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Abstract
We present a fast and splitting-based numerical scheme that employs an interpolationmethod
for the system of the reaction-diffusion equations. Typically, the time step restriction arises to
the nonlinear reaction terms when we calculate the highly stiff system of reaction-diffusion
equations. This issue can be resolved through various implicit solvers, but they shall present
another problem of having a longer computing time for each step. In order to overcome
these shortcomings, we present a splitting-based hybrid scheme with a pre-iteration process
before the main loop to derive interpolating points which are employed to evaluate the
intermediate solution, instead of computing the nonlinear reaction term directly. The stability
and convergence analysis are provided for selected reaction-diffusion models. We verify that
the results of our proposed method are in good agreements with those in the references,
as demonstrated numerically. Furthermore, we examine and compare the computing time
performance among the methods, and draw that our proposed method yields good results.
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1 Introduction

Patterns of alive creatures, especially focused on such as shellfish,mammals, had beenwidely
investigated due to importance of theirmorphogenesis (Lyons andHarrison 1992; Ermentrout
1991). Despite many of previous studies, it is not yet clear how genetic patterns of skin in
mammals and other organisms are made. Therefore, various models are worth studying, of
which one of the mathematical models is the reaction-diffusion type model. This model is
proposed earlier by Turing (1990), which can autonomously generate several spatial patterns.
Further researches are conducted to verify the role of reaction-diffusion system for spatial
pattern formation in mathematical biology (Kondo and Miura 2010; Othmer and Pate 1980;
Greenberg et al. 1978). Barrio et al. (1999) extended the previous studies of Turing systems
to investigate the characteristics of domain influence, nonlinearity, and boundary conditions
for both coupled reaction-diffusion equations and coupled interacting systems. The authors
presented admissible modes for the corresponding model to specify the patterns and carried
out detailed numerical simulation results which are concerned with skin patterns of fish,
kinds of dotted or striped, which are derived from the diffusion-driven instability. Lengyel
and Epstein (1992) derived mathematical models to design chemical systems. The patterns
that the model predicts are in good agreement with the experimental results.

Sherratt et al. (2002) presented the cyclic predator–prey interaction which is prey ratio
dependent functional response with diffusion. This model is followed from the Turing insta-
bilities, and has a family of traveling waves (Dunbar 1986) which has induced by landscape
featureswith specific boundary conditions.With only homogeneousNeumann boundary con-
ditions, solution waves quickly becomes to uniform oscillations; while waves develop into
circular and spiral behaviors with additional zero-density conditions around the obstacle.
Furthermore, the authors found that the irregularities of waves are generated moving away
from the obstacle since the asymptotic solution is unstable. On the one hand, they represented
the corresponding system using a coupled map lattice model instead of a reaction-diffusion
system since the populations in domain are not continuous but discrete with interconnected
patches. This approach made it possible to implement more complex behaviors of wave
solutions. As a follow-up study, Yun et al. (2015) investigated numerically periodic travel-
ing wave solutions with the model in Sherratt et al. (2002), especially focused on shape of
both domain and obstacle. They use a complex multigrid solver to compute the numerical
solutions. Such model can be applied to other various areas such as kinetic model of a binary
mixture undergoing reversible and irreversible chemical reactions (Bisi and Travaglini 2022).

The development of methodologies for numerically solving the models mentioned above
has been an important subject of research for a long time. There are several previous research
to propose fast and efficient numerical solvers for some stiff equations (Fuselier and Wright
2013; Zhu et al. 2009; Roul and Goura 2019; Roul 2020; Roul and Goura 2022). As can
be understood from the contents of these references, the computing cost of most nonlinear
reaction terms is considerable when solving various kinds of reaction-diffusion systems.
Several cases can be considered: First, if the classical explicit method is used to this system
then it usually has a severe time step restriction in reaction terms, especially for large-scale
problems. Second, the issue of time step restriction is relaxedwhen fully implicit or nonlinear
semi-implicit schemes are employed, but the computing time per one-step becomes longer
inevitably. Third, if we treat the nonlinear terms explicitly while the linear terms implicitly,
this linear semi-implicit scheme leads to a better computing time performance than the second
one but still have a degraded performance in stiff problems.
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In the same vein as the direction pursued by previous studies, one way to achieve fast
computation is by using splitting and interpolating. Splitting the system of reaction-diffusion
equations leads to solving both systems of ordinary differential equations and diffusion
equations sequentially. An important idea is to create interpolating points by pre-computing
the system of ordinary differential equations with a determined short-time temporal step
before the main time loop. In a nutshell, the primary purpose of this paper is to propose
a fast computing algorithm for a system of reaction-diffusion equations using the bilinear
interpolation method with a pre-computed solution field.

The paper is organized as follows. In Sect. 2, we propose a hybrid algorithm to compute
the numerical solutions for the reaction-diffusion equations. We perform the stability and
convergence analysis of our method for selected numerical models in Sect. 3. The numerical
simulation results are presented in Sect. 4. Further discussions are addressed in Sect. 5. We
end up this paper with conclusions in Sect. 6.

2 Proposed numerical solution algorithm

In this section, we demonstrate our proposed method which is designed to find numeri-
cal solutions of reaction-diffusion equations. Since most pattern formation simulations are
performed in the two-dimensional (2D) space, we present the algorithm for the system of
equations with two variables in 2D space. Let � = (a, b) × (c, d) be a spatial domain. The
basic form of system of reaction-diffusion equations is as follows (Turing 1990):

∂u

∂t
= F(u, v) + Du�u,

∂v

∂t
= G(u, v) + Dv�v, (1)

where F and G are nonlinear reaction terms, Du and Dv are diffusion coefficients corre-
sponding to each variable u ∈ � × [0, T ] and v ∈ � × [0, T ], respectively. Note that T
represents a final time. A formal splitting method breaks (1) into two parts; the first one is
the reaction system,

∂u

∂t
= F(u, v),

∂v

∂t
= G(u, v), (2)

and the other is the diffusion system,

∂u

∂t
= Du�u,

∂v

∂t
= Dv�v. (3)

Therefore, the solution of the system (1) is derived in time in two substeps as

u((n + 1)�t) = Lu(�t)N u(�t)u(n�t), v((n + 1)�t) = Lv(�t)N v(�t)v(n�t), (4)

where N u(�t) and N v(�t) are exact nonlinear solution operators of the system (2) for u
and v, respectively, and Lu(�t) and Lv(�t) are exact linear solution operators of the system
(3) for u and v, respectively.

