq. (40)
at y = h. Here, we use Nx = Ny = 128, h = 2/Nx , �t = 1.0e-4, and ε = 0.048.

We first fix the final time to T = Nt�t = 0.002, where Nt is a non-negative integer,
and then observe the consecutive l2-norm errors while decreasing �t by half for the rate of
convergence in time. The discrete l2-norm error is defined as

||Error(�t,�t/2)||2 =

√√√√√
Nx∑

i=1

Ny∑

j=1

1

Nx Ny

(
φ
Nt
i j − φ

2Nt
i j

)2
,

and the rate of convergence is log2(||Error(�t,�t/2)||2/||Error(�t/2,�t/4)||2). Table 2 lists the
discrete l2-norm errors and the rates of convergence in time, and confirms the proposed
method is second-order accurate in time.

Next, to verify the spectral-order of accuracy in space, we fix the time step size to �t =
1.0e-6 and the final time to T = 10�t . While increasing the number of grids twice, we
observe the discrete l2-norm errors between two grids, coarse and fine. Here, �n

i j and φn
i j
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Fig. 9 Discrete l2-norm errors with respect to the number of grid N = Nx = Ny

denote the numerical solutions of the coarse and fine grids at time n�t , respectively. The
number of fine grids is twice the number of coarse grids, N = Nx = Ny , and the size of one
coarse grid is h/2, which is half the size of the coarse grid. We use N = 32, 64, . . . , 512
and h = 2/N , and the discrete l2-norm error is defined as

||Error(N ,2N )||2

=

√√√√√
Nx∑

i=1

Ny∑

j=1

1

Nx Ny

(
�

Nt
i j − 1

4
(φ

Nt
2i−1,2 j−1 + φ

Nt
2i−1,2 j + φ

Nt
2i,2 j−1 + φ

Nt
2i,2 j )

)2

.

Fig. 9 shows the discrete l2-norm errors according to the number of grid N .

4.4 Motion byMean Curvature

In this section, we investigate the mean curvature flow of the gradient flow for the MM
functional in two-dimensional computational domain � = (−1, 1)2, with the interfacial
transition parameter ε = ε(5, h). We consider the following equation in the form of both
sides of the original equation (1) divided by 2ε.

φt

2ε
= − π

2ε2
sin

(
2πφ(x, t)

) + �φ(x, t). (41)

We discretize Eq. (41) as

φn+1
i j − φn

i j

�τ
= − π

2ε2
sin(2πφn

i j ) + �φn
i j , (42)

where τ is a scaled time τ = n�τ and �τ is a scaled time step as �τ = 2ε�t . Then we
obtain the solution by using the proposed second-order accurate method in Sect. 2. In Fig. 10,
we consider an initial condition,

φ(x, y, 0) =
[

tanh

(
R0 − √

x2 + y2√
2ε

)

+ 1

]/
2, (43)
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Fig. 10 (a) Comparison of analytic radius and numerical radius aspect to scaled time τ . (b) Snapshots of zero
level contour of numerical solutions

Fig. 11 Snapshots at a t = 0, b( t = 240�t , c t = 480�t , d t = 720�t , e t = 960�t , and f t = 1200�t

where R0 is an initial radius, R0 = 0.4 with m = 5 and time step �τ = 20εh2. Then we
compare the analytic radius and numerical radius. Referring to [9], the analytic radius is given

as R(τ ) =
√
R2
0 − 2τ over time. And the numerical radius can be obtained as the average of

distances from the center of the zero level points of the numerical solution.
In Fig. 11, the cylindrical shape is considered as an initial condition in which the heights

from ground are 1 and the radii are 0.1, 0.125, 0.15, 0.175, 0.2, and 0.225 in the order from
the smallest to the largest. The interfaces shrink by the mean curvature flow.
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Fig. 12 Snapshots at a t = 0, b t = 2668�τ , c t = 5336�τ , and d t = 8004�τ . e Temporal evolution of
numerical and analytic radii

We consider the initial condition of a tower shape with different radii depending on the
height as follows:

u(0, x, y) = 0.5

(

tanh
0.7 − √

x2 + y2

0.02
+ 1

)

+ 0.5

(

tanh
0.5 − √

x2 + y2

0.02
+ 1

)

+, 0.5

(

tanh
0.3 − √

x2 + y2

0.02
+ 1

)

. (44)

The initial condition (44) is illustrated in Fig. 12(a). The radii are 0.7, 0.5, 0.3 from the
bottom. As shown in Fig. 12, the interfaces shrink by the mean curvature flow.

5 Conclusions

In this article, we presented the numerical algorithm of the solution for the gradient flow
of MM functional using the operator splitting method. Our scheme is given by the Fourier
spectral method for the linear operator and discretized analytic solution of Eq. (8) for the
nonlinear operator. We presented that our proposed scheme is unconditionally stable and
pointwise boundedness of the numerical solution for any time step. We figure out the effect
of parameter ε and the corresponding gradient flow of MM functional. Furthermore, we
performed several numerical experiments such as motion by mean curvature, second-order
accuracy, and stability test. Through the various numerical tests, we presented that our numer-
ical method has unconditionally stable and second-order accuracy. In [15], the convergence
of Strang-type splitting for the Allen-Cahn equation was proved. The gradient flow equation
of the MM functional is also the Allen–Cahn-type equation, which has a linear Laplacian
operator term and a nonlinear double-well potential term. Although we cannot straightfor-

123



Journal of Scientific Computing (2023) 95 :63 Page 15 of 16 63

wardly apply the proof in [15] to our model, we will rigorously investigate the error estimates
for the proposed method in future work.
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