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Abstract 

In this paper, we propose a numerical algorithm to obtain the optimal epidemic parameters for a time-dependent 
Susceptible-Unidentified infected-Confirmed (tSUC) model. The tSUC model was developed to investigate the epide-
miology of unconfirmed infection cases over an extended period. Among the epidemic parameters, the transmission 
rate can fluctuate significantly or remain stable due to various factors. For instance, if early intervention in an epidemic 
fails, the transmission rate may increase, whereas appropriate policies, including strict public health measures, can 
reduce the transmission rate. Therefore, we adaptively estimate the transmission rate to the given data using the lin-
ear change points of the number of new confirmed cases by the given cumulative confirmed data set, and the time-
dependent transmission rate is interpolated based on the estimated transmission rates at linear change points. 
The proposed numerical algorithm preprocesses actual cumulative confirmed cases in India to smooth it and uses 
the preprocessed data to identify linear change points. Using these linear change points and the tSUC model, it 
finds the optimal time-dependent parameters that minimize the difference between the actual cumulative con-
firmed cases and the computed numerical solution in the least-squares sense. Numerical experiments demonstrate 
the numerical solution of the tSUC model using the optimal time-dependent parameters found by the proposed 
algorithm, validating the performance of the algorithm. Consequently, the proposed numerical algorithm calculates 
the time-dependent transmission rate for the actual cumulative confirmed cases in India, which can serve as a basis 
for analyzing the COVID-19 pandemic in India.
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Introduction
India, acknowledged as the world’s largest democracy, 
confirmed its first case of the COVID-19 pandemic on 
January 30, 2020. By April 21, 2024, the World Health 
Organization had documented a cumulative total of 
45,036,197 confirmed cases and 533,581 deaths in the 
nation [3]. In efforts to stem the spread of the disease, 
both the central and state governments enforced various 

measures aimed at enhancing public awareness regarding 
COVID-19 and encouraging social distancing among cit-
izens. A nationwide lockdown was initiated on March 24, 
2020, originally intended to last 21 days but was subse-
quently prolonged until May 3, 2020. Despite the imple-
mentation of these measures, the viral outbreak persisted 
in the region due to a significant number of asympto-
matic individuals and the prolonged incubation period of 
the virus [4].

However, the period from infection to the appear-
ance of symptoms has an average duration of 5-6 days 
[5], but this range can vary significantly, extending from 
1 to 14 days. Since fever is the most prevalent symptom 
of COVID-19 [6] and by measuring the body tempera-
ture it is identified, whether a person is infected with 
the virus or not. Consequently, identifying an infected 
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person, whether asymptomatic or yet to display symp-
toms, becomes difficult, leading to a potential increase 
in the rate of COVID-19 transmission. Furthermore, a 
recent survey emphasized [7] that due to a significant 
proportion of asymptomatic individuals infected with 
SARS-CoV-2 in India, the reported number of cases is 
substantially lower than the actual number of infected 
individuals. Therefore, for a comprehensive under-
standing of the infection dynamics and population-level 
immunity against SARS-CoV-2 in India, accurately esti-
mating the number of asymptomatic cases emerges as 
the primary concern of this study.

Several studies [8, 9] have attempted to estimate the 
number of asymptomatic, unidentified, or undetected 
COVID-19 cases in India. For instance, Saikia et al. [10] 
developed a Susceptible-Exposed-Infectives-Removed 
(SEIR) model that incorporates time-varying incubation 
periods and asymptomatic transmission rates. This model 
was used to forecast the early stages of the COVID-19 
pandemic in India, based on data from eleven differ-
ent states. To minimize the deviation of the solution, 
the authors used the derivative-free Nelder-Mead algo-
rithm. Similarly, [11] focused on three highly impacted 
states in India: Maharashtra, Karnataka, and Tamil Nadu 
by extending the basic Susceptible-Infectious-Removed 
(SIR) model to incorporate ten compartments. This 
extension allowed for an examination of coronavirus 
dynamics while considering factors such as contact trac-
ing, face mask efficacy, and the testing of quarantined and 
isolated individuals to estimate optimal values for disease 
transmission rates and the detection rates of undetected 
asymptomatic and symptomatic populations.

Additionally, Rakshit [12] analyzed a seven-com-
partment model, which includes Susceptible, Exposed, 
Infected, Asymptomatic, Quarantined, Fatal, and Recov-
ered (SEIAQFR) compartments, to predict the actual 

number of COVID-19 cases in the UK, US, and India. 
The author focused on two key factors-asymptomatic 
transmission and patient quarantine-emphasizing that 
including the asymptomatic factor improved the model’s 
accuracy. Furthermore, [9] calculated the basic reproduc-
tion number R0 for Maharashtra, India, using the Van 
den Driessche and Watmough methods to derive the 
next-generation matrix. The population was categorized 
into five groups: susceptible, exposed, detected-infected, 
undetected-infected, and recovered. They also included 
a separate compartment to account for the coronavirus 
pathogen’s presence in the environment, which affects 
disease transmission. However, it is important to note 
that their model’s estimate of unidentified case numbers 
was not highly accurate due to the need for approxima-
tions in some parameter values.