Because (2) is the system of ordinary differential equations, numerical solutions of (2) can
be represented by u and vwith respect to t only. The key point is to numerically compute (2) in
short-time�t , which is a discretized time step, before themain loop and tomake interpolating
points in advance to solve (1) in the main time loop. We employ these interpolating points
to create interpolants, which are used to resolve the nonlinear terms in (1).

We discretize the domain � to a cell-centered computational domain �h = {(xi , y j ) =
(a + (i − 0.5)h, c + ( j − 0.5)h) | 1 ≤ i ≤ Nx , 1 ≤ j ≤ Ny} where Nx and Ny are the
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Fig. 1 a Illustration of the difference between one-step and multi-step processes in the domain �uv . b Close
up view of blue boxed region in a. Note that we use �ts = 0.1/10 in this case for a simplicity of schematic
description

number of grid points in x and y directions respectively, and h = (b−a)/Nx = (d−c)/Ny is
the uniform spatial step size. Now we describe the pre-computing process which is to solve
(2) in advance before the main cycle. Let Ns be the number of pre-iterations and �uv =
[umin, umax] × [vmin, vmax] be a uv-domain. We employ the new parameters Nu and Nv , the
number of sample points in each axis u and v respectively. A discretized uv-domain is defined
as �H = {(u p, vq) = (umin + (p − 1)H , vmin + (q − 1)H) | 1 ≤ p ≤ Nu, 1 ≤ q ≤ Nv},
where H = (umax − umin)/(Nu − 1) = (vmax − vmin)/(Nv − 1) is a uniform grid step size.
We discretize (2) using the classical explicit fourth-order Runge–Kutta method as follows:
For 1 ≤ p ≤ Nu and 1 ≤ q ≤ Nv ,

um+1
{p,q} − um{p,q}

�ts
= 1

6
(α1 + 2α2 + 2α3 + α4),

vm+1
{p,q} − vm{p,q}

�ts
= 1

6
(β1 + 2β2 + 2β3 + β4),

(5)

where �ts = �t/Ns and αk, βk (k = 1, 2, 3, 4) are defined as

α1 = F(um{p,q}, vm{p,q}), β1 = G(um{p,q}, vm{p,q}),
α2 = F(um{p,q} + 0.5�tsα1, v

m{p,q} + 0.5�tsβ1),

β2 = G(um{p,q} + 0.5�tsα1, v
m{p,q} + 0.5�tsβ1),

α3 = F(um{p,q} + 0.5�tsα2, v
m{p,q} + 0.5�tsβ2),

β3 = G(um{p,q} + 0.5�tsα2, v
m{p,q} + 0.5�tsβ2),

α4 = F(um{p,q} + �tsα3, v
m{p,q} + �tsβ3),

β4 = G(um{p,q} + �tsα3, v
m{p,q} + �tsβ3).

Using the abovemulti-step process for�t , i.e., using�ts is essential because it providesmore
accurate results than the one-step (Ns = 1) process for �t . Figure1 depicts the difference
between one-step and multi-step processes.

Note that we have discretized (5) with respect to not only time but also uv-space since we
have to generate interpolating points to make interpolants for solving (2) in uv-space. After
that we can obtain the intermediate solutions (u∗, v∗) of (1) in xy-space. We compute (5) for
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Fig. 2 Schematic illustration of the bilinear interpolation process in a specific cell where uni j is located. Note

that an input value uni j in �h is transferred to �H in the grid order of �h

m = 0, . . . , Ns − 1 with u0{p,q} = u p and v0{p,q} = vq . We call the interpolating functions

F̃(uNs−1, •) and G̃(vNs−1, •) in u- and v-direction, respectively, in uv-space. Where • is
indicated, uni j and vni j in xy-space are assigned to F̃ and G̃, respectively, in grid order. Thus,
uni j and vni j must exist inside a certain cell of�H ; hence these points become query points and
then the bilinear interpolation is adopted to both interpolating functions. Accordingly, we
have a numerical solution (u∗{p,q}, v∗{p,q}) in uv-space and pull back to (u∗

i j , v
∗
i j ) in xy-space,

therefore, it can be written as

(u∗
i j , v

∗
i j )�h =

(
F̃(uNs−1, uni j ), G̃(vNs−1, vni j )

)
�H

. (6)

Figure2 depicts the bilinear interpolation process in a specific cell where uni j is located.
Then,we employ the intermediate solution to solve the diffusion system (3). The following

implicit Fourier-spectral method is applied to solving (3) if the periodic boundary condition
is given. For the given data {(u∗

i j , v
∗
i j ) | 1 ≤ i ≤ Nx , 1 ≤ j ≤ Ny}, the discrete Fourier

transform is defined as

û∗
rs =

Nx∑
i=1

Ny∑
j=1

u∗
i j e

−i(ξr xi+ηs y j ), v̂∗
rs =

Nx∑
i=1

Ny∑
j=1

v∗
i j e

−i(ξr xi+ηs y j ),

where ξr = 2πr/(b − a) and ηs = 2πs/(d − c). The corresponding solver is as follows:

ûn+1
rs = û∗

rs

1 + �t(ξ2r + η2s )
, v̂n+1

rs = v̂∗
rs

1 + �t(ξ2r + η2s )
. (7)
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Lastly, we employ the inverse discrete Fourier transform as

un+1
i j = 1

Nx Ny

Nx/2∑
r=−Nx /2+1

Ny/2∑
s=−Ny/2+1

ûn+1
rs ei(ξr xi+ηs y j ),

vn+1
i j = 1

Nx Ny

Nx/2∑
r=−Nx /2+1

Ny/2∑
s=−Ny/2+1

v̂n+1
rs ei(ξr xi+ηs y j ).

Diffusion terms are solved using the following explicit scheme if other boundary conditions
are given.

un+1
i j = u∗

i j + �t

(
u∗
i−1, j + u∗

i+1, j + u∗
i, j−1 + u∗

i, j+1 − 4u∗
i j

h2

)
,

vn+1
i j = v∗

i j + �t

(
v∗
i−1, j + v∗

i+1, j + v∗
i, j−1 + v∗

i, j+1 − 4v∗
i j

h2

)
.

(8)

Now we can express (4) using numerical solution operators as follows:

un+1 = Lu
h(�t)N u

h (�t)un, vn+1 = Lv
h(�t)N v

h (�t)vn,

where Nu
h (�t) : a0 → F̃(uNs−1, a0) and N v

h (�t) : b0 → G̃(uNs−1, b0) are discrete
nonlinear solution operators, as defined in (6), for each initial input a0 and b0 at each time
level. Lu

h(�t) and Lv
h(�t) are discrete linear solution operators and these follow (7) if the

periodic boundary condition is adopted, and (8) if other boundary conditions are given. The
following Algorithm 1 is a summary of the entire process.

