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Abstract
In this paper, we propose a robust and accurate reconstruction algorithm for the time-
dependent continuous volatility function using observed option prices from the financial
market and the Black–Scholes (BS) equation. The proposed algorithm consists of two steps:
First, a time-dependent piecewise-constant volatility function is calculated. Second, a con-
tinuous volatility function is reconstructed by continuously connecting the jumps of the
piecewise-constant volatility values at the expiration dates. We validate the accuracy and
robustness of the proposed reconstruction of time-dependent continuous volatility by employ-
ing manufactured volatility and real financial market price data.

Keywords Continuous volatility · Black–Scholes equation · Finite difference method

1 Introduction

The Black–Scholes (BS) partial differential equation (PDE) is one of the most widely used
models in the field of option pricing (Black and Scholes 1973). The main objective of this
paper is to develop a numerical algorithm that reconstructs time-dependent continuous volatil-
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ity using the BS PDE. In a previous work (Rodrigo and Mamon 2006), the authors explored
a transformation of the equation involving time-varying parameters, aiming for a more com-
prehensive approach. The focus lies on incorporating observed market option prices across
various strike prices and expiration dates:

∂u(S, t)

∂t
+ 1

2
[σ(t)S]2

∂2u(S, t)

∂S2
+ r S

∂u(S, t)

∂S
− ru(S, t) = 0, (1)

for (S, t) ∈ R
+ × [0, T ), where u(S, t) is the option value of the underlying price S at time

t . Here, σ(t) is the time-dependent volatility function of time t . The final condition is the
payoff function u(S, T ) = �(S) at expiry T .

To resolve issues related to a constant volatility model, diverse methods have been pro-
posed, including local volatility (Itkin and Lipton 2018) and stochastic local volatility models
(Wyns and In’t Hout 2018; Zhang et al. 2022; Yoon et al. 2022; Kim et al. 2023). Kim et al.
(2021) developed a numerical algorithm for the reconstruction of the local volatility function.
When the price evolution of a financial asset consists of known prices of European options
on that asset, local volatility models show a good performance (Gatheral et al. 2012). In
order to extend the financial theory to the fractional structure of the financial market, a large
number of studies dedicated to the fractional BS equation were introduced. Iqbal and Wei
(2021) studied the time fractional BS equation with a double barriers option based on the
time-dependent volatility coefficient. The L1-FDIA scheme, Tikhonov regularization, and
Legendre-collocationmethod are used to numerically solve the governing equation. Tikhonov
regularization is an important tool for the inverse problem in mathematical finance. Crépey
(2003) applied Tikhonov regularization for calibration of the local volatility function in a
generalized BS equation. Park et al. (2022) presented a calibration algorithm of volatility
and interest rate functions. Based on the fractional Vasicek interest rate model, Zhao and Xu
(2022) proposed the calibration of the time-dependent volatility function. They applied an
implicit finite difference method (FDM) and dealt with European options. In (Georgiev and
Vulkov 2019), the authors presented the numerical approximation of the implied volatility
for European options under jump-diffusion models. Georgiev and Vulkov (2020) proposed
a robust algorithm for the time-dependent volatility function. They observed one- and two-
asset BS equations and used special decomposition for the algorithm. Furthermore, Georgiev
and Vulkov (2021) also proposed a fast and robust numerical scheme to reconstruct the time-
dependent volatility function. They considered a predictor–corrector method to handle the
non-uniqueness of the volatility function minimizer. Jin et al. (2018) studied a BS model
under a time-dependent volatility function using a fully implicit FDM. A cost function is
defined and the steepest descent method is applied to minimize the cost function. Numeri-
cal results using financial market data are presented to demonstrate the performance of the
proposed method. Schied and Stadje (2007) studied a delta hedging strategy from a local
volatility model. The robustness of the proposed method holds for a standard BS equation
when a path-dependent derivative is hedged with a convex payoff function. They proved
that the robustness also holds for other local volatility models when the payoff function is
directionally convex.