Figure  1 shows the cumulative confirmed cases of 
COVID-19 in India from January 3, 2020 to July 26, 2023. 
This report was presented by the World Health Organi-
zation (WHO) [13] as of May 12, 2024 on its website. 
However, the reported cases may not be entirely accu-
rate, as individuals who were asymptomatic at the time 
of data collection may develop symptoms later, leading 
to an increase in the number of reported infections over 
time. Hence, to present an accurate report, forecast new 
variants and understand the severity of the disease, it is 
essential to gather accurate data on unidentified or hid-
den infected cases in India. This information is crucial 
for researching transmission dynamics, risk factors, the 
spread magnitude, and fatality rates.

The COVID-19 pandemic has significantly challenged 
healthcare systems, economies, and societies across the 
globe. To effectively combat its impact, a deep under-
standing of the pandemic’s dynamics is essential. Deep 
learning and spectral analysis have been pivotal in mod-
eling and predicting COVID-19 spread, demonstrating 

Fig. 1  Number of population infected with COVID-19, India
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their importance in epidemiology [14–16]. The rapid 
transmission of the virus, particularly through variants 
like Delta and Omicron, highlights the urgent need for 
accurate forecasting models [17]. In [17], authors we lev-
erage advanced deep learning techniques combined with 
spectral analysis, to predict COVID-19 future trends 
and uncover critical patterns, thereby providing valuable 
insights for public health strategies.

Recent studies [18–24] on COVID-19 epidemiology 
have employed various mathematical models to analyze 
and mitigate the pandemic impact. The susceptible-
infected model is used for understanding complex behav-
iors and predicting the spread of COVID-19 disease [25]. 
Ahmed et al. [26] analyzed the COVID-19 SIR model to 
discuss the regional and global stability of disease-free 
equilibrium points and explained their biological sig-
nificance. Dauji [27] analyzed the epidemiological trend 
in India using mathematical methods. Hajri et  al. [28] 
presented a delayed deterministic and stochastic epi-
demic model to study the effects of white noise intensi-
ties. Han et al. [29] demonstrated the high potential for 
using machine learning methods to investigate epidemic 
dynamics. Lee et al. [30] discussed the construction and 
utilization of various infectious disease models. Lee et al. 
[31] developed the Susceptible-Unidentified infected-
Confirmed (SUC) mathematical epidemic model for 
computing the unidentified infected patient.

Moreover, new infectious disease models have been 
developed by expanding or modifying existing ones. 
Meacci and Primicerio [32] proposed a Susceptible-
Infected-Quarantined-Recovered-Dead (SIQRD) equa-
tion. A mathematical model was proposed to predict 
the exponentially decreasing case fatality rate of a pan-
demic within a country during its declining phase [2]. 
Das et al. [33] presented a multi-patch epidemic model, 
designed to understand how mobility influences disease 
spread. Their model also accounts for limited medi-
cal resources, quarantine measures, and the preventive 
behaviors of healthy individuals. In [34],  Bandekar and 
Ghosh developed a 7-compartment epidemiological 
model that includes identified and unidentified infected 
populations, along with a media factor associated with 
the aware identified infected population. De Anda-Suarez 
et  al. [35] developed META-COVID19, leveraging the 
characteristics of COVID-19 to identify the attributes of 
its spread across different periods of time. Zhang et  al. 
[36] developed a framework for reliable data-driven 
epidemiological models, integrating data collection, 
model development, identifiability and sensitivity analy-
ses, model calibration, robustness analysis, and uncer-
tain predictions. Using this framework, they proposed 
a modified Susceptible-Exposed-Infectious-Recovered 
(SEIR) model with new compartments and vaccinations 

to predict COVID-19 spread in New York City. Lee et al. 
[37] developed a revised SUC model designed to control 
the COVID-19 pandemic through financial incentives. 
In addition, robust optimal parameters for the SUC epi-
demic dynamics model were derived using real-world 
data [38]. Hwang et al. [39] presented a time-dependent 
SUC (tSUC) model for a long-term analysis of the pan-
demic, including COVID-19.

The primary objective of this research is to investigate 
and analyze the epidemiology of unidentified infected 
individuals using the tSUC epidemiological model based 
on COVID-19 infected cases data in India for a long time.

The rest parts of this work are organized as follows. 
In Time-dependent SUC mathematical system  section, 
we introduce the tSUC epidemic model. In Numerical 
solution algorithm  section, we proposed the numeri-
cal algorithm. In Computational tests  section, various 
numerical tests are performed. Conclusions are given in 
Conclusion section.