Algorithm 1 Hybrid splitting-based scheme using interpolants
Require: the split systems (2) and (3)
1. Initialize u and v as (u0, v0)
2. Solve the system (2) using the explicit Runge–Kutta method to generate the interpolating points
3. Update the intermediate solutions u∗ and v∗ via bilinear interpolation (6)
4. Solve the system (3) as follows
if the periodic boundary condition is given then
Update un+1 and vn+1 via implicit solver (7)

else
Update un+1 and vn+1 via explicit solver (8)

end if
5. If the final time is reached STOP else GOTO 3

Remark 1 The above splitting scheme is called the Lie–Trotter splitting method (Trotter
1959), and sometimes also called the first order Strang splitting scheme. This scheme for a
partial differential equation with variable w has two features as follows:

O(�t2) local error per one-step �t : ‖L(�t)N (�t)wn − wn+1‖ = O(�t2), (9)

O(�t) global error in − O(1)-time t ≤ T : sup
t≤T

‖L(t)N (t)w0 − wn‖ = O(�t), (10)

where ‖ · ‖ is some Sobolev norm and w0 ∈ Hk(�) for some k ≥ 1. However, we will not
discuss higher-order Sobolev bounds for our method in this paper.
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Remark 2 Since we compute the nonlinear part using the bilinear interpolation with pre-
computed interpolating points, in the sense of fully explicit formula, there is no need for a
certain coefficient matrix to solve the system (6). Furthermore, the fully explicit solver (8)
is used unless the periodic boundary condition is adopted; this is the same case as earlier.
Therefore, only the stability condition for (7) has been considered. For simplicity, define
the discrete Fourier space as �F = [−kmax , kmax ]2 where kmax = 2π(N/2 − 1)/L with
L = b − a = d − c and N = Nx = Ny is even. Let the grid points be gathered into a vector

with a lexicographic order of the nodes in �F . Now define a solution vector asUn ∈ C
N2

at
t = n�t , then we have

(I − �t Ah)U
n+1 = Un,

where Ah is the ordered discrete Laplacian matrix. Note that Ah is purely diagonal from (7).
Clearly, Ah has two simple eigenvalues, the smallest and the largest, and the others are

λrs = − 4

h2

(
sin2

(
(r − 1)π

2N

)
+ sin2

(
(s − 1)π

2N

))
,

for 1 ≤ r , s ≤ N/2 − 2 with multiplicities 2. Since the smallest one is zero, the smallest
eigenvalue of the update matrix is one. The largest one is scaled by the square of (N/2− 1),
which is the wave number of the corresponding eigenvector; so the condition number of Ah

is O(N 2). Simply we estimate the spectral norm of the update matrix as

‖I − �t Ah‖t ≤ 1 + �t‖Ah‖t ,
where ‖ · ‖t is the spectral norm of a matrix. Therefore, the condition number of the update
matrix isO(N 2) since the spectral norm of the symmetricmatrix equals its largest eigenvalue.
Instead of adjusting the condition through the preconditioning, we adopt �t = O(h2) (or
O(h) if N is not quite large) for h = L/N < 1. Then the condition number of the update
matrix is nearly optimal, O(1).

3 Numerical analysis

We examine the stability and convergence of our method applied to two reaction-diffusion
models (Lengyel and Epstein 1992; Sherratt et al. 2002) theoretically in this section. Previous
to introduce the models, we define the following discrete norms in 2D.

‖w‖2,�h =
⎛
⎝h2

∑
i, j

w2
i j

⎞
⎠

1/2

, ‖w‖∞,�h = max
i, j

{wi j }. (11)

The space subscript is omitted only for �h in (11) hereafter.

3.1 Lengyel–Epstein model

First, we introduce the model in Lengyel and Epstein (1992) as follows:

∂u

∂t
= k1

(
v − uv

1 + v2

)
+ �u,

∂v

∂t
= k2 − v − 4uv

1 + v2
+ δ�v, (12)
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where u is an inhibitor and v is an activator, and k1 and k2 are positive constants, and δ ≤ 1
is a ratio of diffusion coefficients. Note that this system has a linearly stable steady-state
solution (1 + (0.2k2)2, 0.2k2). The periodic boundary condition is employed.

First, we show the following stability result.

Theorem 1 Suppose that �t ≤ min{1, 1+k22
k1k2

}, and 1+ ε2 < u0i j < 1+ k22 , and ε < v0i j < k2
where ε = k2/(5 + 4k22) for all 1 ≤ i ≤ Nx and 1 ≤ j ≤ Ny. Then we have

‖un+1‖2 < 1 + k22, ‖vn+1‖2 < k2.

Proof Since un+1 = Lu
h(�t)N u

h (�t)un and vn+1 = Lv
h(�t)N v

h (�t)vn , we begin the
proof by finding upper bounds for the nonlinear reaction systems, one for u and the
other for v, respectively. As described in Sect. 2, once we have uni j and vni j , these must
be located in the certain cells in �H . Now we define the maximum values of each cer-

tain cell as u∗,max
i j = max

{
uNs−1

{p1,q1}, u
Ns−1
{p1+1,q1}, u

Ns−1
{p1,q1+1}, u

Ns−1
{p1+1,q1+1}

}
and v

∗,max
i j =

max
{
v
Ns−1
{p2,q2}, v

Ns−1
{p2+1,q2}, v

Ns−1
{p2,q2+1}, v

Ns−1
{p2+1,q2+1}

}
, respectively. Due to the nature of the

bilinear interpolation, we have

N u
h (�t)uni j = u∗

i j ≤ u∗,max
i j , N v

h (�t)vni j = v∗
i j ≤ v

∗,max
i j ,

for all 1 ≤ i ≤ Nx and 1 ≤ j ≤ Ny . Now we use the following useful a priori estimates of
the system (12) to get upper bounds of ‖u∗,max‖∞,�H and ‖v∗,max‖∞,�H , respectively. We
start first with v as

k2 − v − 4uv

1 + v2
< k2 − v. (13)

Using the well-known comparison theorem in Smoller (2012), we can conclude that v(·, t) <

k2 for all t > 0. Furthermore, based on the maximum principle argument for parabolic
problems and (Yi et al. 2009), we have

u ≤ v(1 + v2)

4v
< 1 + k22, (14)

in the linearly stable region (u, v) ∈ (0, 1 + k22) × (0, k2). Thus, u(·, t) < 1 + k22 for all
t > 0. We omit the proof of deriving lower bounds of each u and v for the sake of clarity. For
further details, readers are referred to Yi et al. (2009), Lou and Ni (1996), and the references

therein. From (13) and (14), we have�t ≤ min{1, 1+k22
k1k2

} for the bounds of the pre-computed
interpolating points to be valid. Therefore, the boundedness of both ‖u∗,max‖∞,�H and
‖v∗,max‖∞,�H is also valid, i.e., ‖u∗‖∞ < 1 + k22 and ‖v∗‖∞ < k2.