This article follows the following organization. Section2 provides a detailed numerical
algorithm of the proposedmethod. The computer tests are presented in Sect. 3. Finally, Sect. 4
presents the conclusions drawn from the study.
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2 Numerical algorithm

In this section, we introduce the proposed numerical algorithm. Let τ = T − t . Then, Eq.
(1) can be expressed as

∂u(S, τ )

∂τ
= 1

2
[σ(τ)S]2 ∂2u(S, τ )

∂S2
+ r S

∂u(S, τ )

∂S
− ru(S, τ ), (S, t) ∈ � × (0, T ]. (2)

We solve Eq. (2) using a finite difference method (Jeong et al. 2016). We define the non-
uniform asset price domain � = {S1, S2, . . . , SNS }, where NS is the number of spatial
steps. The non-uniform spatial step size is defined as hi = Si+1 − Si for i =, 1, 2, . . . , NS .
Furthermore, we consider the zero Dirichlet boundary condition at S = 0 and the linear
boundary condition at S = L (Windcliff et al. 2004). Thus, an external artificial node SNs+1

is required to satisfy the boundary conditions at S = L . Figure1 shows a schematic of the
non-uniform asset price domain with an external artificial node SNx+1. Note that there is a
method which does not use the far-field boundary condition (Lee et al. 2023). Let uni be the
numerical approximation of u(Si , n�τ) for i = 1, 2, . . . , NS and n = 0, 1, . . . , Nτ , where
�τ = T /Nτ Nτ is the number of temporal steps (Fig. 2).

Let σ n be the discrete variable volatility σ(n�τ). We discretize Eq. (2) using the non-
uniform finite difference scheme in space and a fully implicit scheme in time.

un+1
i − uni

�τ
= (σ n+1Si )2

2

(
∂2u

∂S2

)n+1

i
+ r Si

(
∂u

∂S

)n+1

i
− run+1

i , (3)

where

(
∂2u

∂S2

)n+1

i
= 2un+1

i−1

hi−1(hi−1 + hi )
− 2un+1

i

hi−1hi
+ 2un+1

i+1

hi (hi−1 + hi )
, (4)

(
∂u

∂S

)n+1

i
= −hiu

n+1
i−1

hi−1(hi−1 + hi )
+ (hi − hi−1)u

n+1
i

hi−1hi
+ hi−1u

n+1
i+1

hi (hi−1 + hi )
. (5)

Then, we can rewrite the above Eq. (3) as

αi u
n+1
i−1 + βi u

n+1
i + γi u

n+1
i+1 = bi , for i = 2, . . . , NS, (6)

where

αi = r Si hi
hi−1(hi−1 + hi )

− (σ n+1Si )2

hi−1(hi−1 + hi )
,

βi = 1

�τ
− r Si (hi − hi−1)

hi−1hi
+ (σ n+1Si )2

hi−1hi
+ r ,

γi = − Si hi−1

hi (hi−1 + hi )
− (σ n+1Si )2

hi (hi−1 + hi )
, and bi = uni

�τ
.

Fig. 1 Schematic of the non-uniform grid with external artificial node SNx+1
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We apply the zero Dirichlet condition at S = 0 and the linear condition at S = L .

u(0, τ ) = 0,
∂2u(L, τ )

∂S2
= 0.

Thus,

un+1
1 = 0, un+1

NS+1 = 2un+1
NS

− un+1
NS−1.

By substituting the relation and un+1
NS+1 = 2un+1

NS
− un+1

NS−1 into Eq. (6), we get

(αNS − γNS )u
n+1
NS−1 + (βNS + 2γNS )u

n+1
NS

= bnNS
. (7)

The matrix form of the linear system (6) and (7) can be rewritten as

⎛
⎜⎜⎜⎜⎜⎝

β2 γ2 0 . . . 0
α3 β3 γ3 . . . 0
...

. . .
. . .

. . .
...