Time‑dependent SUC mathematical system
We consider the tSUC model [39]. The SUC model was 
proposed by Lee et al. [31]. Considering the conventional 
SIR model, S, I, and R represent susceptible, infected, 
and recovered individuals, respectively. In the context of 
the COVID-19 pandemic, we can further subdivide the 
infected group I into unidentified infected U and con-
firmed infected CI. The SUC model focuses on estimat-
ing the unidentified infected individuals responsible for 
disease transmission, while confirmed cases are treated 
as a single group that includes both isolated cases CI, 
which no longer transmit the disease, and recovered 
cases R, which also no longer transmit the disease. For 
more detailed information, please refer to [39]. The tSUC 
model considering the time-dependent transmission rate 
β(t) was proposed in [39].

where S(t) is the number of susceptible cases at time t, 
U(t) is the number of unidentified infected cases at time 
t, C(t) is the number of confirmed cases at time t, β(t) 
is the transmission variable, γ is the reciprocal of the 
average number of days until an unidentified infected 
person is confirmed, and N is the total population. The 

(1)
dS(t)

dt
= f (β(t), S(t),U(t)) = −β(t)

S(t)U(t)

N
,

(2)dU(t)

dt
= g(γ ,β(t), S(t),U(t)) = β(t)

S(t)U(t)

N
− γU(t),

(3)
dC(t)

dt
= h(γ ,U(t)) = γU(t),
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unidentified infected individuals transmit the disease and 
remain unidentified.

Numerical solution algorithm
In this section, we present an algorithm for optimiz-
ing the time-dependent transmission rate β(t) in the 
tSUC model. Let Sn , Un , and Cn be approximations of the 
S(n�t) , U(n�t) , and C(n�t) , respectively, where �t is a 
temporal step size. Then, we can obtain the following dis-
crete system of equations using the fourth-order Runge–
Kutta (RK4) method.

where

βn = β(n�t) , βn+1/2 = 0.5(β(n�t)+ β((n+ 1)�t)) , and 
U0 are the unknown parameters. Considering the total 
population N, Sn = N − Un − Cn must be satisfied.

Data preprocessing
We use the following data preprocessing to generate 
7-day average data from a given cumulative count of 
confirmed cases C. Let the number of given data be M. 
We calculate the count of newly confirmed cases �C̄m , 
m = 1, 2, · · · ,M utilizing the provided cumulative con-
firmed case count C̄m , m = 0, 1, · · · ,M.

(4)Sn+1 = Sn +
�t

6
(a1 + 2a2 + 2a3 + a4),

(5)Un+1 = Un +
�t

6
(b1 + 2b2 + 2b3 + b4),

(6)Cn+1 = Cn +
�t

6
(c1 + 2c2 + 2c3 + c4),

a1 = f (βn, Sn,Un), b1 = g(γ ,βn, Sn,Un), c1 = h(γ ,Un),

a2 = f

(

βn+1/2, Sn +
a1�t

2
, Un +

b1�t

2

)

,

b2 = g

(

γ ,βn+1/2, Sn +
a1�t

2
,Un +

b1�t

2

)

,

c2 = h

(

γ ,Un +
b1�t

2

)

,

a3 = f

(

βn+1/2, Sn +
a2�t

2
,Un +

b2�t

2

)

,

b3 = g

(

γ ,βn+1/2, Sn +
a2�t

2
,Un +

b2�t

2

)

,

c3 = h

(

γ ,Un +
b2�t

2

)

,

a4 = f (βn+1, Sn + a3�t,Un + a3�t),

b4 = g(γ ,βn+1, Sn + a3�t,Un + b3�t),

c4 = h(γ ,Un + b3�t),

We then calculate the 7-day simple moving average based 
on the number of new confirmed cases as follows:

Next, we generate the smoothed cumulative confirmed 
cases using the 7-day simple moving average of daily new 
confirmed cases as

Figure 2 shows the 7-day average data generated by per-
forming data preprocessing with the number of new cases 
based on the data of COVID-19 cases in India.

Estimating parameters
When the number of new confirmed cases changes dra-
matically, the time-dependent transmission variable β(t) 
changes together. Therefore, we determine when the time-
dependent transmission variable β(t) changes using the 
MATLAB function ischange, which finds the linear change 
point in the time series by finding the abrupt change in the 
slope for the calculated 7-day average data of the number of 
new confirmed cases. Detailed documentation on this can 
be found at https://​uk.​mathw​orks.​com/​help/​matlab/​ref/​
ischa​nge.​html, which is based on work by Killick et al. [40]. 
The ischange function repeatedly minimizes the cost func-
tion to determine whether the data segment has a linear 
change, and we use this method to identify a linear change 
for the number of new confirmed cases. Let P be a num-
ber of linear change points and let the found linear change 
point be tp ∈ [7,M] , p = 2, 3, · · · ,P + 1 . Here, we assume 
that t1 = 7 < t2 < · · · < tP+2 = M . To elucidate the func-
tionality of the MATLAB function ischange, we applied it 
to identify linear change points in a dataset exhibiting ran-
dom variations. Figure  3 shows the linear change points 
found using the MATLAB ischange function with P = 11 
in the given data.

We define the sample transmission values at 
t = [t1, t2, · · · , tP+2] as β = [β1, β2, · · · , βP+2] . Then, 
we calculate the β(t) at t ∈ [7,M] by the piecewise cubic 
Hermite interpolating polynomial method.

To determine the optimal values of the parameters β and 
U0 that best align with the confirmed case data using the 
least-squares method.