For the next step, we proceed the proof of finding bounds for the linear diffusion systems.
Using the Parseval’s identity and ξ2r + η2s > 0 for all −Nx/2 + 1 ≤ r ≤ Nx/2 and
−Ny/2 + 1 ≤ s ≤ Ny/2, we have the following from the implicit solver (7).

‖un+1‖2 =
√

1

Nx Ny

∑
r ,s

|ûn+1
rs |2 ≤

√
1

Nx Ny

∑
r ,s

|û∗
rs |2 = ‖u∗‖2 < 1 + k22,

‖vn+1‖2 =
√

1

Nx Ny

∑
r ,s

|v̂n+1
rs |2 ≤

√
1

Nx Ny

∑
r ,s

|v̂∗
rs |2 = ‖v∗‖2 < k2,

for all �t > 0. This completes the proof.
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Before showing the convergence result of our method, we define a sample operator and
address several lemmas based on Li et al. (2017). Note that the consistency of the numeri-
cal solution operator Lh(�t)Nh(�t) to the exact solution operator L(�t)N (�t) has been
proved in various earlier works (Li et al. 2022; Jia and Li 2011). Hence, we omit the proof
for convenience; for further details, readers are referred to Li et al. (2022), Jia and Li (2011)
and the references therein. Consider the following sample operator I h : C0(�̄) → R

Nx×Ny

as I hw = {
(w(xi , y j ))i j

}
. For simplicity, we define the following with respect only u.

Therefore, v can be defined in the same way; hence, it will be omitted. Let ũ be the exact
solution of the scheme (4). Therefore, we have I hu(n�t) = Un and I h ũ(n�t) = Ũ n . Write
Un
i j = u(xi , y j , n�t) and Ũ n

i j = ũ(xi , y j , n�t), and define uni j is a fully discretized numeri-

cal approximation of Ũ n
i j . Now we present the following lemmas to discuss the convergence

result.

Lemma 1 Assume that �t ≤ min{1, 1+k22
k1k2

}. Then
‖N u

h (�t)Ũ‖2 ≤ e�t‖Ũ‖2, ‖N v
h (�t)Ṽ ‖2 ≤ e�t‖Ṽ ‖2,

for any Ũ , Ṽ ∈ R
Nx×Ny satisfying ‖Ũ‖2 < 1 + k22 , and ‖Ṽ ‖2 < k2.

Proof This result is directly derived from Theorem 1.

Lemma 2 For any �t > 0, we have

‖Lu
h(�t)Ũ‖2 ≤ ‖Ũ‖2, ‖Lv

h(�t)Ṽ ‖2 ≤ ‖Ṽ ‖2,
for any Ũ , Ṽ ∈ R

Nx×Ny satisfying ‖Ũ‖2 < 1 + k22 , and ‖Ṽ ‖2 < k2.

Proof This result is also directly derived from Theorem 1.

From now on, we denote C , which may or may not include a subscript, as a positive
constant can change its value in different contexts.

Lemma 3 (Li et al. 2017) Assume that u, v ∈ H6(0, T ; H3(�)). Then we have

‖I hN u(�t)u − N u
h (�t)I hu‖2 ≤ C1�t5,

‖I hN v(�t)v − N v
h (�t)I hv‖2 ≤ C2�t5,

where C1 and C2 are independent on �t and h.

Proof The proof is similar that is given in Li et al. (2017). Therefore, we omit the proof here
for convenience.

Lemma 4 (Li et al. 2017) Assume that u, v ∈ H3(0, T ; Hk(�)) for some k ≥ 2. Then there
are C1 and C2 independent on �t and h such that

‖I hLu(�t)u − Lu
h(�t)I hu‖2 ≤ C1|u|ke�t hk,

‖I hLv(�t)v − Lv
h(�t)I hv‖2 ≤ C2|v|ke�t hk,

where |u|k =
(∑
r ,s

(ξ2r + η2s )
k |ûrs |2

)1/2

and |v|k =
(∑
r ,s

(ξ2r + η2s )
k |v̂rs |2

)1/2

are the

seminorms in Hk(�).

Proof The proof is given in Li et al. (2017). Hence, we omit the proof for simplicity.
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The convergence of our proposed method is shown by the following theorem. This result
is based on the framework in Li et al. (2017).

Theorem 2 We set I hu0 = U 0 = u0 and I hv0 = V 0 = v0, and let u0 and v0 be given

as in Theorem 1. Suppose that �t ≤ min{1, 1+k22
k1k2

} and u0, v0 ∈ Hk(�) for some k ≥ 4.

Furthermore, assume that u, v ∈ H6(0, T ; Hk(�)) are the exact solutions of the system
(12). Let Un+1 = I hu((n + 1)�t), V n+1 = I hv((n + 1)�t) be the solutions assigned at all
the grid points. Then there are C1 and C2 independent on �t and h satisfying

‖Un+1 − un+1‖2 ≤ C1

(
�t + hk

�t

)
,

‖V n+1 − vn+1‖2 ≤ C2

(
�t + hk

�t

)
.

If we take �t = O(h2), then we have

‖Un+1 − un+1‖2 ≤ C1�t,

‖V n+1 − vn+1‖2 ≤ C2�t .

Proof For the sake of clarity, we show the case of u only. Suppose that the n-th numerical
solution un is given. Now we apply the one-step exact solution operator Lu(�t)N u(�t) to
ũn , which is the n-th exact solution of (4), and denote it as Ũ n+1 = I hLu(�t)N u(�t)ũn .
Then we have

‖Un+1 − un+1‖2 ≤ ‖Un+1 − Ũ n+1‖2 + ‖Ũ n+1 − un+1‖2. (15)

From (9), the first term on the right-hand side of (15) is the local one-step error (9); hence,
it follows that

‖Un+1 − Ũ n+1‖2 ≤ C1�t2.