0 . . . αNx−1 βNx−1 γNx−1

0 . . . 0 αNx − γNx βNx + 2γNx

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

un+1
2

un+1
3
...

un+1
Nx−1
un+1
Nx

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

bn2
bn3
...

bnNx−1
bnNx

⎞
⎟⎟⎟⎟⎟⎠

, (8)

where we have used un+1
1 = 0. We apply the Thomas algorithm (Ames 2014) to solve the

discrete tri-diagonal system (8).
Following this, we present the numerical algorithm to reconstruct the time-dependent

volatility function using option prices. LetUα
β be the market option prices with the expiration

date Tα forα = 1, · · · , Mt and the exercise price Kβ forβ = 1, · · · , Mk . Forα = 1, . . . , Mt ,
we determine a piecewise-constant volatility function σ(t) using the given price data in the
least-squares sense:

E(σ ) = 1

Mk

Mk∑
β=1

[uKβ (σ, S0, Tα) −Uα
β ]2, (9)

where uKβ (σ, S0, Tα) represents the numerical solution at S = S0 of Eq (2) with the strike
price Kβ at time Tα . Let the piecewise volatility constants be denoted as σ = (σ1, . . . , σα).
We define a piecewise-constant volatility function Vσ as

Vσ (t) = σv, if Tv−1 < t ≤ Tv, 1 ≤ v ≤ α.

First, we apply the steepest descent method to calculate a piecewise constant volatility σα

that minimizes the cost function E(Vσ ) for α = 1, . . . , Mt . We define the tol as the tolerance
for the cost function in the steepest descent method. The details of the overall steps are given
in Algorithm 1.

Next, we consider the following modified BS formula, which works for any integrable
deterministic volatility function (Jiang and Li 2005).

u(S, τ ) = SN (d1) − Ke−rτ N (d2), (10)

where

d1 = ln S
K + rτ + ∫ τ

0 σ 2(t)dt√∫ τ

0 σ 2(t)dt
, d2 = ln S

K + rτ − ∫ τ

0 σ 2(t)dt√∫ τ

0 σ 2(t)dt
= d1 −

√∫ τ

0
σ 2(t)dt .
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Algorithm 1 Piecewise-constant volatility function using the steepest descent method
INPUT tolerance tol; maximum number of iterations N ; initial approximation σ1.
OUTPUT approximation solution σ = (σ1, . . . , σMt ).
Step 1 For v = 1, . . . , Mt do Steps 2–12.

Step 2 If v ≥ 2 then
set σv = σv−1.

Step 3 Set σ = (σ1, . . . , σv);
error = 2tol.
k = 1.

Step 4 While (k ≤ N and error ≥ tol) do Steps 5–11.
Step 5 Set g = 1; a1 = −g; a2 = 0; a3 = g;

E2 = E(Vσ (t));
σ ′ = (σ1, . . . , σv + a1); E1 = E(Vσ ′ (t));
σ ′ = (σ1, . . . , σv + a3); E3 = E(Vσ ′ (t)).
h1 = (E1 + E3 − 2E2)/g2; h2 = (E3 − E1)/g;
a0 = −0.5h2/h1;
σ ′ = (σ1, . . . , σv + a0); E0 = E(Vσ ′ (t)).

Step 6 While
(
(E3 ≥ E2 and E1 ≥ E2) or (E2 ≥ E3 and E2 ≥ E1) or σv + a1 < 0

)
do Steps 7 and 8.

Step 7 Set g = g/2; a1 = −g; a3 = g;
σ ′ = (σ1, . . . , σv + a1); E1 = E(Vσ ′ (t));
σ ′ = (σ1, . . . , σv + a3); E3 = E(Vσ ′ (t)).

Step 8 If g < tol/2 then
OUTPUT (’No likely improvement’);
OUTPUT σ = (σ1, . . . , σv).
STOP.

Step 9 Set h1 = (E3 + E1 − 2E2)/g2; h2 = (E3 − E1)/g;
a0 = −0.5h2/h1;
σ ′ = (σ1, . . . , σv + a0); E0 = E(Vσ ′ (t)).

Step 10 Find a from {a0, a1, a3} so that E = E(Vσ ′ (t)) = min{E0,E1,E3},
where σ ′ = (σ1, . . . , σv + a).

Step 11 Set σ = (σ1, . . . , σv + a);
k = k + 1;
error = |E − E2|.

Step 12 If k = N + 1 then
OUTPUT (’Maximum iterations exceeded’);
OUTPUT σ = (σ1, . . . , σv).
STOP.

Step 13 OUTPUT σ = (σ1, . . . , σMt ).

We can observe that if an area of the square of the volatility function
∫ τ

0 σ 2(t)dt is the same,
the option price is the same from the structure of the modified BS formula (10).