�C̄m = C̄m − C̄m−1, m = 1, · · · ,M

ave�C̄m =
1

7
�C̄m−6 +�C̄m−5 + · · · +�C̄m , m = 7, 8, · · · ,M.

refCm = C̄6 +

m
∑

k=7

ave�C̄k , m = 7, 8, · · · ,M.

min
β ,U0

1

2

M−7
∑

m=0

(refCm − C(m)),

https://uk.mathworks.com/help/matlab/ref/ischange.html
https://uk.mathworks.com/help/matlab/ref/ischange.html
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where C(m) is numerical solution at the time t = m . We 
use the discrete system of Eqs. (4)–(6) and the MATLAB 
function lsqcurvefit [1], which is a nonlinear curve-fitting 
function in the least-squares sense [41].

[β , U0] = lsqcurvefit(′tSUCmodel′, [β0
, U0

0 ], Tdata, Cdata, lb, ub),

where [β , U0] are the estimated optimal parameters, 
[β0, U0

0 ] are the initial values, and tSUCmodel is a func-
tion that returns the numerical solution for the con-
firmed cases in the numerical solutions of the tSUC 

Fig. 2  COVID-19 confirmed data in India and the smoothed confirmed data. a Cumulative confirmed cases. b New confirmed cases

Fig. 3  Linear change points identified using the MATLAB function ischange
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model at Tdata by solving Eqs.  4-6. Cdata represents a 
given confirmed case, we use confirmed case data in 
India or manufactured dataets in this paper. lb and ub 
are the lower and upper bounds for the parameters to be 
estimated, respectively.

Computational tests
We perform the numerical experiments using the pro-
posed numerical algorithm to find the optimal time inter-
vals for β(t) . Then, we estimate the unidentified infected 
U(t) using the proposed method. We use the confirmed 
case data in India obtained from the data of the WHO 
Coronavirus dashboard from January 3, 2021, to July 26, 
2023, as of July 26, 2023.

Comparison with previous method
We compare the proposed method with the previous 
method [39]. As for the previous method, sample points 
were defined at regular intervals, and transmission val-
ues were estimated at the sample points. Therefore, esti-
mating transmission rates for a given data is difficult if 
the spacing between sample points is wide. The param-
eters used are the total population N = 136× 107 , 
�t = 0.1 , γ = 1/4 , β0 = [1/3, 1/3, · · · , 1/3] , U0

0 = 1 , 
lb = [0, 0, · · · , 0, 1] , ub = [1, 1, · · · , 1, ∞] , and the 
number of linear change points P = 30 . Figure 4 shows 
the number of new confirmed cases at sample points 
for the previous and proposed methods. We observed 
that in the period where the number of new confirmed 
cases remains relatively steady, the previous method 
estimates a greater number of transmission rates than 
the proposed method, whereas in the period with rela-
tively rapid changes, it estimates a smaller number of 
transmission rates.

Figure 5 shows numerical solutions using the previous 
and proposed methods. We observed that the numerical 
solution calculated using the time-dependent transmis-
sion rate β(t) estimated by the previous method does not 
fit the COVID-19 confirmed data in India. In contrast, 
the proposed method successfully estimated the optimal 
time-dependent transmission rate β(t) for the COVID-19 
confirmed data in India, which undergoes long periods of 
rapid change.

Manufactured datasets
We conducted numerical experiments to demon-
strate that the proposed algorithm estimates a time-
dependent rate of transmission β(t) optimized for 
tSUC models on various datasets. We generate cumula-
tive confirmed case data based on two new confirmed 
cases manufactured. The first case was created so that 
the number of new cases generally increased, including 
random perturbations, and the second case was cre-
ated so that the number of new cases increased peri-
odically and gradually, including random perturbations. 
The parameters used are the total population N = 1010 , 
�t = 0.1 , γ = 1/4 , β0 = [1/3, 1/3, · · · , 1/3] , U0

0 = 50 , 
lb = [0, 0, · · · , 0, 1] , ub = [1, 1, · · · , 1, ∞] , and the 
number of linear change points P = 30 . Figure  6 shows 
the numerical results of the generated cumulative con-
firmed cases. The left column represents the first case 
and the right column represents the second case. We 
compare numerical solutions calculated using the esti-
mated β(t) with given data and observe that the proposed 
algorithm estimates the optimal time-dependent transfer 
rate β(t) for various datasets.

Effect of the number of linear change points p
We consider the effect of the number of linear change 
points P. The parameters used are the total population 

Fig. 4  Sample points for the previous and proposed methods
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Fig. 5  Numerical solutions using the previous and proposed methods with COVID-19 confirmed data in India. a–c are number of cumulative 
confirmed cases, new confirmed cases, and unidentified infected cases, respectively. d βS/N − γ
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N = 136× 107 , �t = 0.1 , γ = 1/4 , β0
= [1/3, 1/3, · · · , 1/3] , 

U0
0 = 1 , lb = [0, 0, · · · , 0, 1] , ub = [1, 1, · · · , 1, ∞] , 

and the different number of the linear change points 
P = 30, 45, 60 . Figure  7 shows the linear change 
points t = [t1, · · · , tP+2] found using the MATLAB 
ischange function with P = 30, 45, 60 from the con-
firmed data in India. Then, we obtain the estimated 
optimal parameters β and U0 using the Eqs. (4)–(6) 
and MATLAB function lsqcurvefit. Figure  8 shows 
that the numerical solutions using Eqs. (4)–(6) with 
the obtained the estimated optimal parameters. We 

observed that the cumulative confirmed cases calcu-
lated using the optimal parameters from the proposed 
method closely match the actual cumulative confirmed 
cases in India. The numerical results show fluctua-
tions in unidentified infections, which provide valu-
able insights for analyzing asymptomatic infections 
and diseases with latent periods, such as COVID-19. 
Unlike the previous method, the results of numeri-
cal tests demonstrate that the proposed approach is 
suitable for explaining the epidemiology of unidenti-
fied infections during the three sharp increases in the 