The second term on the right-hand side of (15) is

‖Ũ n+1 − un+1‖2 ≤ ‖I hLu(�t)N u(�t)ũn − Lu
h(�t)I hN u(�t)ũn‖2

+ ‖Lu
h(�t)I hN u(�t)ũn − Lu

h(�t)N u
h (�t)un‖2.

(16)

Using Lemmas 2 and 4, then the right-hand side of (16) is bounded by

C2|N u(�t)ũn |ke�t hk + ‖I hN u(�t)ũn − N u
h (�t)un‖2. (17)

The second term in (17) is bounded by

‖I hN u(�t)ũn − N u
h (�t)I h ũn‖2 + ‖N u

h (�t)I h ũn − N u
h (�t)un‖2. (18)

Using Lemmas 1 and 3, (18) is bounded by

C3�t5 + e�t‖I h ũn − un‖2 = C3�t5 + e�t‖Ũ n − un‖2.
Combining all above estimates yields

‖Un+1 − un+1‖2 ≤ C1�t2 + C2|N u(�t)ũn |ke�t hk + C3�t5 + e�t‖Ũ n − un‖2
≤ (n + 1)

(
C1�t2 + C2h

k max
0≤s≤n

{|N u(�t)ũs |k
}) + e2T ‖Ũ 0 − u0‖2
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= C

(
�t + hk

�t

)
.

If we have �t = Ch2, then

‖Un+1 − un+1‖2 ≤ C1

(
�t + hk

�t

)
≤ C1

(
�t + C2h

k−2
)

≤ C1

(
�t + C2�tk/2−1

)
= C�t,

since k ≥ 4. The convergence of v can be analyzed in the samemanner. Note that 1 ≤ es�t ≤
esT ≤ C for any finite s and �t > 0; hence, it is absorbed into C . Moreover, C is clearly
independent to �t because we have the upper bound of �t in the assumption in Theorem 2.
This completes the proof.

3.2 Predator–preymodel

For the next step, we investigate the predator–prey model which is listed in Sherratt et al.
(2002) as follows:

∂u

∂t
= u(1 − u) − γ uv

1 + γ u
+ �u,

∂v

∂t
= γ uv

β(1 + γ u)
− v

αβ
+ σ�v,

(19)

where u is a prey and v is a predator, and σ ≥ 1 is a ratio of diffusion coefficients, and α,
β, and γ are model coefficients. Note that this system has at least one non-fixed equilibrium
node defined as (ū, v̄) = (1/(γ (α − 1)), (1 − ū)(1 + γ ū)/γ ) where α > 1. We take the
homogeneous Neumann boundary condition.

Now we prove the following stability statement.

Theorem 3 Assume that �t ≤ min{1/σ, h2/4}, and ‖u0‖∞ < 1, and ‖u0‖∞ < ‖v0‖∞ <

α + 1
βσ

. Then we have

‖un+1‖∞ < 1, ‖vn+1‖∞ < α + 1

βσ
.

Proof Define u∗,max
i j and v∗,max in a manner similar to that in the proof of Theorem 1. Then,

due to the nature of the bilinear interpolation, the first formula of the method is clearly
bounded by

N u
h (�t)uni j = u∗

i j ≤ u∗,max < 1,

N v
h (�t)vni j = v∗

i j ≤ v∗,max < α + 1

βσ
,

(20)

for all 1 ≤ i ≤ Nx and 1 ≤ j ≤ Ny if the second inequality in each line of (20) holds. This
fact can be derived from the following useful a priori estimates of the system (19). We begin
first with u as

u(1 − u) − γ uv

1 + γ u
≤ u(1 − u). (21)

Using the comparison argument again, we can conclude 0 < u(·, t) < 1 for all t > 0 if
0 < u(·, 0) < 1. To proceed with the process of obtaining the bound for v, multiply 1/(βσ)
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to the first equation and divide the second equation by σ in (19), and add the two equations
then

u(1 − u)

βσ
− v

αβσ
≤ αβσ + 1

αβ2σ 2 − w

αβσ
,

where w = u/(βσ) + v. Since both u and v are nonnegative, we have v(·, 0) ≤ w(·, 0).
Using the comparison theorem again, we have

0 < v(·, t) ≤ w(·, t) < α + 1

βσ
,

for all time t > 0 if 0 < v(·, 0) < α + 1
βσ

. From (21), one can deduce�t ≤ 1 for the bounds
of the pre-computed interpolating points to be valid; hence, we have �t ≤ 1/σ by scaling
from v. Thus, the boundedness of both ‖u∗‖∞ and ‖v∗‖∞ is also valid.

Now we proceed the second formula of the method. Since

un+1
i j = Lu

h(�t)uni j

= u∗
i j + �t

u∗
i+1, j + u∗

i−1, j + u∗
i, j+1 + u∗

i, j−1 − 4u∗
i j

h2

< u∗
i j + 4�t

1 − u∗
i j

h2

(22)

In order for the third line of (22) to be bounded by 1 for all 1 ≤ i ≤ Nx and 1 ≤ j ≤ Ny ,
a time step restriction is �t ≤ min{1, σh2/4}. In a similar manner, �t ≤ min{1/σ, h2/4}
holds in order to maintain the boundedness of v∗

i j for vn+1
i j ; we take the latter.

Therefore, we have

‖un+1‖∞ < 1, ‖vn+1‖∞ < α + 1

βσ
.

This completes the proof.

For the next step, we provide the following lemmas.

Lemma 5 Assume that �t ≤ 1/σ . Then

‖N u
h (�t)Ũ‖2 ≤ e�t‖Ũ‖2, ‖N v

h (�t)Ṽ ‖2 ≤ e�t‖Ṽ ‖2,
for any Ũ , Ṽ ∈ R

Nx×Ny satisfying ‖Ũ‖∞ < 1, and ‖Ũ‖∞ < ‖Ṽ ‖∞ < α + 1
βσ

.

Proof This result is directly derived from Theorem 3.

Lemma 6 Assume that �t ≤ min{1/σ, h2/4}. Then
‖Lu

h(�t)Ũ‖2 ≤ e�t‖Ũ‖2, ‖Lv
h(�t)Ṽ ‖2 ≤ e�t‖Ṽ ‖2,

for any Ũ , Ṽ ∈ R
Nx×Ny satisfying ‖Ũ‖∞ < 1, and ‖Ũ‖∞ < ‖Ṽ ‖∞ < α + 1

βσ
.

Proof This result is also directly derived from Theorem 3.