Therefore, we consider the post-processing of the piecewise-constant volatility function
based on the structure of the BS formula. Let N0 = 0, Nv be the number of time steps for the
expiration date Tv , v = 1, . . . , Mt and letWn = V 2

σ (n�t). The piecewise volatility constants
σ = (σ1, . . . , σMt ) are given by Algorithm 1. We define the Areav for v = 1, . . . , Mt as

Areav(W ) =
⎛
⎝WNv−1

2
+

Nv−1∑
n=Nv−1+1

Wn + WNv

2

⎞
⎠ �t,

and define the rv for v = 1, . . . , Mt − 1 as

rv(W ) = WNv + WNv+1

2
− WNv−1.
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Fig. 2 Schematic of the proposed post-processing

Given a positive integer d , we define the following modified volatility function W̄ n .

W̄ n =
{
WNv−1 + rv(W )(n − Nv + d), if Nv − d + 1 ≤ n ≤ Nv + d − 1, 1 ≤ v ≤ Mt − 1,
Wn , otherwise.

Here, d is the parameter for the width of the transition layer and the number of node points on
the transition layer becomes (2d−1). Thus, the larger d , the wider the width of the transition
layer. We consider W̃ to equalize the Areav(W ) and the Areav(W̃ ) for v = 1, . . . , Mt as
follows.

W̃ n =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

W̄ n + a1, if N0 ≤ n ≤ N1 − d,

W̄ n + av, if Nv−1 + d ≤ n ≤ Nv − d, 2 ≤ v ≤ Mt − 1,

W̄ n, if Nv − d + 1 ≤ n ≤ Nv + d − 1, 1 ≤ v ≤ Mt − 1,

W̄ n + aMt , if NMt−1 + d ≤ n ≤ NMt ,

where

av =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Areav(W ) − Areav(W̄ )

�t (N1 − d + 1.5)
, if v = 1,

Areav(W ) − Areav(W̄ )

�t (Nv − Nv−1 − 2d + 1)
, if 2 ≤ v ≤ Mt − 1,

Areav(W ) − Areav(W̄ )

�t
(
NMt − NMt−1 − d + 1.5

) , if v = Mt .

Then, we define the post-piecewise volatility function as

σ n =
√
W̃ n .

3 Computational tests

In this section, we perform computational tests using manufactured piecewise-constant
volatility function and real financial market price data to validate the accuracy and robustness
of the proposed reconstruction of time-dependent continuous volatility. The option quotes
are generated using the modified BS formula (10) from the manufactured piecewise-constant
volatility function.
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Algorithm 2 Post-processing of piecewise-constant volatility function
INPUT piecewise volatility function Vσ (t); number Nv of time steps for the

expiration date Tv for v = 1, . . . , Mt ; integer d ≥ 1.
OUTPUT continuous volatility function σ(n�t) for n = 1, . . . , NMt .
Step 1 Set Wn = V 2

σ (n�t);
Step 2 For v = 1, . . . , Mt do Steps 3 and 4

Step 3 Set Av = Areav(W ).
Step 4 If v ≤ Mt − 1 then set αv = rv(W ).

Step 5 For n = 1, . . . , NMt
set W̄ n = Wn .

Step 6 For v = 1, . . . , Mt − 1
for n = Nv − d + 1, Nv − d + 2, . . . , Nv + d − 1
set W̄ n = αv(n − Nv + d).

Step 7 For v = 1, . . . , Mt do Steps 8 and 9
Step 8 Set Bv = Areav(W̄ ).
Step 9 If v = 1 then set av = (Av − Bv)/(�t(Nv − d + 1.5).

else if 2 ≤ v ≤ Mt − 1 then set av = (Av − Bv)/(�t(Nv − Nv−1 − 2d + 1).
else set av = (Av − Bv)/(�t(Nv − Nv−1 − d + 1.5).

Step 10 For n = 1, . . . , NMt

set W̃ n = W̄ n .
Step 11 For n = 1, . . . , N1 − d

set W̃ n = W̄ n + a1.
Step 12 For v = 2, . . . , Mt − 1

for n = Nv−1 + d, Nv−1 + d + 1, . . . , Nv − d
set W̃ n = W̄ n + av .