Fig. 6  Numerical solutions using the proposed method with the generated datasets. a–c are number of cumulative confirmed cases, new 
confirmed cases, and unidentified infected cases, respectively. d βS/N − γ . From left to right, the first and second cases
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number of new confirmed cases in India. In addition, 
the numerical solution shows similar results according 
to the number of linear change points P. This means 
that more than P = 30 sufficiently reflects the change 
in the given COVID-19 confirmed data in India data.

Conclusion
We proposed the numerical algorithm to obtain the 
optimal epidemic parameters for the tSUC model. 
Estimating the parameters of the epidemic model is 
an important problem in analyzing infectious diseases. 
The algorithm for estimating the optimal parameters 
of the epidemic model is structured as follows. First, 
the data is smoothed through preprocessing. Then, 
linear change points are calculated based on the 
smoothed data. Using these calculated linear change 
points and the tSUC model, the optimal param-
eters are estimated. We performed numerical experi-
ments to ensure that the proposed algorithm properly 

estimates the parameters. Numerical experiments 
showed that the estimated parameters can reproduce 
the actual COVID-19 epidemiological data of India. In 
addition, the dynamics of unidentified infected peo-
ple in India were analyzed using the parameters of the 
tSUC model estimated using the proposed algorithm. 
The estimated number of unidentified infected cases 
using the proposed algorithm is an important result 
that can serve as evidence supporting the effective-
ness of various preventive measures, such as social 
distancing or wearing masks. In future work, we will 
develop an appropriate index for the SUC model cor-
responding to the basic reproduction number R0 of the 
SIR model, which could be utilized for the analysis of 
various infectious diseases including COVID-19 where 
the dynamics of unidentified infected cases are impor-
tant. In addition, we will consider the time-space-
dependent SUC epidemic model, which considers time 
and space, to analyze the infectious disease including 

Fig. 7  Linear change points identified using the MATLAB function ischange with COVID-19 confirmed data in India
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interregional characteristics. Further research will 
be aimed at enhancing and analyzing these models 
through the incorporation of additional data and their 

application to other infectious diseases could signifi-
cantly broaden public health utility, making it a valu-
able area for future study [42, 43].

Fig. 8  Numerical solutions using the proposed method with COVID-19 confirmed data in India. a–c are number of cumulative confirmed cases, 
new confirmed cases, and unidentified infected cases, respectively. d βS/N − γ



Page 11 of 12Hwang et al. BMC Infectious Diseases         (2024) 24:1031 	

Acknowledgements
The corresponding author (J.S. Kim) was supported by the National Research 
Foundation(NRF), Korea, under project BK21 FOUR. Jyoti was supported by 
Brain Pool program funded by the Ministry of Science and ICT through the 
National Research Foundation of Korea (2022H1D3A2A02081237). The authors 
extend their thanks to the reviewers for the valuable and constructive input 
they provided during the revision of the article.

Authors’ contributions
The authors contributed to this work through the following roles: YH: Data curation, Formal 
Analysis, Investigation, Visualization, Writing - original draft, Writing - review & editing. SK: 
Methodology, Writing - original draft, Writing - review & editing. J: Data curation, Methodol-
ogy, Software, Formal Analysis, Writing - review & editing. JK: Supervision, Methodology, 
Conceptualisation, Formal Analysis, Writing - original draft, Writing - review & editing.

Funding
Jyoti was supported by Brain Pool program funded by the Ministry of 
Science and ICT through the National Research Foundation of Korea 
(2022H1D3A2A02081237).

Availability of data and materials
All data used in this article can be shared upon appropriate request.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 17 July 2024   Accepted: 19 September 2024

References
	1.	 Park E, Lyu J, Kim S, Lee C, Lee W, Choi Y, Kwak S, Yoo C, Hwang H, Kim 

J. Calibration of the temporally varying volatility and interest rate func-
tions. Int J Comput Math. 2022;99(5):1066–79.

	2.	 Kwak S, Ham S, Hwang Y, Kim J. Estimation and prediction of the 
multiply exponentially decaying daily case fatality rate of COVID-19. J 
Supercomput. 2023;79:11159–69.

	3.	 World Health Organization. India:who health emergency dashboard. 
2023. https://​covid​19.​who.​int/​region/​searo/​count​ry/​in. Accessed 26 Jul 
2023.

	4.	 Li R, Pei S, Chen B, Song Y, Zhang T, Yang W, Shaman J. Substantial 
undocumented infection facilitates the rapid dissemination of novel 
coronavirus (SARS-CoV-2). Science. 2020;368(6490):489–93. https://​doi.​
org/​10.​1126/​scien​ce.​abb32​21.