Lemma 7 (Li et al. 2017) Assume that u, v ∈ H6(0, T ; H3(�)). Then we have

‖I hN u(�t)u − N u
h (�t)I hu‖2 ≤ C1�t5,

‖I hN v(�t)v − N v
h (�t)I hv‖2 ≤ C2�t5,
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‖I hLu(�t)u − Lu
h(�t)I hu‖2 ≤ C3�t(�t + h2),

‖I hLv(�t)v − Lv
h(�t)I hv‖2 ≤ C4�t(�t + h2),

where C1, C2, C3, and C4 are independent on �t and h.

Proof The proof is similar that is given in Li et al. (2017). We omit the proof here for the
sake of brevity.

Now we present the following convergence result. This result is also based on the
framework in Li et al. (2017).

Theorem 4 We set I hu0 = U 0 = u0 and I hv0 = V 0 = v0, and let ‖u0‖∞ < 1, ‖u0‖∞ <

‖v0‖∞ < α + 1
βσ

. Assume that �t ≤ min{1/σ, h2/4} and u0, v0 ∈ Hk(�) for some k ≥ 3.

Moreover, suppose that u, v ∈ H6(0, T ; Hk(�)) are the exact solutions of the system (19).
Let Un+1 = I hu((n + 1)�t), V n+1 = I hv((n + 1)�t) be the solutions assigned at all the
grid points. Then there are C1 and C2 independent on �t and h satisfying

‖Un+1 − un+1‖2 ≤ C1(�t + h2),

‖V n+1 − vn+1‖2 ≤ C2(�t + h2).

Proof For simplicity, we prove the case of u only. Assume that un is given. Now we
apply the one-step exact solution operator Lu(�t)N u(�t) to ũn , denote it as Ũ n+1 =
I hLu(�t)N u(�t)ũn . Then we have

‖Un+1 − un+1‖2 ≤ ‖Un+1 − Ũ n+1‖2 + ‖Ũ n+1 − un+1‖2. (23)

From (9), the first term on the right-hand side of (23) is the local one-step error; hence, it
follows that

‖Un+1 − Ũ n+1‖2 ≤ C1�t2.

The second term on the right-hand side of (23) is

‖Ũ n+1 − un+1‖2 ≤ ‖I hLu(�t)N u(�t)ũn − Lu
h(�t)I hN u(�t)ũn‖2

+ ‖Lu
h(�t)I hN u(�t)ũn − Lu

h(�t)N u
h (�t)un‖2.

(24)

Using Lemmas 6 and 7, then the right-hand side of (24) is bounded by

C2�t(�t + h2) + e�t‖I hN u(�t)ũn − N u
h (�t)un‖2. (25)

The second term in (25) is bounded by

e�t (‖I hN u(�t)ũn − N u
h (�t)I h ũn‖2 + ‖N u

h (�t)I h ũn − N u
h (�t)un‖2). (26)

Using Lemmas 5 and 7, (26) is bounded by

e�t
(
C3�t5 + e�t‖I h ũn − un‖2

)
.

Combining all above estimates yields

‖Un+1 − un+1‖2 ≤ C(�t2 + �th2 + �t5) + e2�t‖Ũ n − un‖2
≤ (n + 1)C(�t2 + �th2) + e3T ‖Ũ 0 − u0‖2 = C(�t + h2).

The convergence of v can be analyzed in the same manner. This completes the proof.
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We conclude this section with the following remark.

Remark 3 One might wonder the systems (12) and (19) have steady-state solutions with or
without diffusion indeed. There are numerous existing studies (see Yi et al. 2009; Ko and Ryu
2006 and the references therein) have explained it well, we omit the linear stability analysis
to the systems (12) and (19) and to the conventional Runge–Kutta method for those systems.
Further note that the time step restrictions listed in Theorems 1 and 3 are not optimal; those
can be improved.

4 Numerical experiments

In this section, we present the numerical simulation results to themodels introduced in Sect. 3.

4.1 Linear stability

Based on the linear stabilities of the systems of equations (12) and (19) without diffusions
(see Remark 3), we need to verify whether the numerical solution using interpolants indeed
converges to the asymptotically stable equilibrium. For the sake of brevity, we consider the
system (12) only. We split each equations from (12) into the two parts, and then the reaction
system is as follows:

∂u

∂t
= k1

(
v − uv

1 + v2

)
,

∂v

∂t
= k2 − v − 4uv

1 + v2
. (27)

Figure3a shows the phase portrait of (27). Figure3b, c illustrate numerical solutions using
both the explicit fourth-order Runge–Kutta method and the interpolants with respect to u and
v, respectively, over time until t = 10. In this test, we use k1 = 7, k2 = 11, �t = 0.1, Nt =
100, Nu = 150, Nv = 100, Ns = 10, and the equilibrium node (ū, v̄) = (1+0.04k22, 0.2k2).

According to Fig. 3, (ū, v̄) is indeed a numerically stable node. Moreover, the numeri-
cal solutions using interpolants fit well into the solutions using the Runge–Kutta method.
Therefore, this gives a rationale for using the interpolating functions to derive the numerical
solution of (2). From now on, we take the following stopping criterion for the pre-computing
process, tol < 10−5, where

tol = max

{
‖uNs−1 − ure f ‖2,�H

‖ure f ‖2,�H

,
‖vNs−1 − vre f ‖2,�H

‖vre f ‖2,�H

}
.

Note that ure f and vre f are reference solutions using a fine step�ts/N 2
s .We start with Ns = 2

and gradually increasing it until tol < 10−5.

4.2 Convergence test

We observe the convergence rate of the proposed numerical scheme in this subsection. First
we measure the convergence rate in time that we employ the periodic boundary condition to
the model (12). Here, we use N = Nx = Ny = 128 in [0, 10] × [0, 10], k1 = 7, k2 = 11,

123



Fast numerical algorithm for the reaction-diffusion... Page 15 of 24 51

Fig. 3 a Phase portrait of (27). Here, we use the neighborhood values (5.82, 2.19) (solid line with star-shape
marker) and (5.86, 2.22) (dotted line with circular-shape marker). b, c are the plots of numerical solutions
with respect to u and v, respectively. Note that the interval between each marker is 2�t

δ = 0.04, and T = 1. The following initial conditions are employed.

u(x, y, 0) = ū + 0.1 cos
2πx

10
cos

2π y

10
,

v(x, y, 0) = v̄ + 0.1 cos
2πx

10
cos

2π y

10
.