Step 13 For n = NMt−1 + d, NMt−1 + d + 1, . . . , NMt

set W̃ n = W̄ n + aMt .

Step 14 OUTPUT σ(n�t) =
√
W̃ n .

3.1 Manufactured data 1

Let a manufactured piecewise-constant volatility function be defined as

σ(t) =

⎧⎪⎨
⎪⎩
0, 3, 0 ≤ t ≤ T1,

0.6, T1 < t ≤ T2,

0.3, T2 < t ≤ T3.

(11)

The reference values for the call option are derived from these manufactured volatility
functions by solving Eq. (3) with T = 360 and Kp = 70 + 10p for p = 1, 2, . . . , 5. We
use strike prices Kp = 70 + 10p for p = 1, 2, . . . , 5 and expiration dates T1 = 120�τ ,
T2 = 240�τ , and T3 = 360�τ , where �τ = 1/360. The parameters used are r = 0.1,
S0 = 100, σ1 = 0.5, d = 10, N = 1500, and tol = 1.0e-16. Tables 1 and 2 list the
numerical prices calculated by the manufactured volatility and reconstructed continuous
volatility, respectively.

Table 1 Option prices generated
using the modified BS formula
(10) from the volatility function
(11)

Kp 80 90 100 110 120

T1 = 120�τ 23.08 14.88 8.55 4.37 2.00

T2 = 240�τ 29.48 23.37 18.30 14.17 10.86

T3 = 360�τ 32.12 26.20 21.18 17.00 13.54
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Table 2 Numerical prices
generated by the reconstructed
continuous volatility function

Kp 80 90 100 110 120

T1 = 120�τ 23.06 14.89 8.56 4.36 1.93

T2 = 240�τ 29.50 23.39 18.31 14.17 10.86

T3 = 360�τ 32.21 26.24 21.18 16.97 13.49

0 0.2 0.4 0.6 0.8 1

0.3

0.4

0.5

0.6

(a)
80 90 100 110 120
0

5

10

15

20

25

30

35

(b)

Fig. 3 (a) The manufactured volatility function and the reconstructed volatility function, (b) calculated prices

Figure3 shows the manufactured volatility function, the reconstructed volatility function
using the proposed algorithm, and the calculated prices by the BS equation.

3.2 Manufactured data 2

Let a manufactured continuous volatility function be defined as

σ(t) = −(t − 0.4)2 + 0.05 sin(15π t) + 0.7. (12)

The reference values for the call option are obtained based on these manufactured volatility
functions by solving Eq. (3) with T = 360 and Kp = 70 + 10p for p = 1, 2, . . . , 5. We
use strike prices Kp = 70 + 10p for p = 1, 2, . . . , 5 and expiration dates T1 = 120�τ ,
T2 = 240�τ , and T3 = 360�τ , where �τ = 1/360. The parameters used are r = 0.1,
S0 = 100, σ1 = 0.5, d = 4, N = 1500, and tol = 1.0e-16

Tables 3 and 4 list the numerical prices calculated by the manufactured volatility and
reconstructed continuous volatility, respectively.

Figure4 shows the manufactured volatility function, the reconstructed volatility function
using the proposed algorithm with d = 4, and the calculated prices by the BS equation.

Next, we consider the effect of the post-processing parameter d . The post-processing
parameter uses d = 12, 36 and the other parameters are the same as the above simulation.
Table 5 lists the European call option prices calculated by the reconstructed volatility function
with post-processing parameter d = 12.

Table 3 Option prices generated
using the modified BS formula
(10) from the volatility function
(12)

Kp 80 90 100 110 120

T1 = 120�τ 27.33 21.22 16.22 12.25 9.16

T2 = 240�τ 33.62 28.40 23.94 20.14 16.93

T3 = 360�τ 37.20 32.32 28.07 24.38 21.17
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Fig. 4 (a) The manufactured volatility function and the reconstructed volatility function with d = 4, (b)
calculated prices
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Fig. 5 (a) The manufactured volatility function and the reconstructed volatility function with d = 12, (b)
calculated prices

Figure5 shows the manufactured volatility function, the reconstructed volatility function
with post-processing parameter d = 12 using the proposed algorithm, and the calculated
prices by the BS equation.