	5.	 Lauer SA, Grantz KH, Bi Q, Jones FK, Zheng Q, Meredith HR, Azman AS, 
Reich NG, Lessler J. The incubation period of coronavirus disease 2019 
(COVID-19) from publicly reported confirmed cases: estimation and 
application. Ann Intern Med. 2020;172(9):577–82. https://​doi.​org/​10.​
7326/​M20-​0504.

	6.	 World Health Organization. Coronavirus (COVID-19). https://​www.​who.​
int/​health-​topics/​coron​avirus. Accessed 26 Jul 2023.

	7.	 Singh PP, Rai SK, Chaubey G, Bhu SC. Estimation of real COVID-19 cases 
in India during the first wave. IJID Reg. 2023;6:80–3. https://​doi.​org/​10.​
1016/j.​ijregi.​2023.​01.​008.

	8.	 Mukhopadhyay S, Chakraborty D. Estimation of undetected COVID-19 
infections in India. MedRxiv. 2020. https://​doi.​org/​10.​1101/​2020.​04.​20.​
20072​892.

	9.	 Saha S, Saha S. The impact of the undetected COVID-19 cases on its 
transmission dynamics. Indian J Pure Appl Math. 2021;52(4):1229–34. 
https://​doi.​org/​10.​1007/​s13226-​021-​00035-6.

	10.	 Saikia D, Bora K, Bora MP. COVID-19 outbreak in India: an SEIR model-
based analysis. Nonlinear Dyn. 2021;104(4):4727–51. https://​doi.​org/​10.​
1007/​s11071-​021-​06536-7.

	11.	 Bandekar SR, Ghosh M. Mathematical modeling of COVID-19 in 
India and its states with optimal control. Model Earth Syst Environ. 
2022;8(2):2019–34. https://​doi.​org/​10.​1007/​s40808-​021-​01202-8.

	12.	 Rakshit P, Kumar S, Noeiaghdam S, Fernandez-Gamiz U, Altanji M, 
Santra SS. Modified SIR model for COVID-19 transmission dynam-
ics: Simulation with case study of UK, US and India. Results Phys. 
2022;40:105855. https://​doi.​org/​10.​1016/j.​rinp.​2022.​105855.

	13.	 World Health Organization. Daily cases and deaths by date reported to 
WHO, WHO Coronavirus (COVID-19) Dashboard. https://​covid​19.​who.​
int/​WHO-​COVID-​19-​global-​data.​csv. Accessed 26 Jul 2023.

	14.	 Abioye AI, Peter OJ, Ogunseye HA, Oguntolu FA, Ayoola TA, Oladapo 
AO. A fractional-order mathematical model for malaria and COVID-19 
co-infection dynamics. Healthc Analytics. 2023;4:100210. https://​doi.​
org/​10.​1016/j.​health.​2023.​100210.

	15.	 Ojo MM, Peter OJ, Goufo EFD, Nisar KS. A mathematical model for 
the co-dynamics of COVID-19 and tuberculosis. Math Comput Simul. 
2023;207:499–520. https://​doi.​org/​10.​1016/j.​matcom.​2023.​01.​014.

	16.	 Oshinubi K, Amakor A, Peter OJ, Rachdi M, Demongeot J. Approach to 
COVID-19 time series data using deep learning and spectral analysis meth-
ods. AIMS Bioeng. 2022;9(1). https://​doi.​org/​10.​3934/​bioeng.​20220​01.

	17.	 Kammegne B, Oshinubi K, Babasola O, Peter OJ, Longe OB, Ogunrinde RB, 
Titiloye EO, Abah RT, Demongeot J. Mathematical modelling of the spa-
tial distribution of a COVID-19 outbreak with vaccination using diffusion 
equation. Pathogens. 2023;12(1):88. https://​doi.​org/​10.​3390/​patho​gens1​
20100​88.

	18.	 Musa R, Peter OJ, Oguntolu FA. A non-linear differential equation model 
of COVID-19 and seasonal influenza co-infection dynamics under vacci-
nation strategy and immunity waning. Healthc Analytics. 2023;4:100240. 
https://​doi.​org/​10.​1016/j.​health.​2023.​100240.

	19.	 Abidemi A, Peter OJ. Deterministic Double Dose Vaccination Model of 
COVID-19 Transmission Dynamics-Optimal Control Strategies with Cost-
Effectiveness Analysis. Commun Biomath Sci. 2024;7(1):1–33. https://​doi.​
org/​10.​5614/​cbms.​2024.7.​1.1.

	20.	 Peter OJ, Panigoro HS, Abidemi A, Ojo MM, Oguntolu FA. Mathemati-
cal model of COVID-19 pandemic with double dose vaccination. Acta 
Biotheor. 2023;71(2):9. https://​doi.​org/​10.​1007/​s10441-​023-​09460-y.

	21.	 Abioye AI, Peter OJ, Ogunseye HA, Oguntolu FA, Oshinubi K, Ibrahim AA, 
Khan I. Mathematical model of COVID-19 in Nigeria with optimal control. 
Results Phys. 2021;28:104598. https://​doi.​org/​10.​1016/j.​rinp.​2021.​104598.

	22.	 Abioye AI, Peter OJ, Addai E, Oguntolu FA, Ayoola TA. Modeling the 
impact of control strategies on malaria and COVID-19 coinfection: 
insights and implications for integrated public health interventions. Qual 
Quant. 2024;58(4):3475–95. https://​doi.​org/​10.​1007/​s11135-​023-​01813-6.