(28)
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Table 1 Rate of convergence in time to the proposed scheme. Note that we omit the second place of etw(·, ·)
for convenience below

cases etw(T /64, ·) rate etw(T /128, ·) rate etw(T /256, ·) rate etw(T /512, ·)
w = u 6.677e−6 0.9973 3.345e−6 0.9986 1.674e−6 0.9994 8.373e−7

w = v 8.741e−6 0.9717 4.457e−6 0.9861 2.250e−6 0.9931 1.130e−6

Furthermore, we define a relative error etw between two numerical solutions using different
time steps as

etw(�t1,�t2) = ‖wT ,�t1 − wT ,�t2‖2
‖wT ,�t1‖2 for �t1 > �t2,

where wT ,�t implies that the numerical solution at t = T with the time step �t . Then we
can define the rate of convergence as

rate = log2
etw(�t,�t/2)

etw(�t/2,�t/4)
, (29)

The time step �t begins with �t = T /64 and decreases by half. The final value is �t =
T /1024. Table 1 shows the rate of convergence in time of our method with the periodic
boundary condition in the system (12).

According to Table 1, we verify that our method is of first-order in time. This coincides
the fact (10) in Remark 1.

Now we verify the convergence rate in space. Since the initial conditions (28) are suf-
ficiently smooth, we expect an exponential decay in the space error based on the result of
Theorem 2. In order to measure the spectral accuracy in space, we consider the following
relative error eperw between coarse and reference grid solutions as

eperw (N , Nref ) =

⎛
⎜⎜⎜⎝

∑
1≤i, j≤N

(
w

T ,Nref
Nre f
N i,

Nre f
N j

− w
T ,N
i j

)2

∑
1≤i, j≤N

(
w

T ,Nref
Nre f
N i,

Nre f
N j

)2

⎞
⎟⎟⎟⎠

1/2

,

where wT ,Nr e f is the reference grid solution, i.e., the finest grid solution, and wT ,N is a
relatively coarse grid solution. This error is well-defined since the collocation points in the
frequency space are exactly same whenever the wave numbers are same. Figure4 depicts the
rate of convergence to our method is of exponential decay indeed.

Here, we set Nref = 1024, N = 32, 64, 128, 256, 512, �t = 10−3, and T = 10−1.
Finally,weverify the convergence rate in spacewith the homogeneous boundary condition,

i.e., when using the explicit diffusion solver. For the sake of brevity, we use the system (12)
with the homogeneous boundary condition; though it was not covered theoretically in Sect. 3,
applying the solver (8) to (12) poses no problem. Since the expected convergence rate is
O(�t + h2), if we take �t = 0.1h2, and then the rate becomes O(h2). We define a relative
error ehomw between two numerical solutions using different space steps N and 2N as

ehomw (N , 2N ) = ‖wT ,N − w̃T ,2N‖2
‖wT ,N‖2 ,
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Fig. 4 Rate of convergence in space to the proposed scheme with the periodic boundary condition. Note that
this is a log-log plot

Table 2 Rate of convergence in space to the proposed scheme with the homogeneous boundary condition.
Note that we omit the second place of ehomw (·, ·) for convenience below
Cases ehomw (32, ·) Rate ehomw (64, ·) Rate ehomw (128, ·) Rate ehomw (256, ·)
w = u 9.643e−6 1.9850 2.436e−6 1.9980 6.099e−7 1.9961 1.529e−7

w = v 4.368e−5 1.9888 1.100e−5 1.9974 2.756e−6 1.9987 6.897e−7

where wT ,N represents the numerical solution at t = T with N × N grid points, and w̃T ,2N

is defined as

w̃
T ,2N
i j = w

T ,2N
2i−1,2 j−1 + w

T ,2N
2i−1,2 j + w

T ,2N
2i,2 j−1 + w

T ,2N
2i,2 j

4
,

for all 1 ≤ i, j ≤ N . The following table shows that our proposed method with
the homogeneous boundary condition is of second-order in space indeed. Here, we use
N = 32, 64, 128, 256, �t = 0.1h2, T = h2, and measure the rate in the sense of (29).

According to Fig. 4 and Table 2, we conclude that our method has advantages in the sense
of spectral accuracy and relaxed time step size compared to the fully explicit and conventional
semi-implicit methods.

4.3 Pattern formation

We provide several patterns induced by the models (12) and (19) in this subsection.

4.3.1 Stripes and spots

Figure5 shows the temporal evolution of the system (Lengyel and Epstein 1992) in 2D for
different values of k1 and δ. The system is solved in (x, y) ∈ [0, 10] × [0, 10], k2 = 11,
Nx = 100, Ny = 100, h = 0.1, and�t = 0.001. Here, we use the pre-computing parameters
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Fig. 5 Temporal evolution of the Lengyel–Epstein model with k2 = 11. In first row, δ = 0.04 and k1 = 7 are
used. In second row, δ = 0.02 and k1 = 9 are used. The final times for each pattern is t = 50, t = 100, and
t = 500 from left to right

Nu = 150, Nv = 150, and Ns = 200. Initial conditions are given as follows:

u(x, y, 0) = ū + 0.2rand(x, y),

v(x, y, 0) = v̄ + 0.2rand(x, y),
(30)

where ū = 1 + 0.04k22 , v̄ = 0.2k2, and rand(x, y) implies a random value between −1 and
1. We employ the periodic boundary condition.

We provide the L2-stability result numerically. Figure6 shows a consecutive error over
time until t = 500. The relative consecutive error is defined as follow:

consecutive error =
∥∥wn+1 − wn

∥∥
2

‖wn‖2 .

All the parameters are not changed those in the previous test.
Next, we show the specific effect of parameter δ in pattern formation. We use three values

of δ = 0.01, 0.03, and 0.04, with remaining parameters fixed. The results of using different
δ are shown in Fig. 7. As δ changes from 0.01 to 0.03 and 0.04, we can find the transition
from concave spots pattern to stripes, and back to convex spots pattern.

4.3.2 Spiral traveling waves

We apply the model (Sherratt et al. 2002) to generate periodic traveling wave solutions of an
area containing a landscape obstacle listed in Yun et al. (2015), which is depicted in Fig. 8.