Table 6 lists the European call option prices calculated by the reconstructed volatility
function with post-processing parameter d = 36.

Figure6 shows the manufactured volatility function, the reconstructed volatility function
with post-processing parameter d = 36 using the proposed algorithm, and the calculated
prices by the BS equation.

Table 4 Numerical prices
generated by the reconstructed
continuous volatility function
with d = 4

Kp 80 90 100 110 120

T1 = 120�τ 27.33 21.22 16.23 12.25 9.15

T2 = 240�τ 33.70 28.43 23.93 20.11 16.89

T3 = 360�τ 37.36 32.38 28.06 24.32 21.08

Table 5 Numercial prices
generated by the reconstructed
continuous volatility function
with d = 12

Kp 80 90 100 110 120

T1 = 120�τ 27.33 21.22 16.23 12.25 9.15

T2 = 240�τ 33.70 28.43 23.93 20.11 16.89

T3 = 360�τ 37.36 32.38 28.06 24.32 21.08
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Table 6 Numerical prices
generated by the reconstructed
continuous volatility function
with d = 36

Kp 80 90 100 110 120

T1 = 120�τ 27.32 21.22 16.23 12.25 9.15

T2 = 240�τ 33.70 28.43 23.93 20.11 16.89

T3 = 360�τ 37.36 32.38 28.06 24.32 21.08

0 0.2 0.4 0.6 0.8 1
0.3

0.4

0.5

0.6

0.7

0.8

(a)
80 90 100 110 120
0

10

20

30

40

(b)

Fig. 6 (a) The manufactured volatility function and the reconstructed volatility function with d = 36, (b)
calculated prices

Table 7 Premiums for KOSPI 200 index call options at different strikes and expiration dates on 15 January
2024

Kp 360.0 362.5 365.0 367.5 370.0 372.5 375.0

T1 = 24�τ 0.59 0.43 0.32 0.23 0.17 0.12 0.09

T2 = 52�τ 2.24 1.84 1.47 1.17 0.96 0.76 0.61

T3 = 87�τ 3.12 2.82 2.21 2.00 1.60 1.29 1.16

We can observe that the calculated European call option prices for post-processing param-
eters d = 4, 12, 36 are the same, which means that there is no effect on the calculation
of the option price. Numerical results show that if the area of the square of the volatility
function by the post-processing is the same, the option price is the same by the structure of
the BS formula (10).

3.3 KOSPI 200

In this subsection, we reconstruct the volatility function for the KOSPI 200 index call option
using the proposed algorithm. The market data for the KOSPI 200 index call option on 15
January 2024 is provided by Korea Exchange (KRX Market Data System: https://data.krx.
co.kr/). We use strike prices K = 357.5 + 2.5p for p = 1, . . . , 7 and expiration dates
T1 = 24�τ , T2 = 52�τ , and T3 = 87�τ . The parameters used are the 3-month certificate
of deposit rate of Korea r = 0.0381, S0 = 339.24, σ1 = 0.5, d = 10, N = 1500, and
tol = 1.0e-16 The premiums for KOSPI 200 index call options at different strikes and
maturities are given in Table 7. Figure7 shows the reconstructed volatility function using the
proposed algorithm and the calculated prices by the BS equation for the KOSPI 200 index
call option.
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Fig. 7 (a) The manufactured volatility function and the reconstructed volatility function, (b) calculated prices

4 Conclusions

In this paper,we proposed a robust and accuratemethod for reconstructing the time-dependent
continuous volatility function using observed option prices from the financial market and
the BS equation. The proposed algorithm comprises two steps: First, the time-dependent
piecewise-constant volatility function is calculated by the steepest descent method. Second,
a continuous volatility function is reconstructed by continuously connecting the jumps of the
piecewise-constant volatility values at the expiration dates.We performed computational tests
using the manufactured volatility function and KOSPI 200 call option prices. The computa-
tional simulation results demonstrated that the proposed method can reconstruct continuous
volatility functions accurately in a robust way. As future research work, we will extend the
proposed methodology to reconstructing the local volatility surface (Kwak et al. 2022).
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