	23.	 Peter OJ, Shaikh AS, Ibrahim MO, Nisar KS, Baleanu D, Khan I, Abioye AI. 
Analysis and dynamics of fractional order mathematical model of COVID-
19 in Nigeria using Atangana-Baleanu operator. Comput Mater Contin. 
2021;66(2):1823–48. https://​doi.​org/​10.​32604/​cmc.​2020.​012314.

	24.	 Ayoade AA, Ikpechukwu PA, Thota S, Peter OJ. Modeling the effect of 
quarantine and hospitalization on the spread of COVID-19 during the 
toughest period of the pandemic. J Mahani Math Res. 2022;339–61. 
https://​doi.​org/​10.​22103/​jmmr.​2022.​19335.​1236.

	25.	 Matouk AE. Complex dynamics in susceptible-infected models for COVID-
19 with multi-drug resistance. Chaos Solitons Fractals. 2020;140:110257. 
https://​doi.​org/​10.​1016/j.​chaos.​2020.​110257.

	26.	 Ahmed M, Khan MHOR, Sarker MMA. COVID-19 SIR model: Bifurcation 
analysis and optimal control. Results Control Optim. 2023;12:100246. 
https://​doi.​org/​10.​1016/j.​rico.​2023.​100246.

	27.	 Dauji S. Sen’s innovative method for trend analysis of epidemic: a 
case study of Covid-19 pandemic in India. Trans Indian Natl Acad Eng. 
2021;6(2):507–21. https://​doi.​org/​10.​1007/​s41403-​021-​00219-w.

	28.	 Hajri Y, Allali A, Amine S. A delayed deterministic and stochastic SIRICV 
model: Hopf bifurcation and stochastic analysis. Math Comput Simul. 
2024;215:98–121. https://​doi.​org/​10.​1016/j.​matcom.​2023.​07.​027.

	29.	 Han S, Stelz L, Stoecker H, Wang L, Zhou K. Approaching epidemiological 
dynamics of COVID-19 with physics-informed neural networks. J Franklin 
Inst. 2024;106671. https://​doi.​org/​10.​1016/j.​jfran​klin.​2024.​106671.

	30.	 Lee H, Kim S, Jeong M, Choi E, Ahn H, Lee J. Mathematical modeling of 
COVID-19 transmission and intervention in South Korea: A review of 

https://covid19.who.int/region/searo/country/in
https://doi.org/10.1126/science.abb3221
https://doi.org/10.1126/science.abb3221
https://doi.org/10.7326/M20-0504
https://doi.org/10.7326/M20-0504
https://www.who.int/health-topics/coronavirus
https://www.who.int/health-topics/coronavirus
https://doi.org/10.1016/j.ijregi.2023.01.008
https://doi.org/10.1016/j.ijregi.2023.01.008
https://doi.org/10.1101/2020.04.20.20072892
https://doi.org/10.1101/2020.04.20.20072892
https://doi.org/10.1007/s13226-021-00035-6
https://doi.org/10.1007/s11071-021-06536-7
https://doi.org/10.1007/s11071-021-06536-7
https://doi.org/10.1007/s40808-021-01202-8
https://doi.org/10.1016/j.rinp.2022.105855
https://covid19.who.int/WHO-COVID-19-global-data.csv
https://covid19.who.int/WHO-COVID-19-global-data.csv
https://doi.org/10.1016/j.health.2023.100210
https://doi.org/10.1016/j.health.2023.100210
https://doi.org/10.1016/j.matcom.2023.01.014
https://doi.org/10.3934/bioeng.2022001
https://doi.org/10.3390/pathogens12010088
https://doi.org/10.3390/pathogens12010088
https://doi.org/10.1016/j.health.2023.100240
https://doi.org/10.5614/cbms.2024.7.1.1
https://doi.org/10.5614/cbms.2024.7.1.1
https://doi.org/10.1007/s10441-023-09460-y
https://doi.org/10.1016/j.rinp.2021.104598
https://doi.org/10.1007/s11135-023-01813-6
https://doi.org/10.32604/cmc.2020.012314
https://doi.org/10.22103/jmmr.2022.19335.1236
https://doi.org/10.1016/j.chaos.2020.110257
https://doi.org/10.1016/j.rico.2023.100246
https://doi.org/10.1007/s41403-021-00219-w
https://doi.org/10.1016/j.matcom.2023.07.027
https://doi.org/10.1016/j.jfranklin.2024.106671


Page 12 of 12Hwang et al. BMC Infectious Diseases         (2024) 24:1031 

literature. Yonsei Med J. 2023;64(1):1. https://​doi.​org/​10.​3349/​ymj.​2022.​
0471.

	31.	 Lee C, Li Y, Kim J. The susceptible-unidentified infected-confirmed (SUC) 
epidemic model for estimating unidentified infected population for 
COVID-19. Chaos Solitons Fractals. 2020;139:110090. https://​doi.​org/​10.​
1016/j.​chaos.​2020.​110090.