The following values are assigned to parameters,α = 1.8,β = 1.2, γ = 4.9, and σ = 2.5.
We perform the pre-computing process to obtain interpolating points for nonlinear terms of
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Fig. 6 The consecutive error with k2 = 11. In first row, δ = 0.04 and k1 = 7 are used. In second row, δ = 0.02
and k1 = 9 are used

Fig. 7 Pattern formation using different values of δ = 0.01, 0.03, 0.04 and k1 = 7 at t = 500

the predator–prey model with Nu = 50, Nv = 50, and Ns = 50. The following initial
condition is given:

u(x, y, 0) = Ixy(1.1ū + 0.05rand(x, y)),

v(x, y, 0) = Ixy(1.1v̄ + 0.05rand(x, y)),
(31)

where Ixy is an indicator function satisfying Ixy = 0 if (x, y) is in obstacle; Ixy = 1 otherwise
where (x, y) ∈ [0, 512] × [0, 512]. Figure9 shows the traveling wave solutions nearby an
obstacle, which is the landscape. We use �t = 1/σ , Nx = Ny = 512, and h = 1.
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Fig. 8 a Photograph of Kielder Water provided by Google Maps. b Geometric landscape feature presented in
Yun et al. (2015), which is an obstacle in domain. c Close up view of yellow boxed region

4.4 Performance of computing time

In this section,we compare the total computing time of numericalmethods using our proposed
method with those of references using their scheme. First, let us consider the comparison
of the computing time for the Lengyel–Epstein model. In Jeong et al. (2017), the numerical
solution of (2) is obtained by the explicit Eulermethodwhich has a severe time step restriction,
whereas the proposed method in this paper is relatively free from the time step restriction.
For comparison, we ran the test until final time t = 2000 for both methods. The referenced
method showed unstable results when �t = 0.01, whereas the proposed scheme showed
stable results. For the reference method, �t = 0.001 is used for the test and any other
parameters are not changed those in Jeong et al. (2017).

Table 3 contains the computing time and used time step for both the reference method and
our proposed scheme at the final time t = 2000 when δ = 0.04 and k1 = 7. As shown in
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Fig. 9 a Traveling wave solution around the landscape obstacle at t = 7000. b Close up view of yellow boxed
region in a. c Traveling wave solution around the landscape obstacle at t = 10000. d Close up view of yellow
boxed region in c

Table 3 Computing time
performance for the
Lengyel–Epstein model between
our proposed scheme and the
reference method

Proposed scheme Reference method

�t 0.01 0.001

Elapsed time (s) 218.11 281.80

Table 4 Computing time
performance for the
predator–prey model between our
proposed scheme and the
reference method

Proposed scheme Reference method

�t 0.25 0.25

Elapsed time (s) 707.21 6553.41

Table 3, our proposed scheme achieves a quite faster computation than the reference method
by using a larger time step size.

For the next step, we compare the elapsed time between ourmethod and the splitting-based
multigrid solver employed in Yun et al. (2015) with the same time step�t = 0.25. Any other
parameters are fixed as listed in Yun et al. (2015). Table 4 shows the CPU time performance
between two schemes at the final time t = 7000.

According to Table 4, our proposedmethod is much faster than the reference method. This
indicates that our approach offers faster performance compared to a kind of implicit solver.
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5 Discussions

We aim to discuss several points of consideration regarding the content presented so far in
this section. Let us start with the reason for using the explicit fourth order Runge–Kutta
method in the pre-computing process. As mentioned in Remark 1, the local error isO(�t2),
which implies that using a high-order scheme beyond the second order is not meaningful in
reducing the discretized error. However, the pre-computed solution is utilized at every step in
the time integration to compute the next intermediate solution in the main loop. Although our
proposed method is classified as a hybrid scheme, it essentially operates like a linear method
due to the closed-form nature of the linear interpolation method. It is important to note that
the pre-computed solution is not a one-step solution. This means that another type of error
in the solution, such as a round-off error, must also be considered during the pre-computing
process. Therefore, we have considered reducing the number of pre-iterations, Ns , in the pre-
computing process, and consequently chosen the conventional Runge–Kutta method over the
forward Euler scheme. It is worth noting that since �t/Ns is the one-step size in the pre-
computing process, a sufficiently small time step is already required, thus excluding implicit
solvers from our options. Additionally, although the models discussed above are not highly
nonlinear, our approach can be easily extended to an adaptive Runge–Kutta method in cases
where regarding models are more stiff than the above models.

Next, we address the reasons for using a linear interpolating method and discuss the
extension of it. The reason for using bilinear interpolation as a nonlinear propagator in our
proposed method is due to the ease of obtaining the boundedness of the solution. However,
there is a drawback of the currently selectedmethod that�H , which is the discretized linearly
stable region for u and v in the pre-computing process, requires a relatively large number of
mesh grids. For a highly stiff nonlinear problem, the linear interpolation requires a finer grid
compared to other methods to achieve sufficient accuracy. This also implies an increase in the
time required to locate the specific cell in�H where uni j and vni j should be positioned for each
step when applying the nonlinear propagator in the main loop; in other words, it affects the
elapsed time. To advance this, we can consider the non-uniformmesh refinement or the latest
interpolating methods that can reduce the resolution of �H . Various interpolating methods
applicable to different reaction-diffusion systems have been actively developed until recently
(Roul 2020; Roul and Goura 2023).

Finally, we discuss the setting of initial conditions and the instabilities that might emerge
from discretization. As mentioned above, the patterns are generated through the instabilities
driven by diffusion in the linearly stable region with the unique steady-state (in fact, asymp-
totically stable) solution (w∗, z∗). Due to the comparison arguments presented in Smoller
(2012), it is possible to obtain the all time bound |w(·, t) − w∗| ≤ |z(·, t) − z∗| once
|w(·, 0) − w∗| ≤ |z(·, 0) − z∗| has been established. This fact provides a rationale that, even
if the numerical solution at a specific time falls outside the stable region, the boundedness at
the discrete level can be guaranteed by setting the initial values closer to the asymptotically
stable equilibrium. This is the reason why we set the initial conditions as described in (30)
and (31).

6 Conclusions

In this paper, we present the result of alleviating the time step restriction when solving the
system of reaction-diffusion equations through the pre-iterations process and achieve the fast
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computation to the whole reaction-diffusion system.When solving the system of the ordinary
differential equations, the results using interpolants and the fourth-orderRunge–Kuttamethod
are not significantly different. We provide the stability and convergence results for Lengyel–
Epstein and predator–prey models both theoretical and numerical ways, and both results are
in good agreements. Numerical simulations are conducted and the results imply that our
proposed method brings out similar patterns as well as the patterns derived in the references.
One of the advantages of the proposed method, as demonstrated by the comparison of the
computing time performance with explicit or implicit solvers, is that our method can provide
the numerical solutions of similar qualities more faster. For future research, we aim to extend
our method to models that form patterns differently from conventional reaction-diffusion
models, such as time-fractional diffusion or doubly nonlocal models (Roul et al. 2023, 2022;
Gal 2018).
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