	32.	 Meacci L, Primicerio M. Pandemic fatigue impact on COVID-19 spread: 
A mathematical modelling answer to the Italian scenario. Results Phys. 
2021;31:104895. https://​doi.​org/​10.​1016/j.​rinp.​2021.​104895.

	33.	 Das T, Bandekar SR, Srivastav AK, Srivastava PK, Ghosh M. Role of immigra-
tion and emigration on the spread of COVID-19 in a multipatch environ-
ment: a case study of India. Sci Rep. 2023;13(1):10546. https://​doi.​org/​10.​
1038/​s41598-​023-​37192-z.

	34.	 Bandekar SR, Ghosh M. Mathematical modeling of COVID-19 in India 
and Nepal with optimal control and sensitivity analysis. Eur Phys J Plus. 
2021;136:1–25. https://​doi.​org/​10.​1140/​epjp/​s13360-​021-​02046-y.

	35.	 De Anda-Suarez J, Calzada-Ledesma V, Gutiérrez-Hernández DA, 
Santiago-Montero R, Villanueva-Jiménez LF, Rodríguez-Miranda S. A novel 
metaheuristic framework based on the generalized Boltzmann distribu-
tion for COVID-19 spread characterization. IEEE Access. 2022;10:7326–40. 
https://​doi.​org/​10.​1109/​ACCESS.​2022.​31425​22.

	36.	 Zhang S, Ponce J, Zhang Z, Lin G, Karniadakis G. An integrated framework 
for building trustworthy data-driven epidemiological models: Applica-
tion to the COVID-19 outbreak in New York City. PLoS Comput Biol. 
2021;17(9):e1009334. https://​doi.​org/​10.​1371/​journ​al.​pcbi.​10093​34.

	37.	 Lee C, Kwak S, Kim J. Controlling COVID-19 outbreaks with financial 
incentives. Int J Environ Res Public Health. 2021;18(2):724. https://​doi.​org/​
10.​3390/​ijerp​h1802​0724.

	38.	 Lee C, Kwak S, Kim S, Hwang Y, Choi Y, Kim J. Robust optimal parameter 
estimation for the susceptible-unidentified infected-confirmed model. 
Chaos Solitons Fractals. 2021;153:111556. https://​doi.​org/​10.​1016/j.​chaos.​
2021.​111556.

	39.	 Hwang Y, Kwak S, Kim J. Long-time analysis of a time-dependent 
SUC epidemic model for the COVID-19 pandemic. J Healthc Eng. 
2021;2021(1):5877217. https://​doi.​org/​10.​1155/​2021/​58772​17.

	40.	 Killick R, Fearnhead P, Eckley IA. Optimal detection of changepoints with 
a linear computational cost. J Am Stat Assoc. 2012;107(500):1590–8. 
https://​doi.​org/​10.​1080/​01621​459.​2012.​737745.

	41.	 López CP. Optimization techniques via the optimization toolbox. In: MAT-
LAB optimization techniques. Berkeley: Apress; 2014. pp. 85–108. https://​
doi.​org/​10.​1007/​978-1-​4842-​0292-0_6.

	42.	 Ojo MM, Benson TO, Peter OJ, Goufo EFD. Nonlinear optimal control strat-
egies for a mathematical model of COVID-19 and influenza co-infection. 
Phys A. 2022;607:128173. https://​doi.​org/​10.​1016/j.​physa.​2022.​128173.

	43.	 Babasola O, Kayode O, Peter OJ, Onwuegbuche FC, Oguntolu FA. Time-
delayed modelling of the COVID-19 dynamics with a convex incidence 
rate. Inform Med Unlocked. 2022;35:101124. https://​doi.​org/​10.​1016/j.​
imu.​2022.​101124.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.3349/ymj.2022.0471
https://doi.org/10.3349/ymj.2022.0471
https://doi.org/10.1016/j.chaos.2020.110090
https://doi.org/10.1016/j.chaos.2020.110090
https://doi.org/10.1016/j.rinp.2021.104895
https://doi.org/10.1038/s41598-023-37192-z
https://doi.org/10.1038/s41598-023-37192-z
https://doi.org/10.1140/epjp/s13360-021-02046-y
https://doi.org/10.1109/ACCESS.2022.3142522
https://doi.org/10.1371/journal.pcbi.1009334
https://doi.org/10.3390/ijerph18020724
https://doi.org/10.3390/ijerph18020724
https://doi.org/10.1016/j.chaos.2021.111556
https://doi.org/10.1016/j.chaos.2021.111556
https://doi.org/10.1155/2021/5877217
https://doi.org/10.1080/01621459.2012.737745
https://doi.org/10.1007/978-1-4842-0292-0_6
https://doi.org/10.1007/978-1-4842-0292-0_6
https://doi.org/10.1016/j.physa.2022.128173
https://doi.org/10.1016/j.imu.2022.101124
https://doi.org/10.1016/j.imu.2022.101124

	Optimal time-dependent SUC model for COVID-19 pandemic in India
	Abstract 
	Introduction
	Time-dependent SUC mathematical system
	Numerical solution algorithm
	Data preprocessing
	Estimating parameters

	Computational tests
	Comparison with previous method
	Manufactured datasets
	Effect of the number of linear change points p

	Conclusion
	Acknowledgements
	